
Proceedings of Machine Learning Research vol 245:1–8, 2024 2024 International Conference on Machine Learning and Intelligent Computing

Predicting Student Performance with Graph Structure Density-Based
Graph Neural Networks

Xiaochen Lai* LAIXIAOCHEN@DLUT.EDU.CN
School of Software, Dalian University of Technology, Dalian, China

Wentao Hao WENTAO.HAO@FOXMAIL.COM
School of Software, Dalian University of Technology, Dalian, China

Zheng Zhang ZHANGZHENG@MAIL.DLUT.EDU.CN
School of Software, Dalian University of Technology, Dalian, China

Xiaohan Bai BAI XH00@163.COM

School of Software, Dalian University of Technology, Dalian, China

Editors: Nianyin Zeng and Ram Bilas Pachori

Abstract
Educational data mining is a key area in data mining, focusing on predicting student performance.
This research offers a new perspective for EDM, aiding educators in timely interventions based
on performance predictions to reduce student failure and improve teaching quality. A novel ap-
proach: Graph Structure Density-based Sampling-Aggregation (GSDSA), is presented. GSDSA
effectively reduces computational costs and improves training efficiency by limiting the number
of neighbor nodes and using the Jaccard coefficient to measure node similarity. Moreover, it also
considers relationships among students, employing the Pearson correlation coefficient to analyze
none-graph-structured data, enhancing its processing capabilities. Experimental results demon-
strate that GSDSA surpasses various graph neural networks and machine learning algorithms in
classification accuracy.
Keywords: Graph neural networks, Educational data mining, Student performance prediction

1. Introduction

Educational Data Mining (EDM) represents a significant research direction within Data Mining
(DM). EDM aims to analyze educational data through statistical and machine learning methods,
modeling and analyzing students’ multidimensional data and academic performance to enhance
teaching quality, improve learning strategies, and ultimately better educational outcomes.

Predicting student performance is an important application dimension of EDM. Learning Man-
agement Systems (LMS), Massive Open Online Courses (MOOCs), and other web-based educa-
tional platforms provide data on student behavior. Analyzing these data can help identify students
at risk of failing early, assisting educators in adjusting teaching strategies and developing new edu-
cational methods (Waheed et al., 2020).

Several algorithms have been used for predicting student academic performance, including Ar-
tificial Neural Networks (ANN), Support Vector Machines (SVM), Logistic Regression (LR) and
Decision Trees (DT). Pallathadka et al. (2023) employed Naive Bayes (NB), SVM to classify and
predict student performance. Waheed et al. (2020) employed ANN, SVM, and LR to predict whether
students could pass based on demographic information and behavior data on online course plat-
forms. Musso et al. (2020) proposed a machine learning model using ANN, focusing on learning

© 2024 X. Lai*, W. Hao, Z. Zhang & X. Bai.

LAI* HAO ZHANG BAI

strategies, social support, motivation, socio-demographics, health status, and performance features
to predict students’ grades and dropout rates. Roslan and Chen (2023) employed DT, NB to predict
students’ performance in English and Mathematics based on past academic performance, demo-
graphics, and psychological attributes. Xu et al. (2019) utilized DT, Neural Networks, and SVM to
forecast student performance based on internet usage behaviors, including timing, frequency, traffic,
and duration. Bernacki et al. (2020) employed J-48 DT and J-Pip DT algorithms to predict student
grades based on logs in Learning Management Systems for early warning purposes.

Existing EDM techniques primarily rely on individual students’ demographic information, daily
performance, and past grades for predictions, neglecting the correlations among students with sim-
ilar profiles. Graph structures can represent both students’ academic performance and their inter-
connections. This paper introduces a Graph Structure Density-based Sampling-Aggregation Graph
Neural Network Model (GSDSA). During the sampling process, GSDSA employs the Jaccard co-
efficient to assess the similarity of students’ academic statuses, prioritizing the sampling of student
nodes with higher similarity, which reduces sampling variance and enhances classification accuracy.

2. Graph Neural Network

2.1. Graph Structure Data

Graph Neural Networks (GNN) are a type of neural network specialized in processing graph struc-
ture data. Graph structure data consists of nodes, edges, and their attributes.

Nodes can represent any entity, such as each node representing a student, with node attributes
including characteristics of the student like demographic information, regular grades, past perfor-
mance, etc.

Edges denote the relationships between nodes, which can be directed or undirected. The at-
tributes of an edge can simply be set to indicate its existence or not, or can include weight, type,
etc.

