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Abstract

Standard RANS model is widely used in turbulence modelling and numerical simulation, due to
its linear assumption of eddy viscosity, it is not suitable to accurately predict the Reynolds stress,
especially in separated flows with anisotropy of Reynolds stress. In this study, a machine learning
model is proposed by applying the random forest regression algorithm to learn the deviation be-
tween eddy-viscosity and high-fidelity models for separation flows around near-wall cylinder. The
output features which represent magnitude, shape and directions of Reynolds stress are extracted
by decomposing Reynolds stress tensor, while 8 types of input features are extracted from raw local
flow data sets to represent the main physical characteristics of the flow field. Both input and output
features satisfy Galilean invariance, which contributes to improving prediction accuracy and gen-
eralization performance of the random forest regression model. The results show that the random
forest regression model has a great potential to effectively predict the Reynolds stress anisotropy
distribution of different Reynolds numbers.

Keywords: eddy-viscosity model; Reynolds stress anisotropy; random forest (RF) regression;
Reynolds-Averaged Navier-Stokes (RANS) model.

1. Introduction

Turbulence refers to the phenomenon in fluid motion where the distribution of flow state in time
and space is extremely chaotic, complex, irregular, and filled with unpredictable pulsating states
(Jovanovié, 2021). In turbulent motion, it is difficult to predict the direction and speed of fluid par-
ticles with a strong sense of randomness. Due to the unpredictability and irregularity of turbulence,
systematic research on turbulence has always been a huge challenge.

With the rapid development of computer science and parallel computing technology, turbulence
models such as direct numerical simulation (DNS) and large eddy simulation (LES) are proposed,
which require intensive computations and have been widely applied (XU, 2009). However, DNS
and LES methods require highly refined grid model, resulting in long computation time and low
efficiency (Singh and Duraisamy, 2016). Therefore, the Reynolds-averaged Navier-Stokes (RANS)
method is still very important in engineering applications. Reynolds stress closure of RANS model
is usually based on the Boussinesq linear hypothesis, therefore, when it comes to complex flow
fields generated by large curvature, separated flows, and shock wave formation, RANS simulation
results are often inaccurate or even contra-dictory to actual situations.

DNS and LES methods can provide high fidelity and credibility in numerical simulation, but
using both methods come with massive amounts of data, bringing difficulties to subsequent data
processing. To handle these large-scale data sets, statistical analysis, data mining, and machine
learning have become the main tools. In recent years, researchers have increasingly tended to find
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the relationships among variables and describe flow field characteristics by mining the intrinsic con-
nections of the data (Brunton et al., 2020). Combining machine learning with turbulence models
and their numerical simulations can improve simulation accuracy, accelerate computation speed,
excavate flow field characteristics, and optimize turbulence control. More and more researchers
have also begun to explore the use of machine learning methods to study turbulent processes Vin-
uesa, making it significant to research on applying machine learning to turbulence models and their
numerical simulations.

Machine learning has been used to identify and model the differences in Reynolds stress tensor
between RANS models and high-fidelity simulations. Researchers have used support vector ma-
chines, decision trees, and random forest methods to classify and predict high-uncertainty areas in
Reynolds stress tensor. Tang et al. (2023) proposed a robust data-driven Reynolds-averaged turbu-
lence model with uncertainty quantification and non-linear correction with the Bayesian deep neural
network. The results show the proposed model has a good generalization performance when simu-
lating turbulent flows with large scale separation. There is also a growing trend to take account of
necessary physical mechanisms and laws Ling et al. (2016), and apply them into existing turbulence
models, improving model prediction accuracy and stability.

