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Abstract
In this paper, under the definition of conformable fractional derivatives, we use the extended
F-expansion method and obtain the exact solution of the variable-coefficient factional nonlinear
Schrodinger equation (FNLSE), including rational function solutions and Jacobi elliptic function
solution. When the mode m of these solutions tends to 1 and 0, the hyperbolic function solution,
triangular function solution, and light and dark solitary wave solution are obtained. The correlation
diagram of the exact solution is plotted, and the effect of different parameters on the solution struc-
ture is deeply analyzed. By selecting a large number of parameters and comparing the graphical
analysis of different solutions obtained using this method, we have identified properties related to
the nonlinear Schrödinger equation with variable coefficients and summarized relevant theorems.
Keywords: Conformable fractional, Nonlinear Schrödinger equation, Variable-coefficient frac-
tional, Extended F-expand method, Exact solution

1. Introduction

In recent years, the study of fractional nonlinear partial differential equations has penetrated into
numerous scientific fields, and nonlinear partial differential equations (PDEs) and fractional partial
differential equations (FPDEs) have effectively depicted various physical phenomena (Boyd et al.,
2023; Hereman, 2009; Wang et al., 2022), such as deep and shallow water fluctuations, nonlin-
ear optics, chaotic soliton fractal, etc. When describing the dynamical properties of some system
models, the fractional nonlinear PDE generalized by the integer order nonlinear partial differential
equations can better reflect the actual change law of the system model. The study of the frac-
tional nonlinear Schrödinger equation (FNLSE) and the fractional modified unstable Schrödinger
equation (FMUSE) has also sparked significant interest among scientists and has led to successful
conclusions in both theoretical and experimental aspects (Wu et al., 2020; Hong, 2023).

The group velocity dispersion of hyperbolic attenuation in optical fiber was demonstrated by
Bogatyrev et al. (1991), leading to increased interest from foreign countries (Liu et al., 2019; Chen
et al., 2019) in controllable optical solitons and soliton columns in optical communication based
on (VC)NLSE. There are numerous methods to solve fractional nonlinear partial differential equa-
tions, such as extended direct algebra method (Hong, 2023), Lie group analysis (Sharma and Gupta,
2021), generalized (G′/G) approach Ilhan et al. (2023), the extended tanh-function technique (Za-
man et al., 2023) and other effective methods. Solving the exact solution of the nonlinear partial
differential equation of the variable coefficients will be beneficial to test the numerical simulations
and its qualitative analysis. For the study of fractional nonlinear development equations, we need
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R-L fractional derivative, Caputo fractional derivative, conformable fractional derivative, etc (hua
Gao et al., 2014; Khalil et al., 2014), and in the study of integer order nonlinear partial differential
equation method, also can also be applied to fractional nonlinear partial differential equation, and
also is one of the important research trend of nonlinear developmental equation. Due to the intricate
nature of solving fractional-order derivatives, and the limitations of each solution method, there is
no universal and effective solution method, and only some or more methods can be used to solve
a certain class of equations. Therefore, using effective methods for obtaining precise solutions to
nonlinear fractional partial differential equations is still one of the topics that need to be studied
continuously.

It is well known that (VC) NLSE is widely utilized to explain the characteristics (Liu et al.,
2019; Chen et al., 2019) of light waves in nonuniform optical fibers. The fractional-order model
holds greater significance than the integer-order model when describing practical problems and
studying kinetic properties (Wu et al., 2020; Hashemi and Akgül, 2018).

In this paper, we mainly consider the (VC)FNLSE in the field of nonlinear optics as the (Wu
and Dai, 2020),

iDλ
xH +

1

2
α(x)D2µ

t H + β(x)H|H|2 = iρ(x)H (1)

where the complex envelope H = H(x, t) and its derivatives Dλ
xH = ∂λH

∂xλ , D
2µ
t H = ∂2µH

∂t2µ
with

the longitudinal propagation distance x, the delay time t and fractional orders λ and µ. Functions
α(x) and β(x) are coefficients of the dispersion and Kerr nonlinearity, and function ρ(x) is gain for
ρ(x) > 0 or loss for ρ(x) < 0. If λ = µ = 1, Equation 1 is the (VC) NLSE (Liu et al., 2019; Chen
et al., 2019).

