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Abstract
Addressing the limitations of mainstream generative text summarization models, such as poor se-
mantic quality, inappropriate allocation of weights to key information, and constraints in extracting
the semantic essence of textual content by existing natural language generation models, we pro-
pose an Attention-Augmented Pointer Generation Network (AUPT). This model utilizes TextRank
technology to extract crucial information, combines positional encoding with an adaptive masking
mechanism to enhance positional attention scores, emphasizing the importance of key information
in the text’s semantics. Furthermore, by integrating the T5-Pegasus model with the pointer gen-
eration network, it effectively handles unknown vocabulary and replication issues, enabling more
accurate and reliable semantic representations.
Keywords: Text summarization, T5-Pegasus pre-trained model, Key information, Pointer network,
Transformer architecture, Attention mechanism

1. Introduction

In today’s rapidly expanding information landscape, the demand for efficient extraction of essential
information from vast textual datasets, including comments, news articles, and research papers, has
become increasingly urgent. To address this demand, text summarization technology has emerged
as a pivotal area of research within the field of natural language processing. Text summarization
endeavors to leverage advanced machine learning and artificial intelligence algorithms to distill key
insights from large volumes of textual data, thereby assisting users in saving time and cognitive
effort.

Text summarization, a critical research domain in natural language processing, was first system-
atically explored by Luhn (1958) Currently, text summarization methods are primarily categorized
as generative and extractive approaches.

In order to address the limitations of text extraction-based summarization and the challenges
associated with generative abstract methods, Rush et al. (2015) introduced a fully data-driven ap-
proach to abstract sentence summarization. This approach leverages a locally attentive neural net-
work language model, which generates corresponding content for each summary word based on
input sentences. Notably, this strategy led to significant performance improvements.

To mitigate token repetition issues in Seq2Seq models (Sutskever et al., 2014) , Gu et al. (2016a)
incorporated a copy mechanism (Gu et al., 2016b) into neural network-based Seq2Seq learning, in-
troducing a novel encoder-decoder model called CopyNet. CopyNet effectively combines conven-
tional vocabulary generation within the decoder with the new copy mechanism. The introduction
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of the Transformer model marked a pivotal moment in pre-trained models. Vaswani and his team
(Vaswani et al., 2023) proposed a novel network architecture entirely based on attention mecha-
nisms, eliminating the need for recursion and convolutional neural networks (LeCun et al., 1989) .
This model exhibited superior quality and enhanced parallelism, resulting in reduced training time.
The fusion of sequence-to-sequence architecture and attention mechanisms significantly improved
the quality of summaries. With the consideration of the copy mechanism, See et al. (2017) intro-
duced a summary approach based on a pointer-generator network. This approach amalgamates the
generative capabilities of neural networks with the extraction capabilities of pointer networks, en-
abling the generation of accurate and coherent summaries. Furthermore, this method introduces a
coverage mechanism (Tu et al., 2016) to prevent the generation of repetitive summaries.

Jianlin (2021) released a Chinese generative pre-training model named T5 PEGASUS, based on
the Google mT5 model. To address the issue of the original mT5 model’s SentencePiece tokenizer
being less user-friendly for Chinese, the tokenizer was switched back to BERT’s tokenizer with the
addition of segmentation functionality, further enhancing the vocabulary. For pre-training tasks,
Su followed the approach of the PEGASUS model, training a Seq2Seq model by constructing data
pairs similar to abstracts. This improves T5 PEGASUS’s performance in Chinese text generation
tasks, enhancing its overall quality and utility.

1.1. Contributions

In this work, we have made significant contributions in two key areas:
(1) Enhanced Information Integration: We have introduced a novel approach that combines the

strengths of BiLSTM (Schuster and Paliwal, 1997) and TextRank methods. This fusion enables the
model to adaptively learn the importance of different positions within the text and incorporate this
knowledge into a multi-head attention mechanism. As a result, the multi-head attention mecha-
nism becomes more effective in assigning scores to crucial textual information. This enhancement
significantly improves the encoder’s ability to capture semantic information efficiently.

