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Abstract
Fitting the Landau-Energy polynomial has always been challenging because it is difficult to directly
obtain Landau-Energy data for coefficient fitting. One possible approach to address this problem is
to handle the derivative of the Landau-Energy polynomial with respect to the second-order polar-
ization (dielectric constant) to obtain relevant information about the Landau-Energy. This chapter
will introduce a method based on integrable neural networks to obtain an approximate model for
the Landau-Energy polynomial and its parameters.
Keywords: Ferroelectrics, Landau-Energy, Integrable Deep Neural Networks

1. Introduction

The study of Landau-Energy in the context of ferroelectric materials is crucial for advancing our
understanding of phase transitions and their underlying mechanisms. The intricate relationship be-
tween temperature, polarization, and the dielectric properties of materials forms the foundation of
Landau theory, which has been extensively applied to predict and analyze the behavior of ferro-
electrics near phase transitions (Woo and Zheng, 2008; Yazawa et al., 2022; Lich et al., 2016).
However, the traditional methodologies employed for fitting the Landau-Energy polynomial often
struggle with the limited availability and variability of experimental data, which can impede the
development of accurate predictive models. Recent advancements have seen the integration of vari-
ous computational techniques to improve the precision and reliability of these fittings (Raissi et al.,
2019; Teichert et al., 2019, 2020). However, these methods still face challenges regarding scalability
and adaptability to complex ferroelectric behaviors.

Therefore, in current study, we extend the IDNN method to second-order partial derivatives
and proposes the IDNN-PSO approach for parameter estimation in the ferroelectric Landau-Energy
polynomial. Finally, the IDNN-PSO method is applied to real data for parameter estimation, and
the fit of the Landau-Energy polynomial to the original dataset in terms of temperature-polarization
and temperature-dielectric constant is evaluated.
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2. Method

The core idea of solving partial differential equation (PDE) problems based on neural networks is
to use the control equation, initial values, and boundary conditions to sample data points within the
domain and at the domain boundaries, which form the training dataset. The neural network N is then
trained with these data points to obtain optimized parameters. This means that after training, the
neural network will satisfy the constraints of the control equation and boundary conditions within
a certain range of error. When the model’s training accuracy meets the requirements, the neural
network can be regarded as an approximate solution or agency model for the PDE problem. Neural
networks are used to approximate solutions under partial differential equation (PDE) constraints by
fitting observational datasets. IDNN (Raissi et al., 2019) has been proposed to handle partial differ-
ential data using neural networks. This method achieves the differentiation of neural networks by
applying the chain rule of forward propagation. The following are the symbols for neural networks,
as shown in Table 1.

Table 1: Neural Network Representation Symbols

Symbol Meaning

L The number of layers in a neural network
Ml The number of neurons in layer l
fl(·) The activation function of layer l neurons

W l ∈ RMl×Ml−1 Weight matrix from layer l − 1 to layer l
bl ∈ RMl Bias from layer l − 1 to layer l
zl ∈ RMl Net input (net activity value) of layer l neurons
al ∈ RMl Output of layer l neurons (activity value)

For the fully connected neural network, the activation value ali of neuron i in the l − th layer is
given by:

ali = f
(
zli

)
(1)

zli = bli +

ml−1∑
j=1

W l
i,ja

l−1
j (2)

The activity value of the output layer of the neural network is,

Yi = bn+1
i +

mn∑
j=1

Wn+1
i,j anj (3)

Based on dataset Df {(x1, y1) , (x2, y2) , . . . (xn, yn)}, parameter optimization of neural
networks can be expressed as minimizing the loss function loss (W, b |Df ) with weight matrix W
and bias matrix b as independent variables,

Ŵ , b̂ = argmin
W,b

MSE
(
Y (x,W, b)|xθ

, yθ

)
(4)

Similarly, the optimization of partial differential datasets by IDNN can be expressed as,
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Ŵ , b̂ = argmin
W,b

n∑
k=1

MSE

(
∂Y (x,W, b)

∂xk

∣∣∣∣
xθ

, yθ

)
(5)

From equation (5), it can be observed that IDNN’s differentiation with respect to neural net-
works has an analytical form. Specifically, it follows the chain rule within the neural network. The
differentiation of IDNN’s neurons has some slight variations in form, where the activation unit can
be considered as the partial derivative form of DNN’s activation unit.

