
Proceedings of Machine Learning Research vol 245:1–13, 2024 2024 International Conference on Machine Learning and Intelligent Computing

A Tree-Structure Enhanced Transformer for Cardinality Estimation

Mingjie Hu HMJ 9906@NUDT.EDU.CN
Department of Intelligent Data Science, National University of Defense Technology

Qihang Zhang 17608496514@163.COM
Department of Intelligent Data Science, National University of Defense Technology

Jing Ren* RENJING@NUDT.EDU.CN
Department of Intelligent Data Science, National University of Defense Technology

Hengzhu Liu HENGZHU LIU@263.NET

College of Computer, National University of Defense Technology

Editors: Nianyin Zeng and Ram Bilas Pachori

Abstract
Accurate cardinality estimation is crucial for query optimization by guiding plan selection. Tradi-
tional cardinality estimation approaches often fail to provide precise estimates, leading to subopti-
mal query plans. In recent years, learning-based methods have emerged as a promising alternative.
For tree-based learning methods, a conventional way to simply encode nearby parent-child pairs
and learn by iteratively training hampers the performance. But it leads to a significant loss of struc-
tural information and incurs substantial computational overhead by the iterative training process. In
this paper, we proposed a tree-structure positional encoding scheme. It can not only extract effec-
tive features for each node, but also capture the inherent structural characteristics of the tree. Based
on the tree-based feature, we designed a novel transformer-based cardinality estimation model,
which enhances the parallelism of the model training process and reduces the overhead caused by
iterative training. On real-world datasets, our method beats the current state-of-the-art techniques,
QF, by 25% in terms of mean qerror.
Keywords: Cardinality estimation, Tree Transformer, Positional Encoding

1. Introduction

Cardinality estimation plays a pivotal role in optimizing database queries. Modern database query
optimizers heavily rely on their internal cost estimation systems, where the cardinality of a query
operator serves as a critical factor. Cardinality refers to the number of result rows that remain after
filtering data through the query conditions within an operator. Accurate and efficient cardinality
estimation is essential to optimize the execution plan and enhance the overall performance of the
optimizer. It is often regarded as the ”Achilles heel” of query optimizers (Lohman, 2014).

Cardinality estimation methods have been extensively studied in academia and industry for
decades. However, studies (Leis et al., 2015, 2018) indicate that traditional query optimizers based
on cost models often select sub-optimal or even inferior execution plans. This is primarily due to
the trade-off they have to make between marginal improvement in cardinality estimation accuracy
and incurring significant performance overhead.

Recent researches (Qiao et al., 2021; Sun and Li, 2019; Zhao et al., 2022; Zhu et al., 2023;
Sun et al., 2022; Woltmann et al., 2023; Han et al., 2022; Chen et al., 2023; Mikhaylov et al., 2022)
indicate that learning-based methods provide a more effective way to perform cardinality estimation.
Fig.1 provides a unified workflow for a learning-based estimator. The query plan represents the

© 2024 M. Hu, Q. Zhang, J. Ren* & H. Liu.



HU ZHANG REN* LIU

logical and physical operations that the system performs to retrieve data from the database. Each
node in the query plan tree is first encoded with various statistics from the database, for example,
Sample [7]. Subsequently, the encoded vector tree undergoes neural network processing, and the
resulting output is then fed back into the database for further processing.

Figure 1: A unified workflow of learning-based cardinality estimator.

Tree-CNN (Mou et al., 2016) is a specialized form of traditional CNN that allows for input to
tree structures. BAO (Marcus et al., 2021) employ Tree-CNN along with triangular-shape filters
to slide over the query plan tree. This approach enables the capture of parent-child dependencies
within the query plan tree. Tree-CNN is easily trained. However, this method has a small receptive
domain, and each node can only ”see” the characteristics of neighboring nodes. As a result, it
cannot capture long information flow paths from leaf nodes to root nodes. E2E (Sun and Li, 2019)
is one of the most advanced methods available for estimating cardinality and cost. It utilizes the
Tree-LSTM (Tai et al., 2015) model to overcome gradient vanishing and explosion issues caused by
complex queries. MSP (Liu et al., 2022) developed two network models, DTree-LSTM and CTree-
LSTM, and incorporated MetaInfo. But LSTM models can be challenging and time-consuming to
train due to their recursive steps. Additionally, recursive processing in query plan trees with long
information flow paths can lead to information loss from leaf nodes before it reaches the top node.
Transformer has excellent performance in various fields and is one of the current research hotspots
(Zhang et al., 2023; Yan et al., 2022). QueryFormer (Zhao et al., 2022) first uses Transformer
architecture in query plan representation. And as far as we know, it is the state-of-the-art method
currently. However, QueryFormer does not deeply consider the structural information of tree data
and the role of positional encoding in Transformer. It directly add the height embedding with the
node encoding, and forced tree-bias is applied to set the attention matrix.

