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Abstract
Due to the phenomenon of small size, complex background or high density of traffic signs, there
is a certain degree of missing or false detection, which ultimately leads to the problem of reduced
detection accuracy. To solve this problem, a real-time traffic sign detection algorithm based on
YOLOv5s is proposed. Firstly, feature upsampling is carried out through ContentAware ReAssem-
bly of Features upsampling operator in the neck network, which can aggregate information in the
large receptive field, so that the network can get a more accurate feature map. Secondly, the nor-
malized Gaussian Wasserstein distance is used as the similarity measure to construct the NIOU re-
gression bounding box loss function to improve the overall performance of the model. Finally, the
FasterNet module is used instead of the C3 module, which is lighter and faster. Experiments were
carried out on TT100K data set. Compared with YOLOv5s, CNF-YOLO algorithm reduced Pa-
rameters by 1/5, the computing load decreased by 3GFLOPs, the detection speed increased by 18.4
frames/SEC and the weight file decreased by 2.1MB. All models were lighter. And its mAP@0.5
has also been increased by 0.5% to enable rapid detection of traffic signs.
Keywords: Traffic sign detection, YOLOv5, Loss function, TT100K

1. Introduction

In recent years, convolutional network-based traffic sign detection methods (Shyan et al., 2022; Yao
et al., 2022; Zaki et al., 2020) have become the mainstream in the field of traffic sign detection.

Peng Jin (2023) improved YOLOv5s by designing C3CBAM convolutional module to increase
the attention of traffic sign feature map. The accuracy reached 80.1%, but the detection speed
decreased by 1/5. Yang and Zhang (2020) verified that the detection accuracy of YOLOv4 was
higher than that of YOLOv3 through the self-labeled data set, while Aggar et al. (2021) found that
YOLOv5 was superior to previous algorithms in the field of traffic sign detection. Mijić et al. (2023)
created different scenes in the CARLA simulator to test, and the detector based on YOLOv4 reached
90% detection accuracy on real data and synthetic data, but it did not specify the size and detection
speed of the model. Liu et al. (2021) improved the YOLOv5s model with MobileNetV2 as the
main backbone network. The model parameters decreased by 60%, the weight became lighter, and
the map increased by 0.0129%. YOLOv5 was officially released in June 2020, and its detection
accuracy and speed have been improved because of the use of lightweight CSPNet-Lite module
for feature extraction. YOLOv5 also uses reinforcement learning strategies to achieve the goal of
adapting the model to different scenarios. However, for the detection of targets with small size,
complex background or dense background, it is easy to miss or misdetect to a certain extent.

Therefore, an improved YOLOv5s network is proposed to improve the accuracy under the
premise of satisfying real-time performance. Firstly, the content-aware feature Recombination
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(CARAFE) upsampling operator is used to replace feature upsampling in the Neck network (Wang
et al., 2019). The normalized Gauss Wasserstein distance (NWD) is used as the similarity measure
(Wang et al., 2022), and the IOU is integrated to construct the NIOU boundary frame loss function.
Finally, the FasterNet module is used to replace the C3 module (Chen et al., 2023), which is called
the CNF-YOLO algorithm.

2. Improved overall network –CNF-YOLO network

By replacing the C3 module and the traditional upsampling, the bounding frame loss function is
improved, and the CNF-YOLO model is proposed as shown in Figure 1. On the basis of YOLOv5,
the IOU bounding box loss function is replaced by NIOU bounding box loss function. In Neck’s
feature pyramid, the content-aware Feature Recombination upsampling operator is used for each
upsampling. Use FasterNet modules instead of C3 modules throughout the network. For the above
improvements, the purpose is to improve the detection accuracy under the premise of ensuring real-
time performance.

Figure 1: CNF-YOLO model network structure diagram.
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3. Improvement method

3.1. Content-aware feature recombination upsampling operator

Before the YOLO detection head, the feature extraction and processing phase needs to ensure that
the extracted features are sensitive enough to the position and shape of the target to improve the
positioning accuracy of the target. In order to further improve the sensitivity of the model to the
location and shape of the target, by using the content-aware Feature Recombination (CARAFE) up-
sampling operator to carry out the feature recombination, the semantic of the reconstructed feature
map can be stronger than the original feature map, and more attention can be paid to the information
from the relevant points in the local region, so as to further improve the sensitivity of the model to
the location and shape of the target, as shown in Figure 3.

Figure 2: Detailed diagram of content-aware feature recombination upsampling operator module.

As can be seen from Figure 2, the upsampling operator module of content awareness feature re-
organization is composed of two parts: kernel prediction module and content awareness reorganiza-
tion module. The first step is the kernel prediction module to predict a reassembled kernel according
to the content of each target location, as shown in Figure 2. In the second step, the content-aware
reorganization module reorganizes the features of the kernel predicted in the first part, as shown in
the second half of Figure 2. The kernel prediction module ψ predicts the appropriate kernel Wl′

for l′ location for each location based on xl’s neighbors, as shown in Equation 1. The formula of
the reorganization step is formula 2, where ϕ is the content-aware reorganization module, which
reorganizes xl’s neighbor and kernel Wl′ :

Wl′ = ψ(N(xl, Kencoder)) (1)

Xl′ = ϕ(N(xl, Kup),Wl′) (2)

where N(x1,Kup) is the corresponding square area for the target location l′ and l = (i, j) center.
Kup is the size of the reassembled kernel.