This paper is primarily structured into the following sections: The initial section, titled “Intro-
duction,” provides an overview of the current research status, physical background, and significance
of the variable coefficient fractional Schrödinger equation. The second section, titled “Exact Solu-
tions for the Variable Coefficient Spatiotemporal FNLSE,” utilizes the extended F-expansion method
for the first time to obtain the optical exact solution of this fractional order model, in accordance
with the provided fractional order definition (Khalil et al., 2014).The third section, titled “Inter-
pretation of Results,” utilizes Maple to draw the three-dimensional graph of the soliton solution
obtained through degeneration, contour map, and cross-sectional map under various parameters.
Through numerous numerical simulations and graphical analysis, significant new conclusions have
been drawn regarding the model. The fourth section, titled “Conclusions,” summarizes the findings
presented in this article.

2. Exact Solutions For The Variable Coefficient Spatiotemporal FNLSE

For the fractional complex transformation of Equation 1

H(x, t) = u(ξ)eiθ, ξ = M(
xλ

λ
− V

tµ

µ
), θ = C

xλ

λ
+ ω

tµ

µ
(2)

Substituting Equation 2 into Equation 1 through complex and lengthy fractional order calcula-
tions and setting it equal to 0 respectively, the resulting real part is

−µC +
1

2
α(M2V 2u

′′ − uω2) + βu3 = 0 (3)
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The imaginary part is
Mu

′ − αMV ωu
′ − ρu = 0 (4)

Based on the principle of homogeneous equilibrium, by balancing the highest derivative term u
′′

and the nonlinear term u3 in Equation 3, we obtain l = 1 . Therefore, according to the extended F-
expansion method (Ozisik et al., 2023; Zhang et al., 2005), we assume that the solution to Equation
4 is

u(ξ) = a0 + a1F (ξ)− b1F
−1(ξ) (5)

where a0, a1 and b1 are constants, and F (ξ) satisfies the first elliptic equation F
′2
(ξ) = c0 +

c2F
2(ξ) + c4F

4(ξ) , where c0, c2 and c4 are constants. Substituting (4) and (5) into Equation 3 and
combining the terms with the same power of F d(d = 0, 1, 2, 3, 4, 5, 6) by maple, and then setting
the power coefficient to zero, we can obtain the system of equations involving a0, a1, b1, α and β .

−αM2V 2b1c0 − βb31 = 0 (6)

3βa0b
2
1 = 0 (7)

Cb1 +
1

2
αω2b1 −

1

2
αM2V 2b1c2 − 3βa20b1 + 3βa1b

2
1 = 0 (8)

−ca0 −
1

2
αω2a0 + βa30 − 6βa0a1b1 = 0 (9)

−Ca1 −
1

2
αω2a1 +

1

2
αM2V 2a1c2 + 3βa20a1 − 3βa21b1 = 0 (10)

3βa0a
2
1 = 0 (11)

αM2V 2a1c4 + βa31 = 0 (12)

Solving the system of Equations 6 ∼ 12, the result obtained is
Case 1. The functions α and β are regarded as arbitrary functions of the variable x.

a0 = 0, a1 = ±

√
−αM2V 2c4

β
, b1 = ±6c0

c2

√
−αM2V 2c4

β
(13)

Case 2. The functions α and β are regarded as arbitrary functions of the variable x.

a0 = ±

√
−αM2V 2c2

4β
, a1 = 0, b1 = 0 (14)

Case 3. The functions α and β are regarded as arbitrary functions of the variable x.

a0 = ±

√
αω2 + 2C

2β
, a1 = 0, b1 = 0 (15)

According to Equations 2, 5 and ODE and Jacobi elliptic function (Zhang et al., 2005), we have
several solutions to the following Equation 1

3



HAO ZHAO∗

Solution 1. F (ξ) = snξ, c0 = 1, c2 = −(1 +m2), c4 = m2,

H11(x, t) = (±

√
−αM2V 2m2

β
snξ ± 6

1 +m2

√
−αM2V 2m2

β
nsξ)e

i(C xλ

λ
+ω tµ

µ
) (16)

when m → 1, bright soliton solution is denoted as

H
′
11(x, t) = (±

√
−αM2V 2

β
tanh ξ ± 3

√
−αM2V 2

β
coth ξ)e

i(C xλ

λ
+ω tµ

µ
) (17)