The primary distinctions among these studies are the distinct node feature extraction methods
and the specific network model they employ. However, a common limitation of these methods of
these approaches is their insufficient ability to model long information flow paths and effectively
capture positional information. This stems from their failure to consider the structural characteristics
of the query plan tree when constructing its representation.

The representation of a query plan is of great importance in learning-based cardinality estima-
tion, as it enables the identification of potential performance issues and facilitates query optimiza-
tion. In this paper, we introduce a refined tree positional encoding scheme, which adeptly captures
both the node-specific attributes and the aggregate characteristics of the query plan. Moreover, we
propose a novel model called Tree-Transformer model for Cardinality Estimation (TTCE), to incor-

2



A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

porate the above schema to transformer. Through experiments, we demonstrate that our proposed
method significantly improves the performance. Our contributions are as follows:

• We design an efficient tree positional encoding schema, that incorporates the path encoding
and the relationship encoding of the query plan tree. It can effectively describe the structural
information of the tree.

• We propose TTCE, a Tree-Transformer model for Cardinality Estimation, which can effec-
tively characterize the query plan tree, including its ability to extract long-path information
flow and effectively combine the structural information of each node with the node character-
istics.

• We conduct experiments on real-world datasets. The results indicate that our approach out-
performs previous state-of-the-art methods.

2. Tree-Based Encoding Schema

In this section, we present the design of tree-based encoding schema, including a node encoding
schema which extracts effective features of each node in the query plan tree, along with the proposed
tree positional encoding schema that captures the inherent structural characteristics of the tree. The
tree-based encoding schema is the foundation for representing the query plan tree.

2.1. Node Encoding Schema

Node encoding schema typically obtain necessary information from node characteristics and database
statistics, covering elements such as operation, predicate, join, and table in query plan trees. Oper-
ation describes the physical operation of query plan nodes and is a categorical variable with finite
fields (e.g., about 30 in PostgreSQL (PostgreSQL, 2023)). Predicate, defining filter conditions for
relational table columns, can be represented as triples in the form of <column, operator, value>,
with column and operator treated as categorical variables, and value normalized to the range of
(0,1). Join, representing a connection condition between tables, and table, referring to the relational
table associated with node operations, are also considered categorical variables.

Existing methods often use ”one-hot” encoding for operation, table, and join (Kipf et al., 2018;
Liu et al., 2022; Marcus and Papaemmanouil), but this method has insurmountable limitations. A
single table in a large database may have hundreds of columns. It thus requires hundreds of bits
for column encoding alone. When the database is updated and new categorical variables are intro-
duced, it would be unavoidable to retrain the entire machine learning system. To overcome these
limitations, we use fixed-size embedding vectors (Zhao et al., 2022) to represent each categorical
variable, allowing for efficient updates and the introduction of new categories without disrupting
existing embeddings.

For Operation, Join, and Table, their vector representations can be denoted as Eo, Ej and Et,
respectively. Predicates are characterized as triples <column, operator, value>. We concatenate
the embeddings of each element in the triplet as previous work (Sun and Li, 2019; Zhao et al.,
2022; Kipf et al., 2018), and the we obtain the predicate representation, denoted as Ep = [Ec, Eo,
vnorm]. Ec represents the embedding vector of the column, Eo represents the embedding vector of
the operator, and vnorm represents the normalized value of the predicate.