2. Overview of the Research Problem

The problem researched in this paper is to improve the calculation accuracy of the RANS turbu-
lence model based on eddy viscosity assumption by using machine learning algorithms to learn
from high-precision flow field data. It is known that models using eddy viscosity assumption often
perform poorly in flows which are characterized by Reynolds stress anisotropy. Thus, it is expected
to correct the Reynolds stress to compensate for its shortcomings. Machine learning algorithms
are used as the research method for this problem, in order to reduce the dimensionality of the data
and extract the most relevant features, and to construct a function relationship between the input and
output features, the flow field data need to be pre-processed by feature extraction and regularization,
meanwhile, machine learning models are considered to be embedded certain physical experience to
improve their accuracy and interpretability, such as physical symmetries and invariance. In this pa-
per, the design of input and output features for the model is presented based on Galilean invariance.
As the random forest algorithm is suitable for high-dimensional feature space and has good robust-
ness to non-important features and outlier data, we use random forest algorithm to construct the
machine learning model in this paper. The flow studied in this paper is chosen as the flow around
near-wall cylinder, which is characterized by separation and Reynolds stress anisotropy.

3. Construction of RF Regression Model

3.1. Output Features

The output features should be able to characterize the Reynolds stress state. The Reynolds stress
is a second-order symmetric tensor and is not suitable as a direct output target. Therefore, it needs
to be decomposed, and as a second-order symmetric tensor, it has six degrees of freedom, and only
six target features need to be determined. Here we decompose the Reynolds stress and consider
Galilean invariance to use matrix knowledge to select output targets based on properties such as
invariants of vectors or tensors.
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Reynolds stress tensor is a second-order symmetric tensor, it can be normalized to obtain the
Reynolds stress anisotropy tensor b;;:

by = 14 _ L5
2k 3
where 7;; is Reynolds stress tensor, & is turbulent kinetic energy, and J;; is Kronecker delta.
It can be seen that b;; is also a symmetric tensor, and all its elements are real numbers. For a
real symmetric matrix, it can be diagonalized. Therefore, dropping the subscript, Reynolds stress
tensor can be written as

)]

1
T=2M§I+VAV5. 2)

where [ is unit matrix, V is orthonormal matrix composed of eigenvectors of b, and A is diag-
onal matrix composed of eige-nvalues of b (the eigenvalues are sorted in decreasing order along
diagonal).

In order to provide a more convenient and intuitive repre-sentation of turbulent states, the Cen-
troid Triangle (Tang et al., 2023) is used in this paper to analyze turbulence states. To calculate the
coo-rdinates (7, &) in Centroid Triangle, assume three eigenvalues of b are Aq, Ao and A3 (A1 > Ao
> \3), introduce C1, Cy and C3 as

C1 =M — M. (3)
Cy = 2(A2 — A3). @
C3 =3\3+ 1. 5

Let coordinates of three vertices in the Centroid Triangle be (M1¢, £1c)s (M2¢5 €2¢)s (N3es E3c)
which representing three limiti-ng states. To plot any turbulence states corresponding to its Cq, Ca
and Cs in Centroid Triangle, take a convex combination of the three limiting states:

n = Cin1c + Conaze + C3n3e. (6)

& = C1&1c + Coéoe + Csse. (7)

Fig.1 shows an example of Reynolds stress anisotropy dist-ributions in Centroid Triangle.

Next, we analyze the unitary orthogonal matrix V which consists of three unit-length eigenvec-
tors of b. Referring to the rotation of a rigid body, the matrix V can be obtained by sequ-entially
rotating the unit matrix around coordinate axes: (1) rotating around z-axis by an angle of ¢1; (2)
rotating around x-axis by an angle of ¢9; (3) rotating around z-axis by an angle of (3.

Finally, we obtained six output variables to describe Rey-nolds stress tensor which have certain
physical interpretation, while satisfying Galilean invariance. They are magnitude (k), shape (1, &),
and direction (¢1, 2, ¢3). In this paper, we use de-viations of these variables between low-fidelity
flow and targ-et flow to be the output features of RF model.
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Figure 1: Centroid Triangle.

