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Abstract
Methods based on automatic computer-aided systems for lung cancer diagnosis have gained popu-
larity in recent years. Lung parenchyma segmentation technology plays an important role in these
methods. To reduce the gradient loss, improve the feature utilization, and alleviate the difficulty
of fully mining the contextual information in lung parenchyma segmentation, this study proposes
a network model for lung parenchyma segmentation based on a Multiscale fusion and Boundary
Refinement UNet (MBR–UNet) model. First, along the encoding path, the features are efficiently
extracted by a Residual–Residual block module. Next, along the decoding path, a multiscale at-
tention–spatial pyramid pooling module fully integrates the feature maps of different layers and
sums the outputs of each layer of the decoding path for boundary refinement. Finally, the training
model is optimized through a hybrid loss function. The proposed model is experimentally eval-
uated on the lung segmentation dataset of the Kaggle competition. The accuracy, Dice similarity
coefficient, intersection ratio, and Hausdorff distance of the network segmentation are improved by
98.79%, 97.35%, 96.34%, and 12.82 mm, respectively, from those of other segmentation methods.
According to these results, the method can more precisely segment pulmonary parenchyma than
the existing methods.
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1. Introduction

Early diagnosis and intervention are crucial for improving the clinical outcome of lung cancer, a
malignant tumor that seriously endangers human health (Sung et al., 2021). U-shaped codecs and
jump connection structures, represented by the UNet model, are widely adopted in lung parenchyma
segmentation algorithms (Skourt et al., 2018). Consequently, improving the UNet network has be-
come a major focus of lung-tissue segmentation research. Geng et al. (2019) improved the segmen-
tation capability of the UNet network by combining VGG-16 with inflated convolution. Khanna
et al. (2020) enhanced the UNet network with deep residual blocks that extract more discriminative
features and data enhancement techniques that improve the generalizability of the network. The
UNet-based dual-stream lung-tissue segmentation network of Zhu et al. (2024) introduces shape
stream branches and uses the deep features of the backbone network to generate shape streams with
clear edge information, thereby improving the segmentation performance. Although the UNet net-
work has undoubtedly contributed to medical image segmentation, it is hampered by gradient loss,
low feature utilization, and difficulty in fully mining the contextual information in medical images
with unclear boundary features.

To alleviate the problems of traditional UNet networks, this paper proposes a pulmonary
parenchymal segmentation network model based on Multiscale fusion and Boundary Refinement
UNet (MBR–UNet). The model adopts the U-shaped codec and a similar hopping connection struc-
ture to that of UNet but has different core components.

2. Methods

2.1. Res2Net Block Module

The Residual–Residual Network block (Res2Net block) is a new module proposed by Gao et al.
(2019). Inspired by the Residual Network (ResNet), Res2Net extracts multiscale features from
images by simply modifying the Bottleneck block in ResNet. Specifically, Res2Net block adopts
a split–transform–merge structural design (Figure 1(b)) that disperses and processes information in
parallel, thus alleviating the bottlenecks in the information transfer process of the traditional ResNet
structure. By introducing multi-level feature interactions, Res2Net Block effectively enhances the
network’s ability to perceive multiscale features, improving its performance in image recognition
tasks.

2.2. Multiscale Attention to Spatial Pyramid Pooling Modules

The decoding path of the UNet network fuses shallow and deep feature maps through simple upsam-
pling and jump connections, which hinders the effective integration of features at different levels.
Moreover, as the convolutional kernel size and step size of the decoding part are fixed, UNet can-
not easily perform multiscale segmentation tasks that must capture global information. Chen et al.
(2018) inserted inflated convolutional branches and globally averaged pooling branches into pool-
ing modules that capture the detailed local information and fuse the global contextual information.
The Multiscale Convolutional Attention (MSCA) module, proposed by Guo et al. (2022) in 2022,
aggregates the local information using deep convolution to improve the image quality. Inspired by
the MSCA and pooling modules, this paper designs a Multiscale Attention–Spatial Pooling Pyra-
mid (MSA–SPP) module with the structure shown in Figure 2. First, the MSA–SPP inputs feature
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maps into a global pooling branch and three expansion convolution branches with different expan-
sion rates, which capture the global and local semantic information and the contextual information
at different scales in the feature maps. The feature maps output from these four branches are then
spliced and input to three deep-strip convolution branches with different kernel sizes, which enhance
the feature expression ability at a finer granularity level. Finally, the feature maps are extracted with
multiple multiscale contextual information and the original input feature maps are spliced with 1 ×
1 convolution for channel adjustment, enabling the complete fusion of high- and low-level feature
maps.