3



HU ZHANG REN* LIU

Statistics contain the distribution information of the data in the database table, and there are a
variety of statistics to choose from, such as histogram (PostgreSQL, 2023), MetaInfo (Liu et al.,
2022), etc. We choose the widely used statistics, Sample (Kipf et al., 2018). We randomly sample
from each table, and then we get a set of m tuples. For each predicate in the query node, we get an
m-bit bitmap by assessing whether each extracted tuple satisfies the predicate condition. Following
the approach employed in previous studies (Sun and Li, 2019; Zhao et al., 2022; Kipf et al., 2018),
we set m=1000. We denote this sample bitmap as Es.

By employing the aforementioned method, we obtain five vectors: Eo, Ej , Et, Ep, and Es.
These vectors are separately passed through corresponding linear layers, and the resulting embed-
dings are concatenated to obtain the final embedding of the node as E=[Linearo(Eo), Linearj(Ej),
Lineart(Et), Linearp(Ep), Linears(Es)].

2.2. Tree Positional Encoding Schema

The Transformer model typically operates on sequential input (Su et al., 2024). Therefore, when
dealing with tree-structured data, it becomes necessary to serializer the data before passing it to the
Transformer. Various methods have been proposed for serialization, including Depth-First Search
(DFS) and Breadth-First Search (BFS). In our approach, we employ BFS (Breadth-First Search) to
serialize the query plan tree.

Figure 2 illustrates the BFS sequence order for a specific query plan tree. However, as depicted
in the figure, the serialization process leads to the loss of structural information inherent in the tree.
Structural information holds great importance for a query plan tree, and losing such information is
unacceptable.

To capture this information, we can incorporate features like the location and parent-child re-
lationship of each node in the query plan tree.These encoding methods, termed path encoding and
relationship encoding, are similar to the absolute positional encoding and relative positional en-
coding used in Transformer model (Lin et al., 2022; Dufter et al., 2022). Consequently, the tree’s
structural information is effectively incorporated.

2.2.1. PATH ENCODING

A previous study (Shiv and Quirk, 2019) introduced a novel positional encoding method that repre-
sents the path from the root node to the target node by concatenating the path information of each
node in reverse order. However, with this method, nodes that share similar paths exhibit discrete
encoding results in vector space. In our modification, we enhance this concatenation method by em-
ploying forward concatenation along with padding. This approach effectively preserves the absolute
position information for each node.

As showed in Figure 2, the length of the encoding is twice the number of nodes and paths are
depicted as numbers on a red background. In the given example, there are five nodes, resulting in a
encoding length of 10. Each path selection can be represented by two digits [0,1] or [1,0], indicating
the left path or right path, respectively. The use of two bits ensures that padding does not introduce
ambiguity. For MERGE JOIN node, which is the root node, there is no path from the root node
to itself (i.e., the path is empty), Padding is used to increase the length of the vector to 10. In this
case, the path is encoded as an all-zero vector. For SEQ SCAN node, the path from the root node
to the target node is represented as [0,1] for the left path, followed by [1,0] for the right path. After
concatenation and padding, the path is encoded as [0,1,1,0,0,0,0,0,0,0,0,0].

4



A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

To obtain the path encoding corresponding to each node (denoted as P
′
p), it is passed through a

linear layer, which maps P
′
p to a higher-dimensional feature space. The resulting path encoding is

denoted as Pp.

Pp = ReLU(WpP
′
p + bp) (1)

Figure 2: A example of BFS serialization and tree positional encoding schema.

2.2.2. RELATIONSHIP ENCODING

To encode the relationship of nodes in a tree, we use the shortest path algorithm (e.g., Dijkstra,
Floyd). Since each node in the query plan tree only depends on its child nodes, we only need to
consider the distance between a node and its children. For other nodes that are unreachable from a
node, we assign zero as the distance. For instance, for the MERGE JOIN node in Figure 2, all nodes
are reachable. We set the distance to itself as one, the corresponding encoding result is [1,2,2,3,3],
where each element corresponds to a serialized node. We denote the relationship encoding for each
node as P

′
r . We apply the same operation on P

′
r as on P

′
p to obtain Pr.