(2) Pointer Mechanism Integration: We have integrated the Pointer mechanism with the T5-
Pegasus pre-trained model. This integration empowers the model to handle challenges posed by
unknown vocabulary and content repetition. By allowing the model to directly copy content from
the input sequence, it becomes better suited to tackle complex output scenarios. This adaptation not
only enhances the model’s generalization capabilities and flexibility but also effectively reduces the
size of the output vocabulary.

2. Materials and Methods

To address the limitations of current natural language generation models in extracting essential
semantic information from text, we propose an advanced model based on the T5-Pegasus architec-
ture. This model, named Attention-Augmented Pointer Generation into Networks (AUPT), consists
of three primary modules:

(1) Key Information Extraction Module: Within AUPT, the key information extraction module
plays a pivotal role. It extracts relative position information of key content from the source text. This
is achieved by processing the input through the Embedding layer, BiLSTM layer, and TextRank
layer. The module constructs an enhanced mask matrix specific to the input batch. This matrix
actively participates in the computation of Multi-Head Attention during the semantic information
extraction phase conducted by the T5-Pegasus module.
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(2) Attention Mechanism Encoder with Key Information Integration: The T5-Pegasus mod-
ule, the attention mechanism encoder in AUPT, focuses on incorporating key information into the
encoding process. It primarily utilizes a multi-head attention mechanism to capture deep global in-
formation from the source text. The integration of key information enhances the encoder’s capacity
to recognize crucial semantic details.

(3) Pointer Network Module: The pointer network module is a crucial component of AUPT. It
employs a pointer generator model to calculate the generation probability at each time step in the
decoding process. This probability dictates whether a word is generated from the vocabulary or di-
rectly copied from the source text, providing adaptability and control in complex text summarization
scenarios. The model’s architecture is visually represented in Figure 1 for better comprehension.

Figure 1: Overall framework.

2.1. Fusion of Key Information with a Transformer Encoder

To extract essential information from the content, we employ BiLSTM+TextRank. This process
results in the creation of a mask matrix mask denoted as Mij ∈ R(B × N), where each Mij

element represents a specific entry in the matrix of key information. The construction of the key
information matrix is detailed as follows:

m ∈ M
{
m=1 important
m=0 unimportant (1)

After obtaining the matrix, key information captures the positional information corresponding
to critical elements within the sequence. The positional markers associated with the key informa-
tion are merged into the input while maintaining the same dimensionality. Additionally, we utilize
positional information to fine-tune the weights of the attention mechanisms, effectively addressing
issues arising from spatial heterogeneity and output variations. This process is illustrated in Figure
2.
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Figure 2: Flowchart of TextRank+BiLSTM algorithm.

The encoding stage of integrating the key information Transformer encoder mainly consists of
the following components:

Araw =
QiK

T
i√

d/h
(2)

To begin, calculate the attention score matrix without any adjustments, denoted as Araw. The
query matrix Qi is derived by passing the input through an embedding layer and subsequently a fully
connected layer. Additionally, KT

i is formed by taking the transpose of the last two dimensions of
the key matrix, which is obtained through a similar process involving an embedding layer and a fully
connected layer. A scaling factor is introduced, which is employed to reduce the overall magnitude
of the data. This scaling factor serves the purpose of simplifying subsequent calculations within the
softmax layer.

−→
H = (W

f(x)
hh Re(W

f(x)
xh Mx) +Mx) (3)

Next, employ a residual connection to combine the enhanced attention matrix derived from the
output of the fully connected layer with the unadjusted attention score matrix. The resulting output
is denoted as

−→
H , representing the hidden state following the residual connection. W f(x)

xh corresponds
to the weight matrix of the first-layer fully connected neural network, while W

f(x)
hh corresponds to

the weight matrix of the second-layer fully connected neural network. The Re notation signifies the
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application of the rectified linear unit relu activation function operation, and Mx parameters refer
to the position matrix of key information obtained from the BiLSTM and BiLSTM layers.

