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Abstract
The convolutional module-based speaker representation network has demonstrated outstanding per-
formance in the speaker verification (SV) task and has now become one of the widely adopted
network structures in this task field. There are some limitations to the convolution-based network
structure, specifically with the fixed-size convolution kernel in the general convolution operation.
This makes it difficult to capture long-range time-frequency and channel dependencies in speech
features, limiting the network’s ability to extract representations of the speaker. To overcome this
issue, we have explored several alternative approaches. Firstly, we propose an enhanced self-
calibrating convolutional kernel that adaptively constructs long-range time-frequency and channel
dependencies around each time-frequency position. This allows for the integration of richer infor-
mation, significantly enhancing the network’s capacity to learn representations. Secondly, we have
made adjustments to the network structure to improve the extraction of speaker feature representa-
tions. We refer to this modified model as SpcNet. In this paper, our proposed SpcNet model has
been experimented on the datasets VoxCeleb1 and VoxCeleb2. Comprehensive experiments show
that the Equal Error Rate (EER) is significantly improved.
Keywords: convolutional networks, long-range dependencies, self-calibrating convolution, speaker
verification

1. Introduction

Voiceprint recognition, also known as Speaker Recognition, is an advanced biometric technolo-
gyand one of the products of comprehensive interdisciplinary research. Speaker Verification is one
of the tasks of speaker recognition. The task aims to confirm whether a given speech signal belongs
to a specific individual.

The traditional speaker validation model is represented by the The Gaussian Mixture Model
(Reynolds and Rose, 1995) (GMM). Later, Reynolds et al. (2000) introduced the GMM-UBM
(Gaussian Mixture Model-Universal Background Model) in the speaker verification task. In the
21st century, the i-vector (Dehak et al., 2010) model was proposed as an extension of the traditional
GMM-UBM approach. It addresses the limitation of the GMM-UBM system, which assumes Gaus-
sian components to be independent, by mapping the speaker model to a low-dimensional subspace.
This improvement leads to enhanced system performance. The model maintained its status as the
state-of-the-art in speaker verification for a significant period of time. In recent years,Variani et al.
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were the first to train a deep neural network (DNN) to extract utterance-level speaker embedding,
namely d-vectors, achieving identical performance to previous i-vector methods.

Currently, the x-vector framework has demonstrated superior performance over the i-vector
method in various speaker verification tasks. Subsequently, several optimization schemes have
been proposed, primarily based on the convolutional neural network (CNN) architecture, which
has become the most widely used approach.ResNet stands as one of the most widely adopted net-
work architectures for speaker verification tasks, with various variants of this architecture being
extensively explored.Additionally, there exists the ECAPA-TDNN (Desplanques et al., 2020) archi-
tecture, which is based on Time Delay Neural Networks (TDNN). Currently, the ECAPA-TDNN
(Desplanques et al., 2020) methods are regarded as state-of-the-art in speaker verification research.
Nevertheless, ResNet has become the dominant architecture in speaker verification tasks due to its
faster inference speed and satisfactory performance.

Compared to traditional speaker verification models, convolutional neural network models can
effectively reduce the labor and computational overhead in classification learning tasks.However,
the existing convolutional neural network models still have limitations as they can only learn similar
features.Moreover, the receptive field of each time and frequency in the convolutional feature trans-
form is primarily determined by the size of the convolutional kernel. However, the fixed-size kernel
restricts the receptive field of the speech feature, limiting its ability to capture a larger context.To
address the aforementioned challenges, numerous studies have proposed redesigning the fundamen-
tal convolutional modules. For example, the res2net (Gao et al., 2019) module in ECAPA-TDNN
replaces the original convolutional filter with a smaller set of convolutional filter banks to expand
the range of scales at which the output features can be represented. This approach aims to increase
the equivalent receptive field, enabling the capture of long-range time-frequency and channel de-
pendencies.Nevertheless, the increase in the quantity of small convolutional filters also leads to a
rise in the number of parameters within the network.