Pr = ReLU(WrP
′
r + br) (2)

3. The Architecture of TTCE Model

In this section, we introduce the architecture of our TTCE. We first describe the Transformer archi-
tecture that we used, and then introduce our methodology for utilizing tree-structured information
with the idea of TUPE (Transformer with United Positional Encoding) (Ke et al., 2022). Figure 3
illustrates the architecture of the TTCE.

5



HU ZHANG REN* LIU

3.1. Representation Layer

The Transformer architecture can be applied in three different ways (Lin et al., 2022), Encode-
Decoder, Encoder-only, and Decoder-only. The cardinality estimation task involves extracting rel-
evant features from a query plan tree and generating an estimated cardinality. The Encoder-only
architecture is well-suited for this task. We have made minimal modifications to the original Trans-
former architecture and have retained the same components, such as the multi-head attention mech-
anism and feed-forward network (FFN).

TUPE (Ke et al., 2022) introduces a idea that untying the correlations between words and their
respective positions. We are inspired by the idea of TUPE. The calculation of each component in
Affinity Matrix is expressed by Eq.3, where w represents the input sequence data and p represents
the positional encoding. Positional encodings were combined with word embeddings as input to
Transformer. The two types of information are inherently distinct. Positional encoding represents
the index of word, which is not semantic and very different from the meaning of words (Shiv and
Quirk, 2019; Ke et al., 2022).

aij =
1√
dk
((wi + pi)W

Q,l)((wj + pj)W
K,l)T =

(wiW
Q,l)(wjW

K,l)T√
dk

+
(wiW

Q,l)(pjW
K,l)T√

dk
+

(piW
Q,l)(wjW

K,l)T√
dk

+
(piW

Q,l)(pjW
K,l)T√

dk

(3)

Figure 3: The overall structure of Tree-Transformer model for Cardinality Estimation(TTCE).

Similarly, the processed information of positional embedding and node embedding has very
different meanings. It is more sensible to utilize separate matrices for these calculations. Conse-

6



A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

quently, in our TTCE, Eq.3 can be formulated as Eq.4 and Eq.5. And the calculation of Affinity
Matrix can be rewritten as Eq.6. In our design, the matrix P is computed once and then added to
the attention calculation in each encoder module. The additional time overhead incurred by this
operation is minimal.

aij =
1√
dk

((wi)W
Q,l)((wj)W

K,l)T + pij (4)

pij =
1√
dk

((pPat
i )WQ

Pat)((p
Pat
j )WK

Pat)
T +

1√
dk

((pRel
i )WQ

Rel)((p
Rel
j )WK

Rel)
T (5)

Attention(Q,K, V, P ) = softmax(
QKT + P√

dk
) (6)

3.2. [CLS] Node

Our model uses [CLS] node (Devlin et al., 2018) to enhance the performance of TTCE. We connect
the [CLS] node to all nodes in the query plan by resetting the relevant values in P. The specific
reset method is shown in Eq.7, where θ = {θ1, θ2} is a learnable parameter. This operation is called
”Untie [CLS]” in Figure 3.

”Untie [CLS]” makes the [CLS] node attend all nodes in the query plan tree and potentially
emphasize important nodes. Moreover, it can distinguish the [CLS] node from other nodes and
acknowledge its unique role in the model. During training, the [CLS] node is updated alongside
other tree nodes. The output vector of the [CLS] node represents the entire input tree as a fixed-size
vector that can be used for downstream task.

reset(p, i, j) =


pij , i ̸= 0, j ̸= 0, (no related to [CLS])

θ1+θ2
2 , i = j = 0, ([CLS] node)

θ1, (from [CLS] to other nodes)
θ2, (from other nodes to [CLS])

(7)

3.3. Prediction Layer

The prediction layer of our model is a two-layer fully connected neural network, the first layer
applies the ReLU activation function, and the second layer uses the Sigmoid function to predict
the cardinality. The input to the output layer is obtained from the encode module’s output. The
output layer can predict the cardinality of any plan from the representation vector of the plan. The
calculation formula is as follows:

card
′
= ReLU(Wcard′Rt + bcard′ )

card = Sigmoid(Wcardcard
′
+ bcard)

(8)

