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Abstract
Firstly, a large group clustering algorithm based on data similarity is proposed, which can set
different thresholds to cluster the decision results of expert groups. Secondly, the interval-valued
pythagorean fuzzy number (IVPFN) hesitancy accuracy function and hesitancy score function are
proposed. And based on the consideration of the distance between centroids and rectangular area
in the geometric meaning of IVPFN, a calculation formula is proposed to distinguish different
IVPFNs. Thirdly, use the above formula to construct a weight calculation model for evaluation
criteria with adjustment coefficients. The decision matrix is weighted and its relative distance
from the positive and negative ideal solutions is calculated to produce the final ranking. Finally,
the cultural tourism project decision-making problem is analyzed as an arithmetic example and
compared with the methods in the literature of other related fields to illustrate the rationality and
scientificity of this paper.
Keywords: multi-attribute large group decision-making, clustering algorithm, interval-valued
pythagorean fuzzy number, cultural tourism project

1. Introduction

Influenced by the complexity of the decision-making environment and the level of decision-makers,
Pythagorean fuzzy number (PFN) was proposed and used for describing decision-making informa-
tion (Yager, 2014). It has strong flexibility and a large description range, attracting many scholars to
invest in decision-making related research, including emergency events (Zhao et al., 2023), venture
capital project (Chang et al., 2022) evaluation of scheduling results (Li et al., 2022) and so on. Sub-
sequently, the proposal of IVPFN extended it to the field of interval numbers, which can describe
more fuzzy and complex information (Zhang, 2016). The research results related to IVPFN mainly
focus on two aspects: synthesis operators (Li et al., 2019, 2021; Ibrahim et al., 2023) and method ex-
tensions (Yin et al., 2022; Ayyildiz et al., 2023; Yüksel and Dinçer, 2022; Al-Barakati et al., 2022),
driving the development of the decision-making field greatly. With the expansion of the number
of people involved in decision-making problems, some scholars have extended the content related
to fuzzy numbers to the field of large group decision-making (Zhou et al., 2022; Liu et al., 2024).
However, there are relatively few literature combining with IVPFN.

Therefore, a large group clustering algorithm based on data similarity is proposed, which is
able to realize clustering of expert groups based on evaluation results under different thresholds.
Subsequently, hesitant score function and hesitant accuracy function that can distinguish different
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all IVPFNs are proposed. Combining two new functions, a comprehensive differentiation formula
for IVPFN is constructed, and its related properties are proved. An evaluation standard weight
calculation model is constructed based on the newly proposed function and differentiation formula
mentioned above. Finally, combining the idea of TOPSIS method, the final score and ranking can be
given. To demonstrate the effectiveness and rationality of the algorithm, a cultural tourism project
decision-making problem is introduced.

2. Related basic knowledge

2.1. Basic concepts

Definition 1 (Zhang, 2016). Let be a thesis, then an interval-valued Pythagorean fuzzy set (IVPFS)
in the thesis can be denoted as P̄ =

{
⟨x, µ̄p (x) , ν̄p (x)⟩ |x ∈ X̄

}
, where: for any x ∈ X in the set

P̄ , the interval-valued mapping µ̄p : X̄ → [0, 1] such that x ∈ X̄ 7→ µ̄p (x) =
[
µL
p (x) , µU

p (x)
]
⊆

[0, 1], then µ̄p denotes its interval-valued affiliation function, and µ̄p (x) denotes its affiliation in-
terval, interval-valued mapping ν̄p : X̄ → [0, 1] such that x ∈ X̄ 7→ ν̄p (x)=

[
νLp (x) , ν

U
p (x)

]
,

then ν̄p denotes its interval-valued unaffiliated function and ν̄p (x) denotes its unaffiliated degree

interval; πp =
[
πL
p (x) , πU

p (x)
]
=

[√
1− (µU

p (x))2 − (νUp (x))2,
√
1− (µL

p (x))2 − (νLp (x))2
]

denotes the hesitancy interval; ∀x ∈ P̄ , 0 ≤ µL
p (x) ≤ µU

p (x) ≤ 1, 0 ≤ νLp (x) ≤ νUp (x) ≤ 1,

0 ≤
(
µU
p (x)

)2
+
(
νUp (x)

)2 ≤ 1. Any element
〈[
µL
p (x) , µU

p (x)
]
,
[
νLp (x) , νUp (x)

]〉
in an IVPFS

is called an IVPFN, abbreviated as P̄ =
〈[
µL
p , µ

U
p

]
,
[
νLp , ν

U
p

]〉
.