The channel compressor uses a 1×1 convolution layer to compress the input feature channel
from C to Cm, The content encoder uses a convolutional layer of kernel size kencoder to generate
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a reassembled kernel based on the content of the input features, each Kup × Kup recombination
kernel is spatially normalized using the softmax function before being applied to the input feature
map.

3.2. FasterNet module

The C3 module in YOLOv5 is a convolution module consisting of multiple Conv layers to extract
features and increase the expressive power of the network. While the C3 module performs well in
YOLOv5, there are some drawbacks:

1. High computational complexity: C3 module contains multiple convolutional layers, resulting
in increased computational complexity. This can cause the model to run slowly with limited
resources.

2. Excessive redundant information may be introduced: Multiple convolution of C3 modules
may lead to redundant information, thus affecting the generalization ability of the model.

In order to solve the problems faced by the C3 module above, the C3 module in the YOLOv5
model is replaced by the FasterNet module, as shown in Figure 3.

Figure 3: FasterNet overall architecture diagram.

As can be seen from the overall architecture diagram of FasterNet in Figure 3, the FasterNet
module is composed of the Embedding layer, FasterNet Block module, Merging layer, GlobalPool
layer, 1×1 convolution layer and full connection layer.

3.3. Loss function improvement

In the center and border of some bounding boxes, foreground and background pixels are usually
centrally distributed. In order to better describe the weights of different pixels in the bounding box,
the normalized Gaussian Wasserstein distance is to construct the bounding box through two two-
dimensional Gaussian distributions, the center pixel in the bounding box has the highest weight,
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and then the importance of the center to the boundary pixel decreases, that is, the weight decreases.
Wasserstein distance is derived from optimal transport theory and is used to calculate the distance
between two distributions.

For bounding boxes R = (cx, cy, w, h), where (cx, cy), w, h represents the center point, width,
and height of the bounding box, respectively. For the two Gaussian distributions Na and Nb, the
second-order Wasserstein distance between Na and Nb:
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where ||.||2 indicates the Frobenius norm.
The normalization results in a normalized Gaussian Wasserstein distance:

NWD(Na, Nb) = exp

−

√
W2

2 (Na, Nb)

C

 (4)

IOU fuses NWD as a bounding box loss function NIOU:

Lbox = (1.0−R) ∗ (1.0−NWD(Na, Nb)) +R(1.0− IoU) (5)

In formula 5, Na represents the center point coordinates, width and height of the real boundary
box a, Nb represents the center point coordinates, width, and height of the predicted boundary box
a. as well. R is a hyperparameter, and when R = 1, it means that NWD is not used, and only IOU
is used as the bounding box loss function. When R = 0, it means that IOU is not used, and only
NWD is used as the bounding box loss function.

4. Experiment and analysis

4.1. Experimental setting and data set introduction

The operating system version of the experimental machine in this paper is Windows11, the GPU
model is NVIDIA GeForce RTX 4060, the video memory is 8G, the virtual memory size is 200G,
the processor is Intel(R) Core(TM) i7-12650H CPU, the main frequency is 2.70GH. All models are
based on Pytorch1.13.1 and use CUDA 11.6 and CUDNN 8.0 for GPU acceleration, with Python3.9
as the interpreter.

The data set used in this paper is a traffic sign open data set called Tsinghua-TENcent100K
(TT100K for short) jointly produced by Tsinghua University and Tencent Lab based on real traffic
scenes. In this data set, there are 45 categories with more than 100 instances, excluding images
without sign files, a total of 9166 traffic sign pictures are screened out, among which 7208 are used
for training and 1958 are used for verification.

The improved YOLOv5s model was then used for training. The optimizer is SGD, the initial
learning rate is 0.07, a total of 400 training cycles, the weight attenuation coefficient is 0.0005,
the number of samples input to the model at one time in the training process is 24, the number
of multithreads is 8, and other hyperparameters are default values. Through iterative training, the
model will learn how to accurately identify different categories of traffic signs. After the training,
the validation set is used to evaluate the performance of the model by calculating various evaluation
indexes.
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4.2. Evaluation index

The evaluation indicators used are general indicators. In the field of object detection images, the
evaluation indicators mainly include Recall, Precision, mAP, which is used to measure the detection
accuracy of the model, and FPS, which is used to measure the detection speed of the model.

4.3. Ablation experiment

In order to verify the validity of the CNF-YOLO model in this paper, ablation experiments were con-
ducted on the added or improved modules, including NIOU boundary frame loss function, CARAFE
module and FasterNet module, in the same environment as the comparison experiment.