In this paper, our objective is to tackle the aforementioned issues by introducing a novel ap-
proach. To accomplish this, we propose an improved self-calibrated convolutional kernel that de-
parts from the conventional method of performing convolutional operations on a small receptive
field. Our method increases the receptive field of the network, allowing each time-frequency po-
sition to adaptively capture long-range time-frequency and channel-dependent. These changes im-
prove the recognition accuracy of the network model because only the conventional convolution
operation needs to be utilized for spatial feature extraction on a segment of the input channel, elim-
inating redundant information in the convolutional network and reducing the number of parameters
in the model. This reduction not only speeds up the computation of the network but also enhances its
overall performance. In addition, we have tweaked the structure of the network to enhance its abil-
ity to extract the representation of speaker features.The experimental results verify that the method
proposed in this paper is effective.

2. Approaches

2.1. Improved Self-Calibrating Convolutional Modules

Improved self-calibrating convolution enhances network performance by dynamically adjusting fil-
ter weights during learning. It divides the convolutional filter into sections, each responsible for a
specific function. Assuming a set of filter banks K with shape (C,C,kf ,kt), where C represents the
channel, kf represents frequency, and kt represents time,it is first divided uniformly into four parts,
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each responsible for a different function.Dividing the channel into two parts will result in a four-part
filter, each with the dimensions (C2 ,C2 ,kf ,kt).

Figure 1: Improved self-calibrating convolution module.

As illustrated in Figure 1, this work divides the input X into four segments using the filter. Sub-
sequently, the input X is evenly split into two parts, namely X1 and X2. Each part is then fed into
a dedicated pathway to gather distinct wider contextual information.In the first pathway, the paper
employs K1, K2, and K3 to perform a self-calibration operation on X1, resulting in Y1. Mean-
while, In another pathway, To achieve more efficient extraction of spatial features, a PConv (Chen
et al., 2023) convolution operation is utilized, which reduces redundant computations and memory
accesses. This approach better preserves the original spatial context and yields Y2. Moreover, this
procedure reduces model computation and improves convergence speed.Finally, the intermediate
outputs Y1 and Y2 are connected to form the final output, denoted as Y.

The X1 path is divided into three parts, the first of which is referred to as the ”backbone”. The
backbone is responsible for extracting the fundamental features of the input data. The second part,
known as the ”branching”, is responsible for extracting more advanced features from the input data.
The input image is initially downsampled to obtain a small low-resolution feature map, which is then
transformed by a convolution operation to acquire a compact embedding of latent space features.
The third part is named the ”fusion layer”, which combines the outputs of the trunk and branches
and maps the feature embeddings of the small latent space back to the original scale space. This
process serves as a reference to the original feature map, guiding the feature transformation in the
original scale space. This design of the self-calibrating convolution enables dynamic adjustment of
filter weights during the learning process. As the basic features extracted by the backbone change,
the branches can adjust their weights accordingly to extract more advanced features.
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For X1 the exact operation is as follows:
Given the input X1, in this paper we use an average pool of filter size r × r and step size r as

shown in the following equation:
T1 = AvgPool(X1)

The feature transformation on T1 is performed based on K2, which is the convolutional kernel
size:

X
′
1 = Up(T1 ∗K2)

where Up(.) is mapping the downsampled small-scale spatial features into the original feature space.
The formula is as follows:

Y
′
1 = (X1 ∗K3) · σ(X1+X

′
1)

σ is the sigmoid function and ”-” denotes elemental multiplication. It is useful to use as residuals
in this paper to form the weights used for calibration.The final output is shown below:

Y1 = Y
′
1 ∗K4

On path X2, feature extraction is conducted using PConv, which employs convolution operation
for spatial feature extraction on a segment of the input channel while keeping the remaining channel
unchanged.The basic principle of the PConv method is to perform special processing on missing
values in convolution operations to avoid convolution operations on missing values of input data.
This method preserves valid information in the input data and concurrently diminishes the compu-
tational load and memory access requirements by limiting the convolutional operations to only a
portion of the input data.

