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Abstract

Few-shot object detection models often lack the perceptual ability to detect the target objects and
fine-tuning the model on base class images to quickly adapt to new tasks can lead to feature shift
issues. We propose an Adaptive Meta-Feature Weighting (AMFW-YOLO) object detection model
for solving these problems. This model introduces an attention mechanism based on spatial and
channel-wise squeeze-and-excitation (scSE) blocks, which helps the model focus on the regions of
interest in the target samples and suppresses interference from background regions. Additionally,
to compensate for the feature shift caused during the fine-tuning stage, we design an Adaptive
Meta-Feature Weighting module (AMFW), This module embeds positional information into spatial
features, captures long-range dependencies along two directions, and adaptively compensates for
the weights of deep global features, effectively improving the accuracy of the model.

Keywords: Few-shot Learning, Few-shot Object Detection, Feature Reweighting, Adaptive Meta-
feature weighting

1. Introduction

With the leap in the development of deep learning, significant breakthroughs have been achieved in
object detection technology. Many new object detection models have emerged, but these models rely
heavily on a large number of sample images and require extensive annotated data. In certain special
application scenarios, such as endangered animals, medical image diagnosis, industrial quality in-
spection, and environmental monitoring, there is a severe shortage of available data. Therefore, how
to perform object detection with a small amount of annotated data has become a research hotspot in
recent years (Liu, 2023).

Few-shot learning aims to detect new classes by using a small amount of annotated data, ef-
fectively reducing sample dependency and improving model generalization. Currently, few-shot
learning has wide applications in computer vision fields such as image classification, image segmen-
tation, and object detection. Few-shot object detection combines few-shot learning with object de-
tection algorithms to achieve accurate recognition and localization of objects with a small number of
annotated samples. Existing few-shot object detection methods mainly include data augmentation-
based, metric learning-based, fine-tuning-based, transfer learning-based, and meta-learning-based
approaches (Antonelli et al., 2022).

Data Augmentation-based Methods: Data augmentation-based methods aim to enhance the
model’s generalization to new classes by augmenting the base-class data. For example, Zhou et al.
(2023) proposed a multi-scale positive sample optimization method that adjusts the scale of positive
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samples using a target feature pyramid and refines feature maps to increase sample diversity. Kim
et al. (2022) increase the number of interested area samples by adjusting the scale of target regions
multiple times using spatial features. Xu et al. (2021) introduced a Positive Sample Augmentation
(PSA) module to balance the scale distribution of positive samples, suppress the negative sample
ratio, and improve detection accuracy.

Metric Learning-based Methods: Metric learning, also known as similarity learning, is a
method that first induces class vectors by summarizing support images of the same category. Based
on the principle that closer distances represent higher similarity, it calculates the distance between
the test sample and each category of support images using distance functions such as Euclidean
distance and Minkowski distance. This way, it determines the category of the test sample. Karlinsky
et al. (2018) introduced a novel distance metric learning approach that can simultaneously learn
the parameters of the backbone network, the embedding space, and the category representation
vectors. This method can also learn a joint representation space, effectively capturing the underlying
relationships between data from different modalities, and using this space for metric learning tasks.
Zhang et al. (2020) proposed a contrastive network object detection framework. This framework
uses siamese networks to extract features from query images and target images, serving as the edge
probabilities in the feature space for metric learning. By comparing the similarity of these features
in the feature space using a learnable metric, it accomplishes object detection. Li et al. (2019)
introduced a deep nearest neighbour neural network. This network uses local descriptors to replace
image-level features.

Fine-tuning-based Methods: Fine-tuning-based methods adopt transfer learning principles,
transferring features learned on a large-scale dataset to a few-shot dataset. Models pretrained on a
large dataset can extract more robust feature representations. Sun et al. (2021) introduced a con-
trastive proposal encoding method for few-shot object detection, reducing variance in the embed-
ding of proposals of the same class. Wei et al. (2019) proposed an adaptive adversarial sample
generator to enhance detection performance in few-shot object detection.