2.2. Propagation Rules and Applications of GNN

Graph neural network message propagation mainly includes two steps: information aggregation and
feature update. During the information aggregation process, each node aggregates information from
its neighboring nodes, using various methods for aggregation. Subsequently, nodes update their own
features using the aggregated information. Assuming a node v at the t-th propagation state is htv , the
set of neighboring nodes of v is N(v) , the set of edges connected to v is E(v) , f is the aggregation
function, g is the output function, the message passing and update in a GNN can be represented as:

mt+1
v = f(htv,N(v),E(v)) (1)

ht+1
v = g(htv,m

t+1
v) (2)

The initial state of node v is represented by its features X(v), ht+1
v represents the state of node v

after t rounds of propagation. Each node aggregates information from each of its neighbors mt+1
v ,

combined with its own state htv to update its state.
Graph Neural Networks can include multiple layers of information aggregation and feature up-

date, each layer capable of capturing information from a broader neighborhood. This allows the
model to consider relationships between more distant nodes. Graph Neural Networks compute di-
rectly on the graph structure, preserving the graph’s structural information and enabling learning

2

PREDICTING STUDENT PERFORMANCE WITH GRAPH STRUCTURE

from this structure. In the field of graph data, they effectively capture the relationships and inter-
action patterns between nodes, learning complex representations for nodes and edges. This strong
generalization capability has led to their wide application in areas such as social network analysis,
bioinformatics, recommendation systems, chemical and drug discovery, and knowledge graphs.

3. Research Methodology

3.1. GSDSA

During the sampling process, sampling all neighbors would lead to exponential increases in sam-
pling costs as the number of network layers increases linearly. To reduce sampling complexity,
various sampling methods are currently used in graph neural networks, such as random walk sam-
pling, GraphSage (Hamilton et al., 2017), FastGCN (Chen et al., 2018), etc. The network structure
proposed in this paper, as shown in Figure 1, samples a fixed number of neighbor nodes for each
node, then aggregates these nodes to generate node embeddings, and finally makes predictions using
an MLP (Multilayer Perceptron). R represents the classification result of the node.

Figure 1: GSDSA frame diagram.

3.1.1. SAMPLING

Current sampling methods mainly focus on the features of the nodes themselves, neglecting the
similarity relationships among nodes in the graph structure. This paper proposes a sampling method
based on graph structure density. Given a hyperparameter k, which is the number of neighbor nodes
sampled each time, the steps for sampling a neighborhood of a node v are as follows:

Find the complete set of first-order and second-order neighbors, N1,2(v), of node v.
For all first-order and second-order neighbors u ∈ N1,2(v), calculate the structural density be-

tween them and node v using the Jaccard coefficient. The Jaccard coefficient is calculated using (3)
where N(v) represents the set of first-order neighbors of node v.

Jaccard(v,u) =
| N(v) ∩N(u) |
| N(v) ∪N(u) |

(3)

Clearly, if the Jaccard coefficient between v and u is greater than 0, then v is at most a two-hop
neighbor of node n. Therefore, in the first step, only the first-order and second-order neighbors of
the node are taken.

3

LAI* HAO ZHANG BAI

Nodes within N1,2(v) are sorted by the magnitude of the Jaccard coefficient. If there are nodes
with equal Jaccard coefficients, the features of the nodes are introduced, and the Pearson correlation
coefficient is used to further distinguish them. The formula for calculating the Pearson coefficient
between two nodes is as follows.

Pearson(v,u) =

∑
(vi − v̄)(ui − ū)√∑

(vi − v̄)2
∑

(ui − ū)2
(4)

There vi represent the ith feature of node v. Additionally, before computing the Pearson coeffi-
cient, the features of the nodes need to be normalized. From the sorted set N1,2(v), the top k nodes
are selected as the nodes for this sampling.

3.1.2. AGGREGATOR

Aggregating the sampled neighborhood is a crucial part of graph neural networks. This paper em-
ploys an average pooling aggregation function to aggregate the sampled nodes. Pooling aggrega-
tors can reduce data dimensions, thereby lowering computational requirements. Compared to max
pooling, average pooling focuses on maintaining the representativeness of the overall feature while
extracting sample features, preserving more feature information. After aggregation, the information
is concatenated and updated with the node itself, followed by normalization.

htS(v) = mean(
{
σ(Wpoolh

t−1
u + b),∀u ∈ S(v)

}
) (5)

htv = σ(CONCAT
{
hi−1
v ,hiS(v)

}
) (6)

htv ← htv/ ∥ htv ∥2 (7)