3.2. Input Features

The input features should sufficiently represent the flow field which needs to be corrected, without
any contribution from the high-fidelity flow field dataset. Therefore, the input features can only be
extracted from uncorrected flow. In addition, to improve the generalization performance of machine
learning model, the input features should satisfy Galilean invariance and be dimensionless.

Therefore, to construct the input features, the following raw local variables are considered: the
mean pressure P and its gradient vector, the mean velocity U and its gradient tensor, the turbulence
kinetic energy k and its gradient vector, the turbulent dissipation rate €, the eddy viscosity v;, the
molecular viscosity v, and the distance d to the nearest wall. These variables can be obtained from
the RANS solver.

According to a series of turbulent features proposed by Ling et al. (2016), the following features
are selected as input features for machine learning model, as shown in Table 1:

Table 1: Input Features

Feature g3 Description Original Formulation g | Normalization Factor gj
« Q criterion Ll - 11811%) I S|
q Turbulence intensity k %U; U;
q3 Turbulence Reynolds number min (\gb‘i 2)
q4 Pressure gradient along streamline U % gg %UZ U;
qs Ratio of turbulent time scale to mean strain time scale % ﬁ
a6 Viscosity coefficient o 100v
q7 Frobenius norm of Reynold stress tensor Tu; k
qs Non-orthogonality between velocity and its gradients S. Banerjee and Zenger (2007) U;U; ggj U,U,U; gg; Uy, ‘Z’;]k
In Table 1, ||.|| is its Frobenius norm, €2 is rotation rate tensor, and S is strain rate tensor. The

normalization of the original features is performed according to the normalization factors given,
using the method proposed by Ling et al. (2016) (except for g3), which is as follows:
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The normalization method can ensure most of the inputs lie in the range of [-1,1], and make all
features have similar meas-urement scales. For feature g3, normalization is not required because it
is already dimensionless and its values range from 0 to 2.

3.3. Hyperparameter Optimization

In machine learning (ML), hyperparameter optimization or tuning is the problem of choosing a set
of optimal hyperpara-meters for a learning algorithm. Cross-validation is often used to estimate gen-
eralization performance, and therefore choose the set of values for hyperparameters that maximize
it.

Common types of cross-validation methods are k-fold cross-validation (such as ten-fold cross-
validation) and leave-one-out cross-validation. K-fold cross-validation divides the training set into
K equal parts, sequentially using each part as a validation set and the remaining K-1 parts as a
training set. This process is repeated by K times, and the results are avera-ged or weighted to
evaluate the model parameters. The leave-one-out method takes one sample from the training set
as the validation set in turn and trains with the remaining N-1 sam-ples (assuming that there are N
samples in total).

However, for hyperparameter optimization of random for-est models, the aforementioned cross-
validation methods are not used. Instead, the out-of-bag estimate method is used bec-ause bootstrap
sampling used in random forest models prod-uces out-of-bag samples. Each decision tree has cor-
responding out-of-bag samples that can be used to test the error and perfo-rmance of each decision
tree, so it is unnecessary to perform cross-validation or use an independent test set to obtain an
un-biased estimate of the error.

In this section, the mean squared error (MSE) is used to evaluate the impact of model param-
eters on model performa-nce, and four important hyperparameters of the random forest model are
optimized: the number of trees (n.trees), the maxi-mum number of splits per tree (max _splits),
the minimum number of samples per leaf (min _sample_leaf), and the maxim-um number of input
features per node split (max _features).

Experiments using the method of controlling variables are conducted. For each variable, set
different values of it while keeping other variables constant to research its effects on the regression
model. When controlling for other variables, use the default values: ntrees = 100 for the number
of trees, min _sample_leaf = 5 for the minimum number of samples per leaf, and max _features =
3 for the maximum number of input features per node split. And change the parameter values of
studied variable, calculate the corresponding MSE values, and record the elapsed time. Fig.2 shows
the variations of MSE and elapsed time with each hyperparameter.