Unlike conventional convolution, the self-calibrating convolution operation adaptively treats
contextual information surrounding each time-frequency position as an embedding from the latent
space and models inter-channel dependencies. Rather than gathering global context, the improved
self-calibrating convolution operation focuses solely on the local context surrounding each spatial
location. This approach can to some extent reduce pollution information from unrelated regions. By
conducting feature transformations in two scale spaces, we can better capture contextual information
at different scales, thereby enhancing the model’s performance and generalization capabilities.

2.2. Model Network Restructuring

In this paper, we replace the ResBlock module of the original ResNet34 with SpcBlock, as illus-
trated in Figure 1. Specifically, the SpcBlock first undergoes a self-calibrating convolution module
with PConv, followed by normalization and activation functions, and then passes through a standard
3 × 3 convolution operation, as depicted in Figure 2.

In the speaker verification task, the original ResNet achieved time-frequency spatial downsam-
pling by employing a 1 × 1 convolution with a stride of 2 in the propagation path. Drawing inspi-
ration from ConvNeXt (Liu et al., 2022b) and DF-ResNet (Liu et al., 2022a), this paper introduces
a separate downsampling layer comprising a BN layer and a 2 × 2 convolutional layer with a stride
of 2. This dedicated layer is positioned after each stage, except for the last one, to achieve the same
time-frequency spatial resolution downsampling as the original ResNet. Additionally, experimental
evidence demonstrates that reducing the usage of activation layers actually aids in the information
transfer of network features.
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Figure 2: Spc module structure.

The overall structure of this paper is illustrated in Figure 3, and the model consists of two main
modules: the frame-level feature extraction module and the utterance-level feature extraction mod-
ule. The frame-level feature extraction module comprises primarily four SpcBlock modules, with a
ratio of 3:3:9:3. This ratio, inspired by the descriptions in ConvNeXt and DF-ResNet, enhances the
extraction of speaker utterance-level feature information.

Figure 3: The overall structure of the model.

3. Experimental Setup

3.1. Datasets

To evaluate the accuracy of the proposed model for speaker verification, experiments are conducted
on VoxCeleb, a widely used public dataset. The VoxCeleb dataset is divided into two parts, namely
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VoxCeleb1 and VoxCeleb2. In this paper, separate test experiments are performed on these two
datasets. Due to computational limitations, the ablation experiments employ the smaller dataset
VoxCeleb1 as the training set and VoxCeleb1-O as the validation set. For comparative analysis with
state-of-the-art models, the comparison experiments utilize VoxCeleb1-dev and VoxCeleb2-dev as
the training set, while three datasets, namely VoxCeleb1-O, VoxCeleb1-E, and VoxCeleb1-H, are
employed as the test set. Table 1 provides detailed information regarding the training and test sets.

Table 1: VoxCeleb dataset for training and evaluation.

Dataset Speakers Utterances Trials

VoxCeleb1-dev 1,221 148,642 -
VoxCeleb2-dev 5,994 1,092,009 -
VoxCeleb1-O 40 4,715 37,611
VoxCeleb1-E 1,251 145,375 579,818
VoxCeleb1-H 1,190 138,137 550,894

3.2. Implementation Details

The network training and feature vector extraction of all models were implemented using the Py-
torch deep learning framework. During training, the batch size was set to 128, and an A100 was
used. The learning rate is initially set to 0.001 and decays at a decay rate of 0.02 per cycle. The
models were trained using the AdamW optimizer with a weight decay of 0.05. For the loss func-
tion, AAM-softmax was employed with a scale set to 30 and a margin set to 0.2. The evaluation was
performed using the equal error rate (EER) (Doddington et al., 2000) and the minimum detection
cost function (minDCF) (Doddington et al., 2000) with Ptarget=0.01, Cfa=Cmiss=1.

3.3. Feature Extraction and Data Enhancement

We randomly cropped a 200-frame block from an utterance for training. The model inputs consist
of sixty-four-dimensional mel-filter bank features with a 25ms window size and a 10ms window
shift. Data augmentation is employed to enhance data diversity, mitigate overfitting issues, and
improve the model’s robustness, thereby enhancing its performance and generalization. To achieve
this, we utilize the noisy datasets MUSAN (Snyder et al., 2015) and RIRs (Ko et al., 2017) for
data augmentation. Additionally, SpecAugment (Park et al., 2019) is applied to the final extracted
log-Mel spectrogram.