Solution 2. F (ξ) = cnξ, c0 = 1−m2, c2 = 2m2 − 1, c4 = −m2,

H21(x, t) = (±

√
αM2V 2m2

β
cnξ ± 6(1−m2)

2m2 − 1

√
αM2V 2m2

β
ncξ)e

i(C xλ

λ
+ω tµ

µ
) (18)

when m → 1, kink wave solution is denoted as

H
′
21(x, t) = (±

√
αM2V 2

β
sechξ)e

i(C xλ

λ
+ω tµ

µ
) (19)

Solution 3. F (ξ) = dsξ, c0 = −m2(1−m2), c2 = 2m2 − 1, c4 = 1,

H31(x, t) = (±

√
−αM2V 2

β

dnξ

snξ
± 6m2(1−m2)

2m2 − 1

√
−αM2V 2

β

snξ

dnξ
)e

i(C xλ

λ
+ω tµ

µ
) (20)

when m → 1, the soliton solution for the bright-dark wave is denoted as

H
′
31(x, t) = (±

√
−αM2V 2

β
coth ξ)e

i(C xλ

λ
+ω tµ

µ
) (21)

Solution 4. F (ξ) = nsξ, c0 = m2, c2 = −(1 +m2), c4 = 1,

H41(x, t) = (±

√
−αM2V 2

β
nsξ ± 6m2

1 +m2

√
−αM2V 2

β
snξ)e

i(C xλ

λ
+ω tµ

µ
) (22)

when m → 0, the periodic soliton solution is

H
′
41(x, t) = (±

√
−αM2V 2

β
csc ξ)e

i(C xλ

λ
+ω tµ

µ
) (23)

Solution 5. F (ξ) = ncξ, c0 = −m2, c2 = 2m2 − 1, c4 = 1−m2,

H51(x, t) = (±

√
−αM2V 2(m2 − 1)

β
ncξ ± 6m2

2m2 − 1

√
αM2V 2(m2 − 1)

β
cnξ)e

i(C xλ

λ
+ω tµ

µ
)

(24)
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when m → 0, the periodic soliton solution is

H
′
51(x, t) = (±

√
−αM2V 2

β
sec ξ)e

i(C xλ

λ
+ω tµ

µ
) (25)

Solution 6. F (ξ) = cnξ, c0 = 1−m2, c2 = 2m2 − 1, c4 = −m2,

H61(x, t) = (±

√
−αM2V 2(2m2 − 1)

4β
)e

i(C xλ

λ
+ω tµ

µ
) (26)

Solution 7. F (ξ) = cnξ, c0 = 1−m2, c2 = 2m2 − 1, c4 = −m2,

H71(x, t) = (±

√
αω2 + 2C

2β
)e

i(C xλ

λ
+ω tµ

µ
) (27)

Various solutions are provided based on the calculation results, and additional repeat types are
not included in this list. These obtained solutions are new exact solutions for the variable coefficient
nonlinear Schrödinger equation, demonstrating the effectiveness of this method. The results are used
to generate three-dimensional graphs for Solution 1 to Solution 5, corresponding contour maps, and
sectional graphs obtained under different parameters. The configuration of Solution 6 and Solution
7 depends on the functions α and β.

3. Interpretation Of Results

The particular arrangement of the solution reflects the characteristics of wave propagation within
the medium as described by the optical system. The discussion primarily focused on the analysis
of two perspectives: the impact of the variation of the fractional order parameters λ and µ on the
solution structure while keeping functions α and β unchanged, and the influence of the variation
of functions α and β on the solution structure while keeping fractional order parameters λ and µ