Transfer Learning-based Methods: Transfer learning methods transfer prior knowledge learned
from a source domain to a target domain, analogous to how humans apply previous experiences to
tackle new problems. Cao et al. (2022) divided the fine-tuning phase into two stages, correlation,
and discrimination, to ensure both intraclass feature space coherence and inter-class separability.
Guirguis et al. (2022) used replay techniques in continual learning to transfer knowledge from base-
class samples to new-class samples.

Meta-Learning-based Methods: Meta-learning methods train models on a per-task basis,
learning commonalities among different tasks, optimizing model parameters quickly to improve
generalization. Santoro et al. (2016) introduced a memory-augmented network inspired by neural
Turing machines. Kang et al. (2019) proposed a meta-feature reweighting model for few-shot ob-
ject detection, although it suffers from feature shift in the fine-tuning stage. Runchao LIN (2022)
designed a meta-feature secondary reweighting module to address feature shift issues, but further
improvement is needed.

This paper makes three main contributions: To mitigate the interference caused by negative
samples in feature extraction networks, the paper introduces a Spatial and Channel Parallel Squeeze
and Excitation (scSE) block-based attention mechanism, reducing the negative impact on model
recognition accuracy. Adaptive Meta-Feature Weighting (AMFW) Module: this module incorpo-
rates position and spatial information, adaptively adjusts meta-feature weights, and compensates
for offset feature coefficients, further improving model recognition accuracy. The AMFW-YOLO
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model achieves significant improvements in average accuracy for different shot tasks on the PAS-
CAL VOC dataset, with the highest average accuracy improvement of nine point seven percent.
This approach effectively addresses feature shift issues.

2. Adaptive Meta-Feature Weighting Model

2.1. Adaptive Meta-Feature Weighting Network Structure

This paper addresses the issues of the Re-weighting Model’s low attention to important information,
lack of perception, and feature shift, proposing the Adaptive Meta-Feature Weighting (AMFW-
YOLO) network model. The primary network architecture adopted by the Adaptive Meta-Feature
Weighting Model is YOLOV2. Firstly, the model introduces an attention mechanism based on Spa-
tial and Channel Squeeze & Excitation blocks, which effectively filters out negative sample infor-
mation, thereby reducing the interference of negative samples in feature extraction and generating
fine-grained masks. Secondly, an Adaptive Meta-Feature Weighting (AMFW) module is designed,
which embeds positional information into spatial information, adaptively adjusts the weights of
meta-features, compensates for feature shift caused by fine-tuning, and further enhances the model’s
detection capabilities. The overall network structure of AMFW-YOLO is depicted in Figure 1.
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Figure 1: Overall network structure of AMFW-YOLO.

In this paper, the defined support image is denoted as B. Both the support image and query image
undergo feature extraction. The support image yields meta-features with m channels, represented as
F € RX">m and denoted as I' = D(I).Through the attention mechanism module based on scSE,
fine-grained segmentation masks M are generated. Subsequently, the support image is concatenated
with the mask, denoted as (B;, M;), which serves as the input to the re-weighting module, resulting
in the re-weighting vector W;, where W; € R represents a specific operation. Query the image
to obtain the corresponding elemental feature F;;, and obtain the reweighted elemental feature n
through Equation 1, completing the transfer of prior knowledge from base classes to new classes.

F, =F,@Wii=1,...,N (1)

Here, ® denotes channel convolution, implemented using a 1x1 depth-wise convolution. Fi'
serves as the input to the AMFW module, and through the embedding of spatial position information
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(CIE) and the generation of spatial position attention (CAG), weighting coefficients are adjusted to
obtain adaptive weighted features Fi”.

These features are then input into the detection module P, yielding confidence scores for target
categories o;, predicted bounding box positions and sizes (z;, y;, h;, w; ), and category classification
scores c;. Based on the output information from the detection module P, target predictions are
made.