As shown in Fig.2, considering the influence of various hyperparameters on the model error, and
in order to ensure that the model has good generalization performance while avoiding the machine
learning model being too complex and large, and avoiding the training time being too long, the
opti-mal hyperparameters are set as follows:

ntrees = 30; min _sample_leaves = 5; max _splits = 100; max _features = 4.
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3.4. Case set-up

In this paper, the flow around a near-wall cylinder is cho-sen as the research object. To improve the
accuracy of eddy-viscosity model, a random forest regression model is constru-cted from the train-
ing flow (unfixed flow, calculated by k — € model) to the target flow (high fidelity flow, calculated
by RSM model). If the predicted results of ML (Machine Learn-ing) model are consistent with the
target flow, then the model can be applied to other flow case to correct the results of eddy-viscosity
model. The following Table II provides the informat-ion about training flow and target flow:
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Figure 2: The impacts of hyperparameters on the regression model’s out-of-bag error (MSE) and
elapsed time.

The Reynolds numbers are calculated based on the charac-teristic length of the corresponding
model (the diameter D of cylinder) and the incoming main flow velocity. A structured mesh is used,
and to ensure computational accuracy, the first grid layer near the wall has a y+ (non-dimensional
wall dista-nce) value less than 1, and wall function is not utilized. The geometry and boundary
conditions are shown in Fig.3. The length L, of the computational domain is 12D, and the height
L, of the computational domain is 5.333D. To simulate the int-eraction between the cylinder and
the boundary layer of plane, a Blasius velocity profile is imposed at the inlet with a boun-dary layer
thickness ¢ of 1.022D. The upper boundary of com-putational domain is set as a moving boundary,
while the bott-om of computational domain is set as a no-slip wall boundary. Here, D represents
the diameter of the cylinder, and G repre-sents the distance between the cylinder and the wall. Here
gap ratio G/D=1. The changes of Reynolds number are achieved by modifying the fluid density or
kinematic viscosity while keeping the incoming velocity and characteristic length cons-tant. The
calculations are performed for 15 vortex shedding periods. A total of 33,634 sample points is taken.
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Figure 3: Geometry and boundary conditions.

For the supervised learning regression problem, the input features of the training set are taken
from the £ — ¢ calculation of the flow field (low-fidelity flow), while the output targets (la-bels) are
obtained from the RSM calculation of the flow field (high-fidelity flow). The deviations of output
features Ak, An, AL, Apy, Aps and Agps, corresponding to the magnitude (k), sha-pe (1, £), and
direction (1, 2, ¢3) of the Reynolds stress tens-or, are taken as the responses of the random forest
regression model.

Let A7, (e =1,2,3,---,6) represent the six deviations Ak, An, A, Ay, Aps and Aps in
sequence, let g denote the input featu-res of training flow (low-fidelity flow). Then the goal is to
co-nstruct regression function f, that maps input to output:

fa:q%ATa(azlvza"'76)' (9)

According to the hypothesis proposed by Tracey and Dura-isamy et al. Ling and Templeton
(2015), the differences among the six quantities of A7, are independent of each other. Therefore, a
separate regression function is constructed for each quantity.

4. Results and Analysis
4.1. Verification results of ML model

It is necessary to verify the predictive performance of the random forest regression model on the
training set to avoid prediction distortion. The deviations of Reynolds stress aniso-tropy, turbu-
lence kinetic energy, and components of Reynolds stress are predicted, and the corrected results
are compared with the target values on the training set to test whether the regression model can
learn the deviations between uncorrected flow (k — ¢) and target flow (RSM). Since k — & model
uses Boussinesq hypothesis to deal with Reynolds stress term, it cannot fully reflect Reynolds stress
anisotropy. In contrast, RSM model builds transport equations for components of Reynolds stress
separately, which could effectively reflect Reynolds stress anisotropy. Therefore, accurately pre-
dicting Reynolds stress anisotropy is essential for correcting turbulent states.