unchanged. Based on the analysis of the exact solution
∣∣∣H ′

i(x, t)
∣∣∣2 obtained from the degenerate

Equation 1 in Figures 1 and 2, when the functions α and β remain unchanged, the variations of λ
and µ in (a) and (d) in Figures 1 and 2 both indicate that the waveform structure of the corresponding
equation’s soliton solution has hardly undergone essential changes. (b), (e), (c) and (f) in Figures
1 and 2 indicate that the direction of wave motion has not changed, and the wave peaks have not
shifted in position, demonstrating periodic oscillations. We observe that the soliton solutions (17),
(19), and (21) are all composed of hyperbolic functions, which reflect the optical properties of the
wave propagation described by the corresponding model (1). In Figure 3, the waveforms of the
soliton solutions of the respective equations undergo significant changes as λ and µ vary, while the
functions α and β remain unchanged. (a) and (d) in Figure 3 exhibit significant changes in the
waveform structure of the soliton solutions. (b), (e), (c), and (f) in Figure 3 demonstrate significant
changes in the direction of wave propagation, along with noticeable shifts in the peak positions of
the waves, while still maintaining periodic oscillations. Both soliton solutions (23) and (25) involve
trigonometric functions, which correspond to the optical characteristics of the wave propagation
as described by the respective model (1). When the fractional order parameters λ and µ remain
unchanged, and the functions α and β change in Figures 1, 2, and 3, both Figures (c) and (f) indicate
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Figure 1: Figures (a) and (d) depict three-dimensional representations of the solution
∣∣∣H ′

11(x, t)
∣∣∣2,

with each graph corresponding to the parameters α(x) = −sin2(x), λ = 1/2, µ =
1/2,M = 1, β(x) = cos2(x), V = 1, C = 1, ω = −5 and α(x) = −sin2(x), λ =
1, µ = 1, β(x) = cos2(x), , V = 1,M = 1, ω = −5, C = 1, respectively. Figures
(b) and (e) depict contour plots representing the respective parameters. Figure (c) de-

picts the cross-sectional view of
∣∣∣H ′

11(x, t)
∣∣∣2 under different parameters at t = 1/2. The

red line represents the value of M = 1, α(x) = −sin2(x), λ = 1/2, ω = −5, µ =
1/2, β(x) = cos2(x), C = 1, V = 1, the yellow line represents the value of α(x) =
−cos2(x), λ = 1/2, C = 1, µ = 1/2, β(x) = cot2(x),M = 1, V = 1, ω = −5, and the
green line represents the value of V = 1, α(x) = −sin2(x), λ = 1/2, µ = 1/2, β(x) =
tan2(x),M = 1, C = 1, ω = −5. Figure (f) depicts the cross-sectional view of∣∣∣H ′

11(x, t)
∣∣∣2 under different parameters at t = 1/2. The red line represents the value of

α(x) = −sin2(x),M = 1, λ = 1, µ = 1, β(x) = cos2(x), ω = −5, V = 1, C = 1,
the yellow line represents the value of α(x) = −cos2(x), λ = 1, µ = 1, β(x) =
cot2(x),M = 1, V = 1, ω = −5, C = 1, and the green line represents the value of
α(x) = −sin2(x), λ = 1, µ = 1, β(x) = tan2(x),M = 1, C = 1, ω = −5, V = 1.
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Figure 2: Figures (a) and (d) depict three-dimensional representations of the solution
∣∣∣H ′

21(x, t)
∣∣∣2,

with each graph corresponding to the parameters α(x) = cos2(x), λ = 1/2, µ =
1/2, β(x) = cot2(x),M = 1, V = 1, C = 1, ω = −1 and α(x) = cos2(x), λ =
1, µ = 1, β(x) = cot2(x),M = 1, V = 1, C = 1, ω = −1, respectively. Figures
(b) and (e) depict contour plots representing the respective parameters. Figure (c) de-

picts the cross-sectional view of
∣∣∣H ′

21(x, t)
∣∣∣2 under different parameters at t = 1/2.

The red line represents the value of α(x) = −sin2(x), λ = 1/2, µ = 1/2, β(x) =
cos2(x),M = 1, V = 1, C = 1, ω = −1, yellow line represents the value of
α(x) = −cos2(x), λ = 1/2, µ = 1/2, β(x) = cot2(x),M = 1, V = 1, C = 1, ω = −1
and green line represents the value of α(x) = −sin2(x), λ = 1/2, µ = 1/2, β(x) =
tan2(x),M = 1, V = 1, C = 1, ω = −1. (f) depicts the cross-sectional view of∣∣∣H ′

21(x, t)
∣∣∣2 under different parameters at t = 1/2. The red line represents the value of