∂ali
∂xk

= f ′
(
zli

) ∂zli
∂xk

(6)

ali = f
(
zli

)
(7)

∂zli
∂xk

=

ml−1∑
j=1

W l
i,j

∂al−1
j

∂xk
(8)

By rearranging equations (6-8), new activation unit αl
i, β

l
ki

can be obtained.

βl
ki

= f ′
(
zli

)ml−1∑
j=1

W l
i,jβ

l−1
kj

(9)

αl
i = f

(
zli

)
(10)

Perform chain calculation on feedforward neural networks, and the partial differentiation of the
neural network can be expressed as,

yi,k =
∂Yi
∂xk

=

mn∑
j=1

Wn+1
i,j βn

kj
(11)

Yi =

mn∑
j=1

Wn+1
i,j αn

j (12)

Based on the above formula derivation, IDNN can use equations (5) and (9-12) to solve first-
order PDE problems. Overall, IDNN is a partial differential variant of DNN, which shares weight
matrices with DNN. During the parameter iteration of the neural network, both partial differential
neurons and regular neurons participate in backpropagation optimization. Therefore, IDNN can
recover the original function by training partial differential data of the original function and a small
number of initial values, that is, realizing the integration process. However, since the above formulas
can only handle first-order partial derivatives, we extend the IDNN algorithm by introducing second-
order activity values.

γ0(p,q)i
= 0 (13)

γ1(p,q)i
= f ′′

(
zli

)
· f ′(z1i )2 · (W 1

i,p ·W 1
i,q

)
(14)
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γl(p,q)i
= f ′′(zli)

ml−1∑
j=1

W l
i,jβ

l−1
pj

ml−1∑
j=1

W l
i,jβ

l−1
qj

+ f ′
(
zli

)ml−1∑
j=1

W l
i,jγ

l−1
(p,q)j

(15)

Equations (13-15) represent the second partial derivative of the first-order partial differential
activity values in IDNN. In the IDNN output layer, the second mixed partial derivative of DNN is
given by:

yi,(p,q) =
∂2Yi

∂xp∂xq
=

mn∑
j=1

Wn+1
i,j γn(p,q)j

(16)

Therefore, in order to achieve the goal of restoring the original function through the convergence
of the second-order IDNN, the following conditions are required: Firstly, the Hessian matrix H(f)
of the second derivative of the original function; Secondly, the Jacobian matrix J(f) of the first
partial derivative matrix of the original function; and finally, a few initial values f(xi) of the original
function.

3. Polynomial Fitting based on Second-Order IDNN

The Landau-Energy theory reproduces the experimental observations of mineral phase transitions,
and its accuracy is sufficient for many applications. Assuming a ferroelectric Landau-Energy poly-
nomial as follows:

FLand (T, P1, P2, P3) = a (T − T0)
(
P 2
1 + P 2

2 + P 2
3

)
+ a11

(
P 4
1 + P 4

2 + P 4
3

)
+ a12

(
P 2
1P

2
2 + P 2

2P
2
3 + P 2

3P
2
1

)
+ a111

(
P 6
1 + P 6

2 + P 6
3

)
+ a112

(
P 4
1

(
P 2
2 + P 2

3

)
+ P 4

2

(
P 2
1 + P 2

3

)
+ P 4

3

(
P 2
1 + P 2

2

))
+ a123P

2
1P

2
2P

2
3 + a1111

(
P 8
1 + P 8

2 + P 8
3

)
+ a1112

(
P 6
1

(
P 2
2 + P 2

3

)
+ P 6

2

(
P 2
2 + P 2

3

)
+ P 6

3

(
P 2
2 + P 2

3

))
+ a1122

(
P 4
1P

4
2 + P 4

2P
4
3 + P 4

3P
4
1

)
+ a1123

(
P 2
1P

2
2P

2
3

(
P 2
1 + P 2

2 + P 2
3

))
(17)

a =
1

2κ0C0
(18)

Here, T is the instantaneous temperature, T0 is the Curie-Weiss temperature,
(
P1, P2, P3