Amasked = Ares +mask (4)

Attentionraw = (Amasked
−→
H ) (5)

Upon obtaining the hidden state output
−→
H , we apply the matrix to the adjusted attention weight

matrix, yielding the final computation of the multi-head attention mechanism. The resulting matrix,
denoted as Amasked, represents the attention score matrix following the application of mask. This
process involves the adjustment of attention weight matrices, the utilization of residual connections,
and the integration of the multi-head attention mechanism, collectively enhancing the emphasis
on crucial tokens. The adaptive adjustment of attention weights proves instrumental in capturing
contextual information more effectively. Furthermore, the incorporation of residual connections
serves to retain the original attention score information while amalgamating it with the enhanced
attention data, thereby bolstering the model’s representational capacity and refining the precision of
attention distribution. Notably, AUPT exhibits adaptive adjustment capabilities during the summary
generation process.

2.2. Integrating Pointer-Generator Networks with Transformer Decoders

Within the Transformer decoder, at each time step t, a combination of the Multi-Head Self-Attention
and Multi-Head Encoder-Decoder Attention mechanisms is employed. Initially, we calculate self-
attention weights and encoder-decoder attention weights to capture the relationships between the
input sequence and the summary vocabulary generated so far. In each decoder layer, we amalgamate
the outputs of self-attention and encoder-decoder attention with the input to the decoder. This is
followed by the application of a Position-wise Feed-Forward Network to compute the output. This
process iterates across multiple decoder layers to generate probabilities. Finally, in the output of the
last decoder layer, we employ a linear layer followed by a softmax activation function to compute
the generation probabilities pvocab(yt) for each word in the vocabulary.

pvocab(yt) = softmax(WoDecoder(yt−1, H) + bo) (6)

In the given context, Wo and bo are used to represent the weights and biases of the linear layer.
Meanwhile, Decoder(yt−1, H) signifies the decoder’s output. Following this, the encoder-decoder
attention weights are utilized to compute the probability pvocab(yt) for each word from the input
sequence to be replicated in the output sequence:

pcopy(yt) = 1− pvocab(yt) (7)

Subsequently, the generation probability gating value pgen ∈ [0, 1] is calculated based on the
decoder’s hidden state and attention weights.

pgen = σ(Wg[Decoder(yt−1, H), at] + bg) (8)

In this context, σ represents the sigmod activation function, while Wg and bg correspond to
trainable weights and biases, respectively. The final output probability distribution p(yt) is com-
puted by merging the generation probability pvocab(yt) with the pointer probability pcopy(yt).

p(yt) = pgenpvocab(yt) + (1− pgen)pcopy(yt) (9)
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Finally, a vocabulary word is sampled from the probability distribution p(yt) as the output for
the current time step, which is then passed to the decoder as input for the next time step.

3. Experimental Study

3.1. Dataset

In this investigation, we employed two distinct datasets, namely NLPCC2017 (Qiu et al., 2017)
and LCSTS (Hu et al., 2015), as the primary sources for our experimental evaluation. A total of
50,000 samples were utilized from each of the NLPCC2017 and LCSTS datasets to conduct our
experiments.

3.2. Evaluation Metrics

In our experimental analysis, we utilized the ROUGE (Lin, 2004) metric to evaluate the quality of
the generated summaries. ROUGE is a widely recognized and applied metric for assessing the per-
formance of automatic text summarization systems. It quantifies the quality of generated summaries
by quantifying the n-gram overlap between the generated summary and the reference summary.
Specifically, we focused on three primary evaluation metrics: Rouge-1, Rouge-2, and Rouge-L.

3.3. Results and Analysis

In this section, we present the experimental results of our AUPT model on the dataset constructed for
this study, employing the comparative models mentioned earlier. The results of these experiments
are summarized in Table 1.