3.2. Student Datasets Transformation into Graph

3.2.1. DATA PREPROCESSING

Before constructing graph-structured data, it is necessary to preprocess the student dataset. The
dataset contains some missing values, necessitating the removal of incomplete data, such as infor-
mation on students who dropped out midway. Textual types in the dataset are converted to Boolean
types. Categorical features in the dataset are subjected to One-hot encoding to transform them into
numerical variables and eliminate non-existent ordinal relationships, such as the information on stu-
dents’ places of birth. For numerical features, normalization is carried out individually by feature,
keeping all data within the range of 0 and 1. Additionally, students are discretized into three cate-
gories based on their grades: excellent, passing, and failing, to serve as the outcome of the student
classification.

3.2.2. QUANTIFY SIMILARITY

Student datasets are usually not in graph form, thus necessitating their conversion into graphs first.
This paper constructs an undirected graph based on student features. Currently, graph structures
in Graph Neural Networks are generally obtained by calculating the similarity between samples,
which can be determined using various methods such as cosine similarity, Euclidean distance, Man-
hattan distance, Pearson correlation coefficient, etc. The Pearson correlation coefficient, capable

4

PREDICTING STUDENT PERFORMANCE WITH GRAPH STRUCTURE

of identifying linear relationships between variables, offers intuitive understanding and ease of cal-
culation. Therefore, this paper utilizes the Pearson correlation coefficient to calculate similarities
between students. Specifically, each student in the graph is represented as a node. If two student
nodes, v and u, have a Pearson correlation coefficient Pearson(v,u)>0.7, it is considered that these
two students have a strong linear correlation.

The Pearson correlation coefficient can only identify linear relationships when calculating sim-
ilarity. If two nodes, v and u, have features that indeed exhibit a linear relationship but have sig-
nificantly different means, then the two nodes are not actually similar. This paper introduces a
constraint condition that two nodes are considered similar only if they exhibit a strong linear rela-
tionship and satisfy 1

c |
∑

ui −
∑

vi |< 0.15, at which point an undirected edge is added between
the two nodes. Here, c represents the number of features of the nodes. Similarity is calculated pair-
wise for all students, and if the condition is met, an undirected edge is added, ultimately generating
a graph-structured dataset.

Graph Neural Networks can include multiple layers of information aggregation and feature up-
date, each layer capable of capturing information from a broader neighborhood. This allows the
model to consider relationships between more distant nodes. Graph Neural Networks compute di-
rectly on the graph structure, preserving the graph’s structural information and enabling learning
from this structure. In the field of graph data, they effectively capture the relationships and inter-
action patterns between nodes, learning complex representations for nodes and edges. This strong
generalization capability has led to their wide application in areas such as social network analysis,
bioinformatics, recommendation systems, chemical and drug discovery, and knowledge graphs.

4. Experiments

4.1. Datasets

This paper validates experimental results using two types of datasets: graph datasets and student
datasets, with three of each type. For graph datasets, Cora, CiteSeer, and PubMed are chosen; these
are three common citation graph datasets widely used in graph neural network research. For student
datasets, SAPD (Students’ Academic Performance Dataset), DAP (Data of Academic Performance
evolution for Engineering Students), and Oulad (Open University Learning Analytics Dataset) are
selected. The main information about these two types of datasets is presented in Tables 1 and 2.

Table 1: Citation graph dataset.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
CiteSeer 3327 4732 3703 6
PubMed 19717 44338 500 3

4.2. Comparison Method

This paper conducts comparative experiments using three graph neural network algorithms—GAT
(Graph Attention Networks) (Veličković et al., 2017), GCN (Graph Convolutional Networks) (Kipf
and Welling, 2016), GraphSage—and three traditional machine learning algorithms—MLP, SVM,

5

LAI* HAO ZHANG BAI

Table 2: Student dataset.
Dataset Samples Features Classes

SAPD 480 16 3
DAP 12411 41 3
Oulad 4954 12 3

RF. Among these, the three graph datasets are experimented with GSDSA and the three mentioned
graph neural network algorithms, while the three student datasets are experimented with the three
traditional machine learning algorithms and the four graph neural network algorithms.

4.3. Experimental Setup

The preprocessed datasets are divided into three parts, with the paper designating the first 60% of
the data as the training set, the middle 20% as the validation set, and the last 20% as the test set.
Training employs the Adam optimizer, with an initial learning rate of 0.1, which decreases to a
minimum of 0.001. The number of hidden layers is set to 1, batch size to 16, and the maximum
number of training epochs to 500, utilizing an early stopping strategy.