α(x) = −sin2(x), λ = 1, µ = 1, β(x) = cos2(x),M = 1, V = 1, C = 1, ω = −1,
the yellow line represents the value of α(x) = −cos2(x), λ = 1, µ = 1, β(x) =
cot2(x),M = 1, V = 1, C = 1, ω = −1, and the green line represents the value of
α(x) = −sin2(x), λ = 1, µ = 1, β(x) = tan2(x),M = 1, V = 1, C = 1, ω = −1.
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Figure 3: Figures (a) and (d) depict three-dimensional representations of the solution
∣∣∣H ′

41(x, t)
∣∣∣2,

with each graph corresponding to the parameters α(x) = 4sin2(x), λ = 1/2, µ =
1/2, β(x) = cos2(x),M = 1, V = 1, C = 1, ω = −1 and α(x) = 4sin2(x), λ =
1, µ = 1, β(x) = cos2(x),M = 1, V = 1, C = 1, ω = −1, respectively. Fig-
ures (b) and (e) depict contour plots representing the respective parameters. Figure (c)

depicts the cross-sectional view of
∣∣∣H ′

41(x, t)
∣∣∣2 under different parameters at t = 1.

The red line represents the value of α(x) = 4sin2(x), λ = 1/2, µ = 1/2, β(x) =
cos2(x),M = 1, V = 1, , ω = −1, C = 1, yellow line represents the value of
α(x) = 4cos2(x), λ = 1/2, µ = 1/2, β(x) = cot2(x),M = 1, C = 1, ω = −1, V = 1
and green line represents the value of α(x) = 4sin2(x), λ = 1/2, C = 1, ω =
−1, µ = 1/2, β(x) = tan2(x),M = 1, , V = 1. (f) depicts the cross-sectional view

of
∣∣∣H ′

41(x, t)
∣∣∣2 under different parameters at t = 1. The red line represents the value of

α(x) = 4sin2(x), λ = 1, µ = 1, β(x) = cos2(x),M = 1, V = 1, C = 1, ω = −1,
the yellow line represents the value of α(x) = 4cos2(x), λ = 1, µ = 1, β(x) =
cot2(x),M = 1, V = 1, C = 1, ω = −1, and the green line represents the value of
α(x) = 4sin2(x), λ = 1, µ = 1, β(x) = tan2(x),M = 1, V = 1, C = 1, ω = −1.
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that when the function α(x)
β(x) = sin(x) (yellow line), the resulting waveform structure of the solution

at the same moment t is almost identical to when the function α(x)
β(x) = cos(x) (green line). However,

when the function α(x)
β(x) = tan(x) (red line), the waveform structure of the solution undergoes a

significant change. Other solutions of the same type have been verified and are consistent with the
relevant conclusions. In summary, we have come to the following theorem:

Theorem 4.1. When the functions α(x) and β(x) remain unchanged, the structure of the equa-
tion’s solutions depends on the type of soliton solution obtained through degeneracy, as the value
of the fractional-order derivative λ increases from 1/2 to 1 and µ increases from 1/2 to 1. When
the function α(x) and β(x) is hyperbolic, the structure of the equation’s solutions undergoes al-
most no significant changes. When the function α(x) and β(x) is trigonometric, the structure of
the equation’s solutions undergoes significant changes. When the fractional order parameters λ and
µ remain unchanged, the waveform structure of the solution undergoes a significant change in the
function tan(x).

4. Conclusions

In conclusion, based on the definition of the conformable fractional-order derivative, this paper
utilizes the extended F-expansion method to obtain exact solutions for the (VC) FNLSE. We have
obtained additional exact solutions for this model, including Hyperbolic function solutions and
trigonometric periodic solutions. To enhance our comprehension of the physical phenomena in this
model and investigate the propagation characteristics of optical solitons, we have created three-
dimensional contour and cross-sectional graphs of the exact solutions. It contributes to advancing
our understanding of the optical properties of wave propagation, as described by the fractional-order
model. It can be observed that when α and β are constants, these solutions can be transformed into
solutions of the (CC) FNLSE. Due to the intricate nature of solving fractional-order derivatives, the
extended F-expansion method is only capable of offering partial solutions for this model. Through
graphical analysis, we can visually represent the optical properties of wave propagation described
by this model, draw relevant conclusions and demonstrate that this is an effective approach for
obtaining exact solutions of (VC) FPDEs.
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