Table 1: Comparison of experimental result.

Model LSTS NLPCC
R-1 R-2 R-L R-1 R-2 R-L

Lead-3(Nallapati et al., 2016) 28.32 15.24 25.63 28.24 15.32 25.51
RNN-context 29.95 17.47 27.22 29.88 17.52 27.32

SRB(Ma et al., 2017) 33.36 20.01 30.18 33.14 20.27 30.23
CopyNet 34.46 21.67 31.35 34.37 21.10 31.71
DGRB 37.03 24.22 34.24 37.37 24.25 34.63

Transformr 39.56 25.87 36.6 39.14 25.92 36.42
BERT[17]+Pointer 41.50 26.93 38.88 41.41 26.75 38.37

PEGASUS 42.62 27.07 41.15 42.76 27.29 41.68
AUPT 43.58 28.43 41.92 43.49 28.40 41.47

The experimental results demonstrate that Lead-3, which relies on fixed rules, has limited effec-
tiveness in generating summaries for complex texts. RNN-Context enhances the ability to extract
global semantics, but it faces limitations when processing long sequences. SRB improves the qual-
ity of summaries by leveraging semantic relevance and the Bi-GRU encoder. CopyNet introduces
a copying mechanism, thereby improving the accuracy and readability of summaries. Transformer
excels in processing long sequences and performing parallel computing due to its self-attention
mechanisms. BERT-Pointer combines BERT’s semantic representation with a pointer generation
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mechanism, preserving both global semantic information and key details. Pegasus generates high-
quality summaries by focusing on key information through a novel abstractive pre-training task.

3.4. Analysis of Component Sensitivity

To We conducted a series of ablation studies. Our baseline model was T5-Pegasus. The second
model integrated a Pointer network with T5-Pegasus. Then, we combined the key information
identified by the BiLSTM-TextRank method with T5-Pegasus, creating a third model, denoted as
T5-BTR. Finally, we arrived at our proposed model, AUPT. The resulting experimental outcomes
are presented in Table 2.

Table 2: Results of ablation experiments.

Model LSTS NLPCC
R-1 R-2 R-L R-1 R-2 Ro-L

T5-Pegasus 42.62 27.50 41.02 42.60 27.47 40.08
T5-Pegasus+Pointer 43.06 21.23 40.50 43.12 17.5 27.3

T5-BTR 43.11 27.38 41.13 33.1 20.2 30.2
AUPT 43.58 28.43 41.92 43.49 28.40 41.47

During the ablation experiments, model performance gradually improved with the addition of
components. Compared with the baseline model T5-Pegasus, the dual model incorporating the
Pointer network significantly improved across evaluation metrics, indicating that the Pointer net-
work effectively assisted the model in capturing critical information. The generative summarization
approach, which combines T5-Pegasus and the Pointer network, proved more efficient than tra-
ditional methods. Furthermore, the triple model, which integrated key information extracted by
BiLSTM-TextRank, demonstrated superior performance, confirming the crucial role of key infor-
mation in the decoding process. The final model, which fused T5-Pegasus, the Pointer network,
and key information extracted by BiLSTM-CRF, achieved optimal performance across all evalua-
tion metrics, validating the effectiveness and rationality of the model structure designed for natural
language processing tasks.

4. Conclusion

In this study introduces an attention-augmented pointer network-based summarization model, de-
noted as AUPT (Attention-Augmented Pointer Generation into Networks). Our approach leverages
BiLSTM+TextRank techniques to perform deep key information extraction from the input text, fa-
cilitating the precise identification of critical semantic components. To determine the position of
each key word within the sentence, we apply a positional encoding strategy and introduce an adap-
tive masking mechanism. Furthermore, our model seamlessly integrates the T5-Pegasus model and
incorporates a Pointer mechanism during the decoding process. In rigorous Rouge evaluation met-
rics, the generated summaries consistently outperform the benchmark models, thus affirming the
efficacy and soundness of our proposed model.
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