2.2. Adaptive Meta-Feature Weighting Module

During the process of encoding information between channels, the importance of spatial informa-
tion is often overlooked, making it difficult to capture deep global features. This paper introduces
an Adaptive Meta-Feature Weighting (AMFW) module, which embeds positional information into
channel relationships to explore deep feature information and adaptively compensate for its weight
coefficients. The specific structure of the Adaptive Meta-Feature Weighting module is illustrated in
Figure 2. The workflow of this module primarily consists of three main parts:

Spatial Position Information Embedding (CIE): Capturing global spatial information is typi-
cally done using global average pooling, but it can be challenging to retain important spatial details.
Therefore, global average pooling is split into two 1-dimensional vector encoding operations. Given
input X, encoding operations are performed using pooling kernels (H, 1) and (1, W) to capture hor-
izontal and vertical features, respectively. The output for the c-th channel with a height of h can be
represented as given in Equation 2.

A0 = 3 el @

0<i<W

Similarly, the output for the c-th channel with a width of w can be represented as given in

Equation 3.
1 .
2w =g D weljw) 3)
0<i<H

The advantage of aggregating features from both directions is that while capturing spatial rela-
tionships along one spatial axis, it preserves spatial information along the other axis.

Spatial Position Attention Generation (CAG): Concatenate 2/ (h) and z%(w), then perform
feature transformation through a 1x1 convolution, BatchNorm, and non-linear activation to obtain
intermediate feature f using Equation 4.

f=0(Fi([", =) @)
where [2", 2]
convolution, §(-) is a non-linear activation function, resulting in intermediate feature f €
r represents a scaling parameter used to reduce the number of channels in the intermediate feature,
thereby reducing model complexity. Subsequently, f is split into two independently distributed
features, f" € RC/™H and fv ¢ RE/™W based on the spatial dimension. These features are then
separately input into 1x1 convolutions and sigmoid activation functions for feature transformation
and adjustment of their dimensions to match the input feature. This is done using Equations 5 and
6 to obtain ¢g" and ¢g*.

represents the concatenation of vertical and horizontal features, F(-) denotes a 1x1
RC/rxW

9" = a(Fu(f")) ®)
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9" = o(Fu(f*)) (6)
Weighted Feature Fusion: The combination of ¢g" and ¢% is merged into a weight matrix, and
the final calculation formula for the output y.(, j) is represented in Equation 7.

yeli, j) = we(i, ) x gh(i) x g (j) (7)

ye(i, 7) is weighted and fused with the input features, completing the process of Adaptive Meta-
Feature Reweighting. The Adaptive Meta-Feature Weighting module approaches feature impor-
tance from a global perspective, combining positional and spatial information to analyze the signif-
icance of a feature. It adaptively compensates for weight coefficients that offset feature shifts.
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Figure 2: scSE Attention Mechanism Module.

3. Experimental Results and Analysis
3.1. Comparative Experiment

This article compares the performance of the model after integrating the AMFW module with other
object detection models, including FSRW, SE-SMFR, FRCN+{t-full (Zhang et al., 2021), MetaDet
(Huang et al., 2020), LSTD (Runchao LIN, 2022), YOLOv2-fit (Hu et al., 2018), and FRCN+{t
(Zhang et al., 2021).

Table 1 provides a comparison of the average precision results between this paper’s method and
the comparison models in three classification groups on the VOC dataset. Table 2 shows the average
accuracy of this paper’s method and other methods in PASCAL VOC dataset for new and base class
categories.
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Table 1: Comparison of average accuracy between this method and other methods under different
groups of PASCAL VOC.

Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

YOLOv2-ft 6.6 107 125 248 386 125 45 116 16.1 339 130 159 150 322 384
LSTD 82 110 124 29.1 385 114 38 50 157 31.0 126 85 150 273 363
FRCN+ft-full 138 19.6 328 415 456 79 153 262 316 391 98 113 19.1 350 45.1
MetaDet 17.1 19.1 289 350 488 182 20.6 259 30.6 415 20.1 223 279 419 429
FRCN+ft 119 164 290 369 369 59 85 234 291 288 50 9.6 181 308 434
FSRW 148 155 267 339 472 157 153 227 30.1 405 213 256 284 428 459
SE-SMFR 155 212 281 362 403 139 22.6 288 356 419 151 278 29.6 384 417
AMFW 164 223 30.7 43.6 465 148 23.7 294 38.6 452 179 284 301 398 446

Algorithm

From the results in Table 1, it can be seen that compared to the seven other object detection
models, t-he model proposed in this paper demonstrates good performance in all three grouping
scenarios. The AMFW module’s design effectively mitigates feature shift issues caused by the
two-stage fine-tuning.