Card represents the result of cardinality normalization of the output. The final Sigmoid output
value ranges between 0 and 1, and it is further transformed into cardinality using the inverse of the
normalization formula. In the last layer of the prediction layer, we utilize the Sigmoid activation
function. This is because the value range of the Sigmoid function is (0,1), which aligns with the
value range of the formula Eq.9. We choose logarithmic normalization as the normalization method,
and we set log(cardmin) and log(cardmax) to 0 and 50 , respectively.

card normi =
log(cardi)− log(cardmin)

log(cardmax)− log(cardmin)
(9)

7



HU ZHANG REN* LIU

4. Experiment

4.1. Dataset

We utilized the IMDB (Leis et al., 2015). The IMDB dataset contains 21 tables covering more
than 2.5 million films produced by 234,997 company over 133 years, involving more than 4 million
actors. We use 100k queries on this dataset, and these queries contain only 0-2 joins. The queries
are divided into a training set and a validation set, with a ratio of 9:1. The training set and division
followed the same approach as in previous work (Zhao et al., 2022; Kipf et al., 2018).

Table 1: Two types of workloads.

Workload Joins Predicate

Synthetic (Kipf et al., 2018) 0-2 =, >, <
JOB-light (Kipf et al., 2018) 1-4 =, >, <
IMDB-NUMS 0-5 =, >, <, !=, <=, >=

4.2. Experimental Setting

As shown in Table 1, we employ two types of query workloads in our study. As we have not consid-
ered string-based predicates in this context, the workloads exclusively consist of queries involving
numerical operations. By limiting the scope to numeric predicates, we can effectively analyze and
evaluate the performance of our approach within this specific domain.

The first workload includes Synthesis and JOB-light (Kipf et al., 2018) workloads. The Syn-
thesis workload consists of 5000 queries with up to two joins. The JOB-light workload consists
of 1-4 joins, for a total of 70 queries. Synthetic workload is generated using the same script and
random number seed as the training data. The JOB-light workload is derived from the Join Order
Benchmark (JOB) (Leis et al., 2015). The second workload is used to test the adaptability of the
model. This workload contains predicates that were not used in the original training set, such as
!=, >=, and the number of joins is different from the training data. We refer to this workload as
IMDB-NUMS for easy explanation.

We use qerror as the evaluation metric. The calculation formula is as Eq.10, where cardi is the
actual cardinality and est cardi is the estimated cardinality.

qerror(cardi, est cardi) =
max(cardi, est cardi)

min(cardi, est cardi)
(10)

We experimented with the Intel(R) Core(TM) CPU i7-12700F, 64GB of RAM, and the GeForce
RTX 3060. For the Transformer backbone, we set the number of headers to 8, the layers to 6, and
dropout to 0.1. We trained with the Adam optimizer with a learning rate of 0.001. Our training
method took approximately 30s to complete a single epoch, while QF (Zhao et al., 2022) took
approximately 40s in our machine.

4.3. Experimental Results

We employ different methods for training on training set. After the model converges, test with the
first workload to get the result. Figure 4 shows how mean-qerror changes on the validation set

8



A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

during training. The model tends to converge after 30 epochs, and the results on the validation set
indicate that the model with two positional encodings experiences a lower convergence value.

Figure 4: Mean-qerror changes on the validation set during training.

Table 2 shows the test results for different positional encodings. Mean is the average error
of all queries tested. Median is the median number of errors across all queries tested. The 90th
means the 90th percentile of errors across all queries tested. We also report results for PostgreSQL
(PostgreSQL, 2023), MSCN (Kipf et al., 2018), QueryFormer (Zhao et al., 2022) for reference.

Table 2: Q-error on test workloads.

Synthetic JOB-light
Mean Median 90th Mean Median 90th

Postgresql (Ke et al., 2022) 25.44 2.10 13.56 162.34 7.95 157.70
MSCN (Kipf et al., 2018) 2.89 1.18 3.32 57.90 3.82 78.40
QueryFormer (Zhao et al., 2022) 2.72 1.11 3.34 29.50 2.26 38.74
E2E (Sun and Li, 2019) 5.30 2.19 7.97 56.85 2.43 39.29
TTCE(no positional encoding) 2.42 1.21 3.18 37.70 2.57 35.11
TTCE(only relationship encoding) 2.28 1.15 2.99 45.27 2.56 54.32
TTCE(only path encoding) 2.31 1.38 3.05 32.79 2.55 33.27
TTCE(both of encoding) 2.26 1.23 3.15 15.86 2.04 38.58