Fig.4 shows the predicted results of Reynolds stress anisotropy for the training flow by random
forest regression model under different locations in the wake region of the cylinder, where x/D
equals 1, 2, 3, and 4, respectively. The x-coordinate of the cylinder center is 0. It can be seen that
the predicted Reynolds stress distribution of k — ¢ flow is a straight line starting from the vertex of
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the triangle, showing complete isotropy. In contrast, the Reynolds stress calculated by RSM model
shows a certain extent of anisotropy. The predicted results of the regression model follow the same
distribution pattern as RSM model, indicating that the random forest regression model can learn the
deviations of the crucial regions between uncorrected flow and target flow, and effectively predict
Reynolds stress anisotropy without overfitting or underfitting.

o RSM o ML o k= o RSM o ML o k= o RSM o ML o k= o RSM o ML o k=

Figure 4: Verification results of Reynolds anisotropy distribution (Re=4000); (a)x/D=1; (b)x/D=2;
(c)x/D=3; (d)x/D=4.

4.2. Prediction results at different Reynolds number

To verify the generalization performance of random forest regression model, the prediction is carried
out considering increased Reynolds number and decreased Reynolds number.

Fig.5 and Fig.6 shows the prediction results at Re=2000 and Re=6000, respectively. The inputs
are input features of original flow field (k — €) corresponding to its Reynolds number, the outputs
are obtained by adding the predicted deviations to original flow field.

As shown in Fig. 5 and Fig. 6, the Reynolds stress distri-bution obtained by the prediction
model is in good agreement with the distribution of RSM, that is, the distance and dispersion of
the point distribution near the boundary line of the free shear layer and the logarithmic layer, as
well as the space region of outer layer are basically consistent with target flow. However, for larger
Reynolds number, the prediction results of the wake region close to the fully developed region have
a certain degree of deviation from the target flow, as shown in Fig.6(c) and Fig.6(d).
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o RSM = ML o k¢ = RSM o ML s kg o RSM = ML o k¢ = RSM = ML o kg

Figure 5: Prediction results of Reynolds anisotropy distribution (Re=2000); (a)x/D=1; (b)x/D=2;
(c)x/D=3; (d)x/D=4.
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Figure 6: Prediction results of Reynolds anisotropy distribution (Re=6000); (a)x/D=1; (b)x/D=2;
(c)x/D=3; (d)x/D=4.

5. Summary and Conclusion

In this paper, a prediction model is proposed by applying the RF algorithm to learn the deviations
between k—e and RSM models for the flow around a near-wall cylinder. The output variables are six
features of Reynolds stress tensor (magnitude (k), shape (7, &), and direction (1, 2, ¢3), which can
be obtained by decomposing Reynolds stress tensor. The input variables are the features extracted
from the flow field which need to be corrected. Since the flow field data is usually massive, it is
crucial to reduce the dimension of the input data. In this paper, eight types of features are selected
to represent the main physical characteristics of the flow field. Both the input variables and output
variables satisfy Galilean invariance, which can improve the prediction accuracy and generalization
performance of the RF regression model.

By using the prediction model, the important information of turbulent disturbance state in
boundary layer and the direction and magnitude of stress pulsation during the generation of max-
imum/minimum turbulent kinetic energy are obtained effectively, and it’s feasible to be applied in
the prediction of different Reynolds number or even different geometry model as long as there are
enough training scenarios.

More importantly, most of previous studies have been based on steady-state classical flows, such
as flow around a cylinder, back step flow, periodic hill flow, etc. The innovation of this paper lies
in the use of transient simulated flow around a near-wall cylinder. Unlike ordinary flow around
a cylinder, which changes with time, the flow around a near-wall cylinder takes into account the
interaction between the near-wall boundary layer and the wake region of the flow around a cylinder.
Therefore, this kind of flow has no regularity with time and is a classic turbulent flow which is
characterized by randomness. In future work, machine learning methods can be used to predict
each time step (that is, the flow field at each moment), providing new ideas for machine learning
methods to predict Reynolds stress anisotropy of transient flows.
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