Figure 1: Comparison of the structures of (a) the Bottleneck block in traditional ResNet and (b)
Res2Net block.

2.3. Boundary Refinement Network

A typical refinement module (RM) (Deng et al., 2018) is a residual block that finely segments the
residuals between the rough and real graphs; however, the shallow network hierarchy of the existing
RMs impedes the extraction of fine, high-level details. To avoid this problem, Qin et al. (2021)
in 2019 proposed the residual refinement module (RRM), which aims to optimize the unevenly
predicted regions and fuzzy boundary defects in the coarse feature graph. The RRM structure is
shown in Figure 3.
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Figure 2: Structure of the proposed Multiscale Attention–Spatial Pooling Pyramid (MSA–SPP)
module.

Figure 3: Residual refinement module of Qin et al.

2.4. Hybrid Loss Function

To ensure a comprehensive optimization of the objective during the training process and hence
improve the segmentation results, we train the network using the following hybrid function:

LS = αLbce + βLdice + γLiou (1)

where Lbce is the binary cross-entropy (BCE) loss, Ldice is the Dice coefficient loss, Liou is the
intersection-over-union (IoU) loss, and α, β, and γ are weighting coefficients that balance the con-
tribution of each loss.

The BCE, Dice, and IoU losses track the accuracy of classification at the pixel level, the ac-
curacy of segmentation of the target region, and the spatial consistency of the overall segmented
region, respectively. Combining these three losses balances the classification accuracy, segmenta-
tion accuracy, and spatial consistency during training.
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2.5. Architecture of the MBR–UNet Network

The model in this paper adopts UNet-like U-shaped codecs and a hopping connection structure. The
model framework is shown in Figure 4. The left (coding) path of MBR–UNet contains five layers
of Res2Net block modules and four downsampling layers for feature extraction. Downsampling
captures the high-level semantic features of the input image, improving the network’s understand-
ing and processing of the image. By installing a Res2Net block module as a convolutional layer,
we mitigate the problematic gradient vanishing during the downsampling process; moreover, the
unique sub-path structure of the Res2Net block improves the capability of the network feature rep-
resentation. The right (decoding) path consists of two parts. The first part containing four layers of
MSA–SPP modules and four upsampling layers reduces the high-level semantic features extracted
in the coding part to the resolution of the original image through upsampling and feature fusion, fi-
nally generating pixel-level segmentation predictions. The second part upsamples the feature maps
at each stage to match the size of the original map and accumulates them into a segmentation proba-
bility map, which is further optimized for edge segmentation through the final boundary refinement
module, thus improving the generalization of the model.

Figure 4: Structure of the Multiscale fusion and Boundary Refinement UNet (MBR–UNet) model.

3. Experimental Setup and Training

3.1. Dataset Settings

Experiments were performed on the lung segmentation dataset provided in the 2017 Kaggle com-
petition. The dataset contains 267 two-dimensional lung image slices and corresponding lung
parenchyma mask images. The resolution of each lung solid image and mask image is 512 ×
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512. To increase the diversity of data samples, additional samples were generated through data
enhancement approaches (horizontal flips and rotations through different angles).

3.2. Experimental Environment Setting

The hardware environment of all experiments was configured as shown in Table 1.

Table 1: Experimental environment.

Experimental platforms Environmental Configuration

Operating system Win10
Deep learning frameworks Pytorch-gpu1.13.1

Programming language Python3.7
CPU i5-12600KF
GPU RTX 3070 Ti

CUDA NVDIA CUDA 11.7

The hyperparameters were set up as follows: batch size = 8; number of epochs = 200. The
network parameters were updated with an Adams optimizer. The model was trained using the early
stopping method to limit the number of training batches and hence prevent overfitting. The training
was ceased if the model accuracy remained unchanged through 20 consecutive training batches.

3.3. Evaluation Indicators

The model was evaluated in terms of four segmentation-evaluation metrics: Accuracy (ACC), Dice
similarity coefficient (DSC), IoU, and Hausdorff distance (HD). ACC reflects the ability of the
model to predict the pixel-level accuracy. The DSC is a widely used semantic-segmentation indi-
cator that measure the matching degree between the predicted and true segmentations. The IoU,
which measures the overlap region between the predicted and real segmentation, is a key metric of
segmentation effectiveness. The HD quantifies the maximum distance between the predicted and
true boundaries, with smaller values indicating tighter boundary alignment. The ACC, DSC, IOU,
and HD are respectively calculated as follows and the variables are defined in Table 2:

ACC =
TP + TN

TP + TN + FP + FN
(2)

DSC =
2TP

2TP + FP + FN
(3)

IoU =
| A ∩B |
| A ∪B |

(4)

HD = max {maxa∈Aminb∈Bd(a, b),maxa∈Aminb∈Bd(b, a)} (5)
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4. Analysis of Experimental Results

4.1. Comparative Experiments of Different Segmentation Models

To demonstrate whether the proposed segmentation model can effectively enhance the segmentation
of lung parenchyma, the performance indices of the MBR–UNet model were compared with those
of four classical models, namely, UNet, DeepLabv3, UNet++ (Zhou et al., 2019), and U2Net (Qin
et al., 2020), on the same dataset in the same environmental configuration. The comparison results
are presented in Table 3.