Effectiveness of TTCE for cardinality estimation. As shown in Table 2, TTCE has a signifi-
cant improvement over Q-error compared with other methods. This shows that it can better capture
the relevant characteristics of the query plan tree, thereby producing more accurate results. For the
most important evaluation indicator, mean q-error, TTCE containing two types of positional encod-

9



HU ZHANG REN* LIU

ing are 25% better for synthetic workloads and 50% better for job-light workloads than the previous
best method QF. The effectiveness of our approach is fully proven.

Ablation Analysis. We conducted experiments to evaluate two types of positional encoding
designs: using only path encoding, using only relationship encoding, and not using positional en-
coding, as well as using both positional encodings. As show in Table 2, the combination of the two
positional encodings outperformed the scenarios where positional encodings were not used or only
one type of positional encoding was employed, across most metrics. This shows that the encoding
schema we designed can effectively improve the prediction accuracy.

4.4. Fine-Tune

A significant limitation of learning-based cardinality estimators is their tendency to perform poorly
on workloads that deviate significantly from the original training workloads. When workloads
change, learning-based estimator must be either re-trained or rendered unusable for the new sce-
nario. But retraining requires significant time.

Transformer can be adapted to various scenarios by pre-training + fine-tuning (Yu et al., 2022).
We tested this property of TTCE. Taking the previously trained model as the pre-training model, we
fine-tune the model with 1k queries different from the training data as new training data, using the
Adam optimizer with a learning rate of 0.0001, and train 10 epochs, which takes about 5s. We test
on 100k queries. As shown in Table 3, we can see TTCE performs quite poorly before Fine-tune
for new workloads, and Fine-tuning has significantly improved the accuracy of TTCE for IMDB-
NUMS workload with little overhead. This experiment demonstrates the effectiveness of TTCE in
handling new workloads with minimal overhead by fine-tuning.

Table 3: Fine-tune performance on IMDB-NUMS workload.

IMDB-NUMS
Mean Median 90th

Before Fine-tune 22560.70 2.04 4959.21
After Fine-tune 52.96 2.36 16.85

5. Conclusion

In this paper, we introduce TTCE, a Tree-Transformer model for cardinality estimation. We propose
a novel schema using path encoding and relationship encoding to preserve the structural characteris-
tics of query plan trees. This approach significantly enhances the accuracy of cardinality estimation.
Our experiments on real datasets demonstrate that our method outperforms existing techniques.

Our research offers substantial benefits for Database Management Systems by providing more
precise cardinality estimations, which can markedly improve query performance. While TTCE can
quickly adapt to changing workloads through fine-tuning, it’s not ideal to do it every time workload
drift occurs. This would require a very expensive data collection process. We will further focus
on developing a more robust method for cardinality estimation that efficiently handles changing
workloads.

10



A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

Acknowledgments

This work was supported by The National Natural Science Foundation of China:62101575 and The
Self-directed Project of State Key Laboratory of High Performance Computing:202101-18.

References

Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. Loger: A learned optimizer towards generating
efficient and robust query execution plans. Proceedings of the VLDB Endowment, 16(7):1777–
1789, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171—-4186. Association for
Computational Linguistics, Minneapolis, Minnesota, 2018.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An
overview. Computational Linguistics, 48(3):733–763, 2022.

Yi Han, Linbo Qiao, Dongsheng Li, and Xiangke Liao. Review of knowledge-enhanced pre-trained
language models. Journal of Frontiers of Computer Science & Technology, 16(7), 2022.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training.
international conference on learning representations, 2022.

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and Alfons Kem-
per. Learned cardinalities: Estimating correlated joins with deep learning. arXiv preprint
arXiv:1809.00677, 2018.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. How good are query optimizers, really? Proceedings of the VLDB Endowment, 9(3):
204–215, 2015.

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. Query optimization through the looking glass, and what we found running
the join order benchmark. The VLDB Journal, 27:643–668, 2018.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI open, 3:
111–132, 2022.