As can be seen from Table 1, compared with YOLOv5s, model a replaces the IOU boundary
frame loss function with the NIOU boundary frame loss function integrating NWD on the basis
of YOLOv5s to more accurately calculate the loss between the predicted frame and the real frame,
mAP@0.5 increased by 0.6%. Based on YOLOv5s, Model b uses CARAFE module for upsampling
on the neck network, and mAP@0.5 has increased by 0.3%. In model c, based on YOLOv5s,
FasterNet module is used to replace the traditional C3 module. mAP@0.5 decreases by 0.6%, but
the number of parameters, computational load and weight also decrease significantly. mAP@0.5 of
model d increased by 0.9%, mAP@0.5 of model e and f decreased by 0.1% and 0.2% respectively,
but the parameter number and GFLOPs both decreased significantly. On the other hand, the CNF-
YOLO model in this paper, mAP@0.5, is increased by 0.5%, its parameter number is decreased by
1.15*106, and the computation amount is decreased by 3 GFLOPs.

Table 1: Ablation results table.
Models NIOU CARAFE FasterNet Parameters/106 GFLOPs mAP@0.5/% FPS

YOLOv5s 7.13 16.1 84.1 147.1
a

√
7.14 16.3 84.7 128.0

b
√

72.1 16.2 84.4 90.9
c

√
5.9 13.0 83.5 92.6

d
√ √

7.21 16.2 85.0 109.9
e

√ √
5.9 13.0 84.0 112.4

f
√ √

5.98 13.1 83.9 107.5
CNF-YOLO

√ √ √
5.98 13.1 84.6 168.7

4.4. Comparison of different models

As can be seen from Table 2, compared with Faster R-CNN, SSD, YOLOv7 and Yolov7-TINY,
CNF-YOLO model has not only higher mAP@0.5, which is 28.5%, 46.8%, 1.7% and 8.1% higher
respectively. In addition, the number of floating point operations and the number of parameters
are less, and the calculation amount is reduced by 256.3GFLOPs, 49.6GFLOPs, 90.8GFLOPs
and 0.5GFLOPs respectively, which indicates that the structure of Faster R-CNN, YOLOv3 and
YOLOv7 networks is complex.
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(a) Faster R-CNN

(b) YOLOv3

(c) YOLOv5s

(d) YOLOv7

(e) YOLOv7-tiny

(f ) CNF-YOLO (our)

Figure 4: Comparison of each model detection effect.
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Although the mAP@0.5 of YOLOv3 model is higher, its floating point operation times, param-
eter number and weight are almost 11 times that of the model in this paper respectively, and its
detection speed is only 41.9 frames per second, which is only 1/4 of that of the model in this paper,
failing to meet the requirements of reliable detection and real-time detection of automatic driving.

The mAP@0.5:0.95 of CNF-YOLO model is 8.3% higher than that of YOLOv7 and 4.4% higher
than that of YOLOV7-TINY, which indicates that CNF-YOLO model has higher accuracy and better
target detection performance under different IOU thresholds. Compared with YOLOv5s, mAP@0.5
of CNF-YOLO model has increased by 0.5%, the computing load has decreased by 3GFLOPs, and
the detection speed FPS has increased by 18.4 frames/SEC.

Table 2: Comparative experimental results.

Models GFLOPs Parameters
/106

Precision
/%

Recall
/%

mAP
@0.5/%

mAP
@0.5:0.9/% FPS

Faster R-CNN 269.4 41.6 —- —- 55.1 —- 12
YOLOv3 155.3 61.7 90.1 87.1 91.0 71.8 41.9

SSD 62.7 26.3 —- —- 37.8 —- 50.3
YOLOv5s 16.1 7.13 85.0 78.1 84.1 64.1 47.1
YOLOv7 103.9 36.7 84.6 76.7 82.9 54.7 47.8

YOLOv7-tiny 13.6 6.1 75.9 70.7 76.5 58.6 128
CNF-YOLO 13.1 5.98 83.6 76.0 84.6 63.0 168.7

As can be seen from Figure 4, both YOLOv7 and YOLOV7-Tiny have missed detection phe-
nomena during the detection of the fifth image, and the missed detection phenomenon is more
serious for YOLOV7-TINY, while the model in this paper has not missed detection phenomenon,
indicating that the model in this paper has good performance.

5. Summary

This paper presents a real-time CNF-YOLO detection algorithm. Firstly, FasterNet module is used
to replace C3 module and NIOU loss function is used to replace IOU loss function to calculate
boundary loss more accurately. Upsampling is done by CARAFE upsampling operator. The exper-
imental results show that the CNF-YOLO algorithm improves the average accuracy, is lighter than
the original algorithm, and the detection speed meets the real-time requirements of automatic driv-
ing. In the future, we will consider the scene characteristics of traffic signs to design the network
structure and build a sign detection algorithm with stronger generalization ability.
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