Table 2: Definitions of variables in the evaluation indices (Eqs. (2)–(5)).
Variable Interpretation

TP Number of pixels correctly predicted in the positive category
TN Number of pixels correctly predicted in the negative category
FP Number of pixels in the negative category which are incorrectly assigned to the positive category
FN Number of pixels in the positive category that are incorrectly assigned to the negative category
A Predicted set of pixels in the segmentation result
B A collection of pixels in the real segmentation result

d(a, b) Distance from points in set a to points in set b

Table 3: Comparison of results of the evaluated segmentation models.

Models DSC (%) IoU (%) ACC (%) HD (mm)

UNet 93.85 93.11 96.84 25.92
DeepLabv3 95.56 94.75 98.23 20.05

UNet++ 94.67 93.66 97.78 22.38
U2Net 95.37 95.12 98.15 18.96

MBR–UNet 97.35 96.34 98.79 12.82

As confirmed in Table 3, the segmentation performance of the proposed network model sur-
passes those of the other methods by different degrees. MBR–UNet improved the DSC, IoU, and
ACC by 3.50%, 3.23% and 1.95%, respectively, from those of UNet network. Moreover, the HD
of MBR–UNet was notably reduced from those of the other models and was nearly half that of the
UNet network. The high HD performance was attributed to the RRM module, which optimizes the
boundary defects and largely improves the boundary identification.

To show the final segmentation effect of each segmentation model, three pictures were randomly
selected from the test set and the segmentation results of the models were visualized as shown in Fig-
ure 5. As evidenced in the figure, the classical models did not completely remove the influences of
irrelevant regions such as blood vessels and bones. They were also prone to over-segmentation and
under-segmentation and produced relatively rough segmentations of the lung parenchyma bound-
aries. The segmented lung parenchyma region of the proposed method best resembled the real mask,
demonstrating that the MBR–UNet segmentation model effectively reduced the over-segmentation
and under-segmentation problems and produced a refined segmentation of the lung boundary.
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4.2. Ablation Experiment

The contribution of each component of the segmentation network to the segmentation performance
of each model was evaluated through ablation experiments. The results are tabulated in Table 4.

Introducing the Res2Net block and the MSA–SPP module noticeably improved the DSC, IoU,
and ACC metrics because the Res2Net block effectively extracts features through its multiscale
paths, whereas the MSA–SPP module captures the fine-grained features and effectively integrates
the multiscale contextual information, thus optimizing the model’s retention of the feature infor-
mation extracted from the coded part. Meanwhile, the RRM module considerably reduced the HD
metric, confirming the efficacy of the boundary refinement module. The segmentation performance
was further improved by adopting the hybrid loss, which calculates the losses at different depth
levels.

Figure 5: Segmentation effects of the evaluated segmentation models.

Table 4: Results of the ablation experiments.
Models DSC (%) IoU (%) ACC (%) HD (mm)

UNet 93.85 93.11 96.84 25.92
UNet & Res2Net block 95.21 94.45 97.67 22.42

UNet & Res2Net block & MSA–SPP 96.38 95.36 98.13 19.95
UNet & Res2Net block & MSA–SPP & RRM 96.59 95.73 98.34 14.63

UNet & Res2Net block & MSA–SPP & RRM & Hybrid loss 97.35 96.34 98.79 12.82

5. Summary

We have designed a lung parenchyma segmentation network model based on a U-shaped coding
and decoding structure. The Res2Net block module performs feature extraction along the coding
path and an MSA–SPP module is designed for feature fusion along the decoding path and boundary
refinement in the output results. Finally, the model training is optimized using the hybrid loss
function, which is expected to improve the accuracy of lung parenchyma segmentation by ensuring
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adequate feature extraction and fusion and refining the segmentation boundary. Experiments on the
lung segmentation dataset of the Kaggle competition demonstrated the advantages of the proposed
model in lung parenchyma segmentation; in particular, the model more completely segmented the
lung parenchyma region than the classical methods.
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