Honghao Liu, Zhiyong Peng, Zhe Zhang, Huan Jiang, and Yuwei Peng. Msp: Learned query perfor-
mance prediction using metainfo and structure of plans. In Web and Big Data: 6th International
Joint Conference, APWeb-WAIM 2022, Nanjing, China, November 25–27, 2022, Proceedings,
Part III, pages 3–18. Springer, 2022.

Guy Lohman. Is query optimization a “solved” problem. In Proc. Workshop on Database Query
Optimization, Vol. 13. Oregon Graduate Center Comp. Sci. Tech. Rep, page 10, 2014.

11



HU ZHANG REN* LIU

Ryan Marcus and Olga Papaemmanouil. Plan-structured deep neural network models for query
performance prediction. In Proc. VLDB Endow, volume 12.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim
Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 In-
ternational Conference on Management of Data, pages 1275–1288, 2021.

Artem Mikhaylov, Nina S Mazyavkina, Mikhail Salnikov, Ilya Trofimov, Fu Qiang, and Evgeny
Burnaev. Learned query optimizers: Evaluation and improvement. IEEE Access, 10:75205–
75218, 2022.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree struc-
tures for programming language processing. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence (AAAI’16), volume 30, pages 1287–1293. AAAI Press, 2016.

PostgreSQL. Postgresql 12.15 documentation, June 2023. URL https://www.postgresql.
org/docs/12/.

Shao-Jie Qiao, Guo-Ping Yang, Nan Han, Hao Chen, Fa-Liang Huang, Kun Yue, Yu-Gen Yi, and
Chang-An Yuan. Cardinality estimator: processing sql with a vertical scanning convolutional
neural network. Journal of Computer Science and Technology, 36(4):762–777, 2021.

Vighnesh Shiv and Chris Quirk. Novel positional encodings to enable tree-based transformers. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems,
pages 1082–12091. Curran Associates Inc., Red Hook, NY, USA, 2019.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. Proceedings of the VLDB
Endowment, 13(3):307–319, 2019.

Luming Sun, Tao Ji, Cuiping Li, and Hong Chen. Deepo: A learned query optimizer. In Proceedings
of the 2022 International Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22), pages 2421–2424. Association for Computing Machinery, New York, NY, USA, 2022.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. pages 1556–1566, 2015.

Lucas Woltmann, Jerome Thiessat, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. Fast-
gres: Making learned query optimizer hinting effective. Proceedings of the VLDB Endowment,
16(11):3310–3322, 2023.

Bo Yan, Siwei Wang, En Zhu, Xinwang Liu, and Wei Chen. Group-attention transformer for fine-
grained image recognition. In Advances in Artificial Intelligence and Security: 8th International
Conference on Artificial Intelligence and Security, ICAIS 2022, Qinghai, China, July 15–20,
2022, Proceedings, Part II, pages 40–54. Springer, 2022.

Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. Cost-based or learning-based? a hybrid
query optimizer for query plan selection. Proceedings of the VLDB Endowment, 15(13):3924–
3936, 2022.

12

https://www.postgresql.org/docs/12/
https://www.postgresql.org/docs/12/


A TREE-STRUCTURE ENHANCED TRANSFORMER FOR CARDINALITY ESTIMATION

Yuxuan Zhang, Huibin Tan, Long Lan, Jing Ren, and Xiao Teng. Person re-identification based on
multi-spectrum information aggregation transformers. In 2023 8th International Conference on
Image, Vision and Computing (ICIVC), pages 131–135. IEEE, 2023.

Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. Queryformer: A tree transformer model for
query plan representation. Proceedings of the VLDB Endowment, 15(8):1658–1670, 2022.

Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu, and Jingren Zhou.
Lero: A learning-to-rank query optimizer. Proceedings of the VLDB Endowment, 16(6):1466–
1479, 2023.

13


	Introduction
	Tree-Based Encoding Schema
	Node Encoding Schema
	Tree Positional Encoding Schema
	Path Encoding
	Relationship Encoding


	The Architecture of TTCE Model
	Representation Layer
	[CLS] Node
	Prediction Layer

	Experiment
	Dataset
	Experimental Setting
	Experimental Results 
	Fine-Tune

	Conclusion