The paper uses accuracy rate (ACC) to measure the final classification outcome.

4.4. Results and Analysis

The experimental results are shown in Tables 3 and 4.

Table 3: Citation graph dataset experiment ACC (%).

Method Cora CiteSeer PubMed

GSDSA 85.36 73.14 89.04
GAT 86.81 69.21 85.47
GCN 84.41 65.4 88.49
GraphSage 86.29 71.18 87.76

Table 4: Student graph dataset experiment ACC (%).

Method DAP Oulad SAPD

GSDSA 89.41 80.61 85.26
GAT 89.71 76.87 78.96
GCN 83.53 69.79 72.22
GraphSage 87.61 79.48 81.38
MLP 84.05 76.31 79.14
SVM 75.13 68.62 60.84
RF 80.48 75.02 77.46

6

PREDICTING STUDENT PERFORMANCE WITH GRAPH STRUCTURE

From the experimental results, it is observable that in the experiments with graph datasets,
GSDSA ranked second in performance on the Cora dataset and first on the other two datasets. Sim-
ilarly, in the experiments with student datasets, GSDSA’s performance was also notable, achieving
first place in two datasets and second in another. Moreover, the experiments with student datasets
revealed that algorithms based on graph neural networks generally surpassed the performance of
the other three machine learning algorithms, showcasing the superior classification capabilities of
graph neural networks on student datasets.

5. Conclusions

This paper introduces a Graph Structure Density-based Sampling-Aggregation Graph Neural Net-
work Model (GSDSA), which calculates node relatedness using the Jaccard coefficient to enhance
the utilization of graph structure information. It restricts the number of neighbor nodes sampled
during the sampling process, and in each node’s feature aggregation process, it only considers first-
order and second-order neighbors, eliminating the need to consider the entire graph’s information.
This reduces computational costs and increases training efficiency. Comparative experiments have
validated the model’s superior classification performance on graph datasets. This paper applies the
GSDSA model to student performance prediction. The current field of student performance pre-
diction mainly considers the characteristics of the students themselves, neglecting the connections
between students. After preprocessing and calculating the Pearson correlation coefficient, this paper
constructs a graph-structured dataset from the student data, using the GSDSA model to predict stu-
dent performance. This effectively utilizes the structural density information of graph data, showing
desirable results in the experiments as well.

For future work, the sampling method could be further improved by considering both the graph
structure and the nodes’ own features, or by introducing an attention mechanism to further differen-
tiate the importance of neighboring nodes and extract more key information from the graph.

References

Matthew L Bernacki, Michelle M Chavez, and P Merlin Uesbeck. Predicting achievement and
providing support before stem majors begin to fail. Computers & Education, 158:103999, 2020.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Mariel F Musso, Carlos Felipe Rodrı́guez Hernández, and Eduardo C Cascallar. Predicting key
educational outcomes in academic trajectories: a machine-learning approach. Higher education,
80(5):875–894, 2020.

Harikumar Pallathadka, Alex Wenda, Edwin Ramirez-Ası́s, Maximiliano Ası́s-López, Judith Flores-
Albornoz, and Khongdet Phasinam. Classification and prediction of student performance data
using various machine learning algorithms. Materials today: Proceedings, 80:3782–3785, 2023.

7

LAI* HAO ZHANG BAI

Muhammad Haziq Bin Roslan and Chwen Jen Chen. Predicting students’ performance in english
and mathematics using data mining techniques. Education and Information Technologies, 28(2):
1427–1453, 2023.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Hajra Waheed, Saeed-Ul Hassan, Naif Radi Aljohani, Julie Hardman, Salem Alelyani, and Raheel
Nawaz. Predicting academic performance of students from vle big data using deep learning
models. Computers in Human behavior, 104:106189, 2020.

Xing Xu, Jianzhong Wang, Hao Peng, and Ruilin Wu. Prediction of academic performance asso-
ciated with internet usage behaviors using machine learning algorithms. Computers in Human
Behavior, 98:166–173, 2019.

8

	Introduction
	 Graph Neural Network
	 Graph Structure Data
	 Propagation Rules and Applications of GNN

	 Research Methodology
	 GSDSA
	 Sampling
	 Aggregator

	 Student Datasets Transformation into Graph
	 Data Preprocessing
	 Quantify Similarity

	 Experiments
	 Datasets
	 Comparison Method
	 Experimental Setup
	 Results and Analysis

	 Conclusions