Compared to the FSRW model, the mAP is improved by up to 9.7%. In Novel Set 1, the overall
aver-age precision for different shot tasks improved by 4.28%, which is a 3.64% improvement
compared to the improved FSRW model, SE-SMFR. The average precision for different shot tasks
in the three subset groups increased by 3.25%. AMFW-YOLO achieved an average improvement
of 6% for 2-shot, 4.13% for 3-shot, and 5.06% for 5-shot compared to FSRW. In comparison to SE-
SMEFR, it achieved the highest mAP improvement of 7.4% and an overall performance improvement
of 2.36%. The average accuracy for different shot tasks in Novel Set 1, Novel Set 2, and Novel Set
3 improved by 3.64%, 1.78%, and 1.64% respectively. AMFW-YOLO improved by 1.53%, 0.94%,
1.23%, 3.93%, and 4.13% for 1-shot, 2-shot, 3-shot, 4-shot, and 5-shot tasks. The experimental
data shows that the improvement in AMFW-YOLO'’s performance becomes more pronounced with
an increase in labeled data.

While the model in this paper significantly improved average accuracy in the three different shot
tasks, it didn’t achieve ideal results in the 1-shot task. The main reason for this is that in the 1-shot
task, there is insufficient transferable information from a single instance image, resulting in subpar
recognition performance. In comparison to MetaDet, which achieved the best performance in 1-shot
recognition, it introduced a weight prediction meta-model that can predict specific class parameters
from a small number of samples, allowing it to maintain high accuracy even with low samples. In
the future, the approach in this paper can consider incorporating ideas from the MetaDet model to
improve AMFW-YOLO’s accuracy in low-sample scenarios.

3.2. Ablation Experiment

In order to validate the impact of the scSE and AMFW modules on the performance of small-sample
object detection, this paper conducted an ablation experiment on the 10-shot task in Novel Set 1.
The specific experimental data is presented in Table 2.

The data from the first row and the second row of the experimental results indicate that with
the introduction of the scSE attention mechanism, the model’s mAP for new class images improved
by 0.78%, and the mAP for base class images increased by 1.31%. New class images inherently
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Table 2: The results of ablating scSE and AMFW.
Algorithm scSE  AMFW  New class Base class

FSRW x x 47.42 63.59
AMFW-YOLO — / x 48.20 64.90
AMFW-YOLO  x v 49.72 65.48
AMFW-YOLO — / v 50.88 67.04

lack sufficient feature information. By introducing the attention mechanism and combining it with
the weighting module to transfer base class image meta-feature information to new class images,
the model’s recognition accuracy for new class images is effectively enhanced. Additionally, scSE
filters out negative sample information, increasing the weight of features in the target regions of
objects under detection, thereby enhancing the model’s focus on important information.Comparing
the data from the first row with the third row, it is evident that the designed AMFW module increased
the mAP for new class images by 2.3 percentage points and improved the accuracy for base class
images by 1.89 percentage points. This validates the good performance of AMFW in compensating
for feature shift issues.

4. Conclusion

To address the issue of feature shift leading to a decrease in accuracy, this paper introduces the
AMFW-YOLO model. This model incorporates the scSE attention mechanism to generate fine-
grained masks for base class images, reducing the impact of negative samples on detection accuracy.
By designing the Adaptive Meta-Feature Weighting (AMFW) module to compensate for feature bias
in transferring features from new classes to base classes, AMFW embeds positional information
in spatial information in parallel, capturing deep global features and adaptively compensating for
their weight coefficients, alleviating the impact of shifted features on recognition accuracy. To
demonstrate the improvement in the model’s detection capabilities, validation was performed on
the PASCAL VOC dataset. The model in this paper showed improvements in average accuracy for
various detection tasks, with the highest improvement being 9.7% compared to the FSRM model.
For 2-shot, 3-shot, and 5-shot tasks, there were average improvements of 6%, 4.13%, and 5.06%,
respectively. Experimental data suggests that the proposed method in this paper exhibits strong
performance, greatly improving the issue of feature shift and further enhancing the accuracy of
model detection.
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