Definition 2 (Liang et al., 2015). Let P̄ =
〈[
µL
p , µ

U
p

]
,
[
νLp , ν

U
p

]〉
be any IVPFN, and its score

function and accuracy function are Eq. (1) and (2), respectively.

S
(
P̄
)
=

1

2

((
µU
p

)2 − (νUp )2 + (µL
p

)2 − (νLp )2) (1)

H
(
P̄
)
=

1

2

((
µU
p

)2
+
(
νUp
)2

+
(
µL
p

)2
+
(
νLp
)2)

(2)

Definition 3 (Xu, 2007). Let a1 =
〈[
µL
a1 , µ

U
a1

]
,
[
νLa1 , ν

U
a1

]〉
and a2 =

〈[
µL
a2 , µ

U
a2

]
,
[
νLa2 , ν

U
a2

]〉
be any two IVPFNs, and their sizes can be compared by calculating score functions and accuracy
functions. If S (a1) > S (a2), then a1 > a2; if S (a1) < S (a2), then a1 < a2; if S (a1) = S (a2),
then compare their accuracy functions; if H (a1) > H (a2), then a1 > a2; if H (a1) < H (a2),
then a1 < a2; if H (a1) = H (a2), then a1 = a2.

However, there are still some extreme cases that cannot be distinguished by the above for-
mula, such as P̄1 = ⟨[0.3, 0.6] , [0.2, 0.7]⟩ and P̄2 =

〈[√
0.14,

√
0.31

]
,
[√

0.13,
√
0.40

]〉
, where

S
(
P̄1

)
= S

(
P̄2

)
= −0.04 and H

(
P̄1

)
= H

(
P̄2

)
= 0.49. In response to this issue, hesitation

score function and hesitation accuracy score function are proposed to distinguish all IVPFNs.
Definition 4. Let P̄ =

〈[
µL
p , µ

U
p

]
,
[
νLp , ν

U
p

]〉
be any IVPFN, and its hesitation score function is

shown in equation (3).

T
(
P̄
)
=

1

2

((
µU
p

)2
+
(
νLp
)2 − (µL

p

)2 − (νUp )2) (3)

Definition 5. Let P̄ =
〈[
µL
p , µ

U
p

]
,
[
νLp , ν

U
p

]〉
be any IVPFN, and its hesitation accuracy function

is shown in equation (4).
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G
(
P̄
)
=

1

2

((
µU
p

)2
+
(
νUp
)2 − (µL

p

)2 − (vLp )2) (4)

Definition 6 (Xu, 2007). Let set be A = {a1, a2, · · · an}, where ai =
〈[
µL
ai , µ

U
ai

]
,
[
vLai , v

U
ai

]〉
(i =

1, 2, · · · , n) is a IVPFN, then IVPFWA operator is shown in equation (5).

IVPFWA(a1, a2, · · · , an) =〈√√√√1−
n∏

i=1

(
1−

(
µL
ai

)2)ωi

,

√√√√1−
n∏

i=1

(
1−

(
µU
ai

)2)ωi

 ,

 m∏
j=1

(
vLai
)ωi

,
m∏
j=1

(
vUai
)ωi

〉 (5)

Where ω = (ω1, ω2, · · · , ωn) is the weight of A = (a1, a2, · · · , an) and satisfies
∑n

i=1 ωi = 1,
ωi ∈ [0, 1].

Theorem 1 (Wang et al., 2009). Let a1 =
〈[
µL
a1 , µ

U
a1

]
,
[
νLa1 , ν

U
a1

]〉
and a2 =

〈[
µL
a2 , µ

U
a2

]
,
[
νLa2 , ν

U
a2

]〉
be any two IVPFNs, a1 = a2 is satisfied iff µL

a1 