4. Results

From Table 2 the EER is reduced by 5% after changing the residual block ratio. After using separate
downsampling layer and reducing the activation layer EER is reduced by 9%. Then adding the
improved self-calibrating convolution module EER is reduced by 17%.

Table 3 gives a comparison of the results of this paper’s model with models such as classical
ResNet and the ECAPA-TDNN model for the small dataset VoxCeleb1, and it can be seen that the
model proposed in this paper outperforms both in terms of performance. Compared to the optimal
ECAPA-TDNN model EER/minDCF is improved by 8.6%/16.4%.
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Table 2: Results of the proposed method in VoxCeleb1.

Method EER(%) minDCF

ResNet 2.70 0.3220
Changing the residual block ratio 2.57 0.3047
Individual downsampling and ReLU reduction 2.45 0.3015
SpcBlock 2.24 0.2564

Table 3: Results of different models in the VoxCeleb1 dataset.
Mould Params EER(%) minDCF

Half-ResNet34 6.579M 2.70 0.3220
ResNet34 23.295M 2.63 0.3172
ResNet18 13.655M 2.64 0.3019
ECAPA-TDNN 14.729M 2.45 0.2986
SpcNet 7.481M 2.24 0.2564

Table 4: Results of different models in the VoxCeleb2 dataset.

Mould Params
Voxceleb1-O Voxceleb1-E Voxceleb1-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

ResNet34SE 23.599M 1.26 0.1264 2.09 0.2548 3.53 0.3420
ECAPA-TDNN 14.729M 1.13 0.1780 1.29 0.1557 2.49 0.2633
SpcNet 7.481M 1.07 0.1379 1.20 0.1264 2.32 0.1418

Table 4 gives the results of the different models on the large dataset (VoxCleeb2), with a reduc-
tion of 14.8% and 15% compared to the traditional network ResNet34 and 8.6% and 5.3% compared
to the ECAPA-TDNN model.

Table 5: Self-calibrating the convolution module in the VoxCeleb1 ablation experiment.

Mould Identity Pooling EER(%) minDCF

SpcBlock ✓ - 2.36 0.2832
SpcBlock ✓ AVG 2.24 0.2564
SpcBlock ✕ AVG 2.30 0.2641
SpcBlock ✓ MAX 2.33 0.2735

Table 5 presents the ablation experiments conducted on the self-calibrating convolution module
in VoxCeleb1. These experiments aim to investigate the impact of different pooling sampling meth-
ods and the presence or absence of identity mapping on the model’s performance. Our experiment
involved adding the average pooling operator to the self-calibrating convolution module, resulting in
an EER of 2.30. Additionally, when the identity map was added separately, the EER reached 2.36.
Notably, the model achieved the best performance when both average pooling and identity mapping

7



ZHANG WU LIU

were applied simultaneously, yielding an EER of 2.24. These results indicate that the inclusion of
identity mapping and average pooling operators enhances the model’s ability to extract speaker fea-
ture representations.In this study, we also attempted to replace all average pooling operators in the
self-calibrated convolution with the maximum pooling operator to observe potential performance
differences. As depicted in Table 5, the introduction of the maximum pooling operator, alongside
other configurations, resulted in a decrease in EER to 2.33. This article argues that, unlike maxi-
mum pooling, average pooling establishes connections between locations within the entire pooling
window, allowing for a better capture of local contextual information.

5. Conclusions

This paper introduces a novel self-calibrating convolutional module with PConv, which adaptively
constructs long-range time-frequency and channel dependencies around each time-frequency loca-
tion. Building on this module, we propose the SpcNet model, designed to capture comprehensive
feature representations by expanding the receptive field of the network. The SpcNet model effec-
tively leverages the nested convolutional filters within the convolutional layers, extracting multi-
scale feature representations to enhance model performance. The experimental results verify that
the method proposed in this paper is effective.
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