)
is the polarization vector, ai is the dielectric coefficient, C0 represents the Curie constant, and κ0is
the vacuum permittivity. Different forms of polarization vectors are determined for different phases
of a ferroelectric body, including C-phase (0, 0, 0), T-phase (P, 0, 0), O-phase (P/

√
2, P/

√
2, 0),

and R-phase (P/
√
3, P/

√
3, P/

√
3). In the Landau-Energy polynomial fitting problem, the known

conditions are the polarization intensity and dielectric constant corresponding to different tempera-
tures as

Ps |T=Ti = argMin
P

(FLand |T=Ti ) (19)

In this case, there exists a partial derivative relationship between polarization intensity and
Landau-Energy, given by equation (20-22).
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∂FLand

∂Pi
|P=Ps = 0 (20)

xij = ε0
∂2FLand

∂Pi∂Pj
(21)

εij =
1

xij
(22)

Where εij represents the dielectric constant corresponding to polarization. According to the
relationship (22) between the dielectric constant and Landau-Energy, the form of the dielectric con-
stant can be determined for different phases. The main objective of using IDNN to fit FLand is to
approximate a agency model function similar to FLand(P, T ). Although FLand(P, T ) is discontin-
uous and non-differentiable at phase transition temperatures, IDNN can approximate the original
function with a certain precision. The following introduces a method for constructing the Hessian
matrix H(f) and Jacobian matrix J(f ) based on the relationship between FLand and εij . To ensure
algorithm convergence, data preprocessing is performed initially, including dimensionless scaling

P * = P/P0 (23)

T ∗ = (T − T0)/ |Td − T0| (24)

Where P0 and Td can be set by oneself, and it is recommended to set them as the minimum
value or median value in the dataset. T0 represents the instantaneous temperature, which needs to be
obtained from the data. In this case, the form of the agency model function becomes F ∗

Land(P
∗, T *).

The relationship between the dimensionless agency model function and the original function in
terms of the parameters is as follows:

α1= (Td − T0) /2κ0C0 (25)

α0 = |α1| (26)

a∗ = 1 (27)

a∗ij =
(
aij � P

2
0

)
/a0 (28)

a∗ijk =
(
aijk � P

4
0

)
/a0 (29)

a∗ijkl =
(
aijkl � P

6
0

)
/a0 (30)

Where κ0 and C0 represent the permittivity in vacuum and the Curie temperature, respectively,
and are represented in the agency model as unknown constants. This dimensionless approach en-
sures that the data used for training the IDNN is within a reasonable range defined by the Sigmoid
function, preventing the occurrence of vanishing or exploding gradients during the gradient iteration
process. The H(f) and J(f) used for training the dimensionless agency model are as follows:

H (F ∗
Land ) =

(
∂2F ∗

Land
∂P ∗2

∂2F ∗
Land

∂P ∗∂T ∗
∂2F ∗

Land
∂P ∗∂T ∗

∂2F ∗
Land

∂T ∗

)
(31)

J (F ∗
Land ) =

(
∂F ∗

Land
∂P ∗

∂F ∗
Land

∂T ∗

)
=
(

0
∂F ∗

Land
∂T ∗

)
(32)
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The convergence condition of the IDNN also requires a small number of values from the original
function. Here, the Landau Energy of the C phase is used to fulfill this condition, i.e.,

FLand|P=0 = 0 (33)

Equations (31-33) represent all the necessary conditions for the convergence of IDNN.
The significance of the agency model lies in its ability to connect the independent variables P,

T with the Landau Energy space, rather than the dielectric constant. This allows for easier fitting of
Landau Energy polynomial parameters. Here, the Particle Swarm Optimization (PSO) algorithm is
chosen for parameter fitting, primarily because PSO exhibits strong global search capabilities and is
easy to implement. Additionally, in dealing with high-dimensional problems, the search process of
PSO does not depend on the dimensionality of the problem, as the Landau Energy polynomial has
9 unknown coefficients. The form of the loss function in the optimization task is as follows:

N SN =
{
t̂i | t̂i ̸= ti

}
(34)

Penalty =
∑

|αi| (35)

l (α1, . . . , a1123 | w1, . . . , w5) =w1∆f + w2∆
∂2f

∂P 2
+ w3∆

∂f

∂P
+ w4N + w5 • Penalty

(36)

Equation (36) represents the polynomial of the loss function, which contains 5 terms: the loss
term of the original function, the loss term of the second derivative, the loss term of the first deriva-
tive, the number of incorrectly predicted phase attributes of data points, and the penalty term. The
values of the weights for each loss term are usually set to 1. The loss term of the original function
is the main driving force for parameter fitting, while the first derivative and second derivative play
an auxiliary role in structural convergence. Additionally, we note that the information of the origi-
nal function values and derivatives alone is not sufficient to characterize the features of the Landau
energy polynomial with respect to the phase. Therefore, the number of data points with incorrectly
predicted phase attributes is added to the loss function for prediction. Furthermore, without any
constraints, the optimization algorithm may produce extreme results in parameter optimization. To
avoid the optimized parameters being located on the boundary of the parameter space, a penalty
term is used to control the absolute value of each parameter. Finally, the parameters obtained by the
optimization algorithm are still dimensionless and need to be scaled.

4. Verification of reliability

Using the parameters listed in Table 2, we randomly selected 100 sets of temperatures within the
range of -200 200°C according to (1.21) to calculate the corresponding polarization and dielectric
constants. Subsequently, we used them to train the IDNN surrogate model and fit the Landau-energy
polynomial parameters using PSO optimization. Based on the fitted parameters, polarization and
dielectric constants for the temperature range of interest were predicted and shown in Figure 1.
Overall, the predicted results agree well with the ideal data. Although the objective function of the
IDNN is not differentiable at the phase transition temperature, the modeling strategy of piecewise
functions and the loss term of phase characteristics in the loss function have played their roles, and
the fitted parameters still perform well near the phase transition temperature. Table 2 shows the
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fitted parameters, which numerically differ from the ideal parameters. However, this is an inevitable
result of finding a local optimum through global optimization with PSO.

(a) (b)

Figure 1: Comparison of the Fitted Parameters and Original Parameters for (a) Dielectric Constant
(b) Polarization.

Table 2: Landau-Energy Polynomial Parameters in the Test Experiment

Parameter value fitting

a 412400 412400
T0 115 115
a11 −2.10× 108 −2.60× 108

a12 7.97× 108 8.24 × 108

a111 1.29× 109 2.24 × 109

a112 −2.50× 109 −3.30× 109

a123 −2.50× 109 5.49 × 109

a1111 3.86× 1010 3.45 × 1010

a1112 2.53× 1010 3.9 × 1010

a1122 1.64× 1010 3.9 × 1010

a1123 1.37× 1010 3.5 × 1010

We also tested the parameter solution of BaTiO3 temperature polarization dielectric constant
data generated by IDNN based on the effective Hamiltonian method (Figure 2, Table 2), and the
model also showed good convergence under high noise data.

5. Conclusion

In summary, we have developed a method for solving the parameters of the ferroelectric Landau-
Energy polynomial based on IDNN. Considering the mathematical relationship between Landau-
Energy, dielectric properties, and temperature, we propose a second-order partial differential IDNN
algorithm. By dimensionless scaling of the Landau-Energy polynomial, we adapted the temperature-
dielectric and temperature-polarization datasets to meet the convergence conditions of the neural

7



ZHANG YAN

(a) (b)

Figure 2: Comparison of the Fitted Parameters and Original BaTiO3 Parameters of Effective Hamil-
tonian for (a) Dielectric Constant; (b) Polarization.

network model. The convergence of the model demonstrates the feasibility of modeling the Landau-
Energy polynomial surrogate model using the second-order IDNN algorithm. Subsequently, the sur-
rogate model parameters were optimized using the PSO algorithm, and the temperature-polarization
and temperature-dielectric constant datasets were calculated using the parameterized Landau-Energy
polynomial. Observations showed that the surrogate model data maintained high consistency with
the training dataset and reflected the phase transition characteristics of the training data. This indi-
cates that the IDNN-PSO based Landau-Energy polynomial parameter estimation method has suf-
ficient reliability in terms of convergence and accuracy, and possesses certain learning adaptability
to the physical mechanisms of ferroelectric phase transitions.
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