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Abstract
The advancement of artificial intelligence has significantly improved the capability to capture back-
ground features in hyperspectral images (HSI), thereby demonstrating commendable performance
in the domain of hyperspectral anomaly detection (HAD). The existing approaches, however, still
exhibit certain limitations: (1) The deep feature learning process lacks contextual, anomaly con-
straints, and prior information. (2) The priority reconstruction of the background cannot be ensured
by traditional HSI anomaly detectors based on self-supervised deep learning. (3) The utilization of
spatial information in hyperspectral images is limited by the fully connected deep network struc-
ture of the HSI anomaly detector. The performance of many hyperspectral anomaly detectors is
limited by assumptions or presumptions regarding background and anomaly distributions, as these
detectors cannot accurately account for the complex real-world distributions. The paper proposes a
self-supervised full convolutional autoencoder as a solution to address these issues. The effective-
ness and performance of the method were confirmed through evaluation on two real hyperspectral
datasets, demonstrating superiority over nine other state-of-the-art methods.
Keywords: Hyperspectral Image Analysis, Anomaly Detection, Full Convolutional Autoencoder,
Self-Supervised Learning

1. Introduction

The hyperspectral images encompass abundant spatial and spectral information. The hyperspectral
remote sensors capture hyperspectral images by integrating two spatial dimensions into the image,
along with an additional spectral dimension comprising hundreds or thousands of nearly continuous
spectral curves that represent land cover. The utilization of high spectral resolution enables the de-
pendable extraction of spectral characteristics, facilitating differentiation between distinct features.
The utilization of hyperspectral images is prevalent in various domains such as target detection, clas-
sification, change detection, and other related fields. The hyperspectral anomaly detection (HAD)
technique identifies abnormal targets in hyperspectral images by detecting pixels exhibiting distinct
spectral curves and occupying a small spatial proportion. The abundance of spatial and spectral
information in hyperspectral images facilitates the identification of anomaly targets, even without
prior knowledge of their specific spectral features (Su et al., 2022).

© 2024 J. Wang, Y. Yu, R. Zhao∗ & M. Li.



WANG YU ZHAO∗ LI

The past two decades have witnessed the emergence of advanced models and methodologies for
anomaly detection in hyperspectral remote sensing images. (Wang et al., 2023). The application of
deep learning technology in the field of HAD has garnered increasing attention. (Hu et al., 2022).
The most widely used approach for monitoring HAD is the utilization of CNND (Li et al., 2017).
The Autoencoder (AE) models (Gao et al., 2023) and generative adversarial networks (GANs) are
commonly employed for extracting the deep intrinsic spectral features of the Hang Seng. The AE
model and GAN were first introduced into HAD by Arisoy et al., establishing them as pioneers in
this field. The utilization of GANs in HADGAN (Jiang et al., 2020) enables potential feature layers
to acquire knowledge regarding multivariate normal background distributions. The fully convolu-
tional autoencoder (Auto-AD) for HAD was initially proposed by Wang et al. (2021), incorporating
adaptive learning.

we propose a novel FCAE-HAD method. The proposed method makes the following contribu-
tions: (1) A novel fully convolutional autoencoder is proposed to effectively leverage spatial infor-
mation for enhancing hyperspectral anomaly detection and achieving integrated anomaly detection
with spatial structure. (2) The proposed deep network learning is guided by a prior knowledge
extraction module that combines DBSCAN and connected component analysis clustering. This
module extracts background samples and abnormal samples, ensuring a clear learning direction for
the deep network. (3) A potential adversarial consistency network for feature extraction is proposed,
which addresses the limitation of assuming a specific background distribution and achieves more
accurate reconstruction of pure backgrounds.

2. Proposed Method

2.1. Overview

The unsupervised full convolutional autoencoder (FCAE) proposed in Figure 1 is illustrated.

2.2. The Extraction of Prior Knowledge through Bi-Clustering

The bi-clustering process employed in this study primarily encompasses two methodologies: DB-
SCAN clustering within the spectral domain and CCC clustering within the spatial domain. The
DBSCAN algorithm is employed to cluster the spectral information. Specifically, a random pixel
is selected as the initial point, and subsequently all pixels are iteratively examined to identify the
core category graph M1 =

{
m1

i

}i=H×W

I=1
∈ RH×W . The results of our experiments demonstrate

that, due to the overwhelming number of background events compared to anomalies, it is possi-
ble to generate up to 312 categories from the clustering outcomes. The binary classification map
P1 =

{
p1i
}i=H×W

I=1
∈ RH×W is obtained at last as:

P1 =

{
p1i = 1, ·m1

i ∈ 1
p1i = 0, · · ·m1

i /∈ 1
(1)

The presence of isolated noisy pixels and background objects that significantly deviate from the
surrounding backgrounds in a binary classification graph may lead to misclassification as anomaly
objects. The problem at hand can be addressed by introducing a spatial clustering approach that
leverages connected component analysis. The connected component labeled graph M2 =

{
m2

i

}i=H×W

I=1
∈

RH×W is derived to represent the spatial relationship between the background and anomalies. The
labels P2 =

{
p2i
}i=H×W

i=1
∈ RH×W we obtained are prominently bold as follow:
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P2 =


p2i = 0, m2

i ∈ L2

p2i = 1 m2
i ∈ L1

p2i = 0 m2
i ∈ L1

p2i = 1 m2
i ∈ L3

and
L1

L
< 0.8 (2)

The numbers L1, L2, and L3 represent three types of connected components respectively. The
total number of connected components is denoted as L = L1 + L2 + L3. In summary, the filter
associated with device L1 exhibits superior detection performance while having minimal impact.

Figure 1: The proposed flow chart illustrates the FCAE-HAD method.

2.3. Training of Full Convolutional Autoencoders

The FCAE-HAD method leverages bi-clustering to extract prior knowledge. The proposed method
introduces a robust approach for acquiring background features in a full convolutional autoencoder,
based on the adversarial consistency network. The training stage will be divided into the following
three distinct parts:

(1) The data is being incremented. The patch size is randomly selected from a predefined set of
options in order to segment the original hyperspectral image into K different patch sizes. The task
is to randomly select N patches, where N < K and 0.3 < N/K < 1, from the given K sizes. The
position of these N patches is then correlated with the mask map S with a value (0 or 1), where
0 denotes the occluded area, 1 represents another pixel. The set S = {si}i=H×W

i=1 ∈ RH×W is
defined here. Considering the prevalence of the multivariate Gaussian distribution observed in the
background, a generated mask is populated with a cube I ∈ RH×W×B containing Gaussian noise.
Here, S = {si}i=H×W

i=1 ∈ RH×W . The final deep network can be mathematically formulated as:
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XM = X ⊗ S + I ⊗ S̄ (3)

(2) Network architecture. The network architecture of FCAE-HAD, as depicted in Figure 1.
The FCAE employs convolutional autoencoders (CAE) to facilitate self-supervised learning of hy-
perspectral image (HSI) cubes. The distinguishing factor of our FCAE, as opposed to simple CAE.
The coding process is outlined as follows:

F1 = SSAJ
(
Conv 1

(
XM

))
F2 = EresConvBlock ((F1))

F3 = EresConvBlock ((F2)) (4)

F4 = EresConvBlock ((F3))

Z = EresConvBlock ((F4))

The decoding process can be formulated as:

F5 = SSAJ(Z)

F6 = DEresConvBlock (Concat (Upsampling (F5) ,Conv 1 (F4)))

F7 = DEresConvBlock (Concat (Upsampling (F6) ,Conv 1 (F3))) (5)

F8 = DEresConvBlock (Concat (Upsampling (F7) ,Conv 1 (F2)))

X̃ = Conv 1 (DEresConvBlock (Concat (Upsampling (F8) ,Conv 1 (F1)))

The spectral-spatial joint attention mechanism utilizes global maximum pooling in the spatial
dimension and global average pooling in the spectral dimension.

The EResConvBlock is composed of three convolution layers: a 3×3 convolution layer, a 3×3
convolution layer, and a 1×1 convolution layer. The convolutional layers are supplemented with
batch normalization and LeakyReLU activation functions for enhanced performance.

The DEResConvBlock consists of three 1×1 convolutional steps with a stride of 1 and one
3×3 convolutional step with a stride of 1, effectively enriching and enhancing the decoded feature
representation. The convolutional layers are sequentially accompanied by batch normalization and
LeakyReLU activation functions.

The Latent Feature Adversarial Consistency Network (LFACN) comprises an encoder and a
discriminator for latent features. The input sample XM ∈ RH×W×B and the prior background
sample XM ∈ RH×W×B are encoded by the shared weight encoder E, yielding the potential
features Z1 and Z2 respectively. The encoder is augmented with a potential feature discriminator
DZ to ensure the similarity of the background potential feature distribution, thereby minimizing the
discrepancy between input potential feature Z 1 and hyperspectral image’s potential feature Z2. The
reconstructed background X̃ ∈ RH×W×B obtained through E for coding should exhibit a higher
degree of similarity to the prior background sample XB , as indicated by its corresponding potential
feature Z3. The L1 loss function is employed to ensure the underlying feature consistency, as deep
networks have limitations in guaranteeing this constraint.

(3) Learning Stage. The proposed deep network architecture comprises an encoder E, a decoder
DE, and a discriminator DZ. The loss function comprises the adversarial loss, the triplet loss LT ,
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adversarial consistency loss LZ , and reconstruction loss LR. The deep network model undergoes
a comprehensive learning process, wherein the optimization of model parameters is achieved it-
eratively through gradient backpropagation, leveraging these four losses. The mean square error
(MSE) serves as the reconstruction loss:

LR = ∥X − X̃∥2 (6)

The triplet loss utilizes two mean square errors, as depicted in the subsequent equation:

LT =
∥∥∥XB − X̃ ⊗ P2

∥∥∥
2
−
∥∥∥XA − X̃ ⊗ (1− P2)

∥∥∥
2

(7)

The adversarial loss and adversarial consistency loss of encoder E and potential feature dis-
criminator DZ can be expressed as follows:

LDZ = E (log (DZ (Z2))) + E (log (1−DZ (Z1))) (8)

LZ = ∥Z3 − Z2∥2 (9)

Finally, the total loss can be expressed as:

Lall = ∂LT + βLZ + µLR (10)

The values of ∂, β, and µ are set to 0.9, 0.1, and 0.1 respectively, based on the task requirements.
The network learning rate lr is 0.001. Once the training is completed, the parameters of the deep
network remain fixed while utilizing them to reconstruct the original HSI.

2.4. Testing Stage

After optimizing and fine-tuning the parameters of the deep network θ̂, we eliminate the discrimina-
tor DZ and only retain the encoder E and decoder DE for hyperspectral image reconstruction. The
raw HSI X is utilized for detection instead of the training mask image XM , as it closely resembles
real-world scenes. The trained model subsequently performs an end-to-end reconstruction of the
background image. The trained model subsequently performs an end-to-end reconstruction of the
background image X , as depicted below. as depicted below:

X̃ = FCAE −HAD(X, θ̂) (11)

The FCAE-HAD deep network proposed evolves into a robust background reconstruction net-
work through the integration of bi-cluster and triple-loss guided learning, as well as adversarial
consistency network training on real background data. Finally, the hyperspectral anomaly detection
results are obtained by equation (12):

Gi,j = ∥xi,j − x̃i,j∥2 (12)

The original HSI X ∈ RH×W×C and the refactored HSI X̃ ∈ RH×W×C of the pixel are
denoted as xi,j ∈ RB×1 and x̃i,j ∈ RB×1, respectively. The final test graph G = {Gi,j}i=H,j=W

i=1,j=1 ∈
RH×W , is formed by assigning the abnormal pixel ratings to the corresponding positions (i, j).
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3. Experiments

The experiment involved the testing of two authentic hyperspectral images. The scene in San Diego
measures 100 x 100 with a total of 189 bands, while the scene in Pavia has dimensions of 150 x
150 and consists of 102 bands. The study conducted a comparative analysis of nine cutting-edge
anomaly detection techniques, encompassing three advanced deep learning methodologies. The
detection performance of LRBSN was comprehensively evaluated by presenting heat maps, visual
ROC curves, and AUC indices for each method (see Figure 2, Figure 3, Figure 4, and Table 1).
The results demonstrate the efficacy of the proposed method in detecting abnormal spatial struc-
tures. The ROC curve of our method consistently ranks among the top performers. The background
suppression and prominence of our method surpass those of other methods.

Figure 2: The heat maps of the San Diego dataset: (a) ground truth (b) GRX (c) LRX (d) FRFE (e)
CRD (f) AED (g) LRASR (h) GAED (i) RGAE (j) Auto-AD and (k) ours.

Figure 3: The heat maps of the Pavia dataset: (a) ground truth (b) GRX (c) LRX (d) FRFE (e) CRD
(f) AED (g) LRASR (h) GAED (i) RGAE (j) Auto-AD and (k) ours.
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Figure 4: The ROC curves are plotted for the two selected datasets: (left) San Diego (right) Pavia.

Table 1: AUC values on various datasets
Method GRX LRX FRFE CRD AED LRASR GAED RGAE Auto Ours

SanDiego 0.874 0.857 0.979 0.977 0.990 0.982 0.986 0.985 0.989 0.999
Pavia 0.954 0.953 0.946 0.951 0.979 0.938 0.940 0.969 0.991 0.997

4. Conclusion

The present study introduces a novel full convolutional autoencoder, namely FCAE-HAD, for hy-
perspectral anomaly detection. We utilize a fully convolutional autoencoder. The detection per-
formance demonstrates the superiority of this method over existing advanced HAD methods. The
validity experiment further substantiates the dependability and practicability of the FCAE-HAD
method. The limitations of our method, however, include the necessity for manual parameter ad-
justments, which may not sufficiently cater to its practical versatility. The focus of our future work
will primarily be on the development of an adaptive approach, with the objective of achieving effi-
cient and rapid HAD without dependence on any pre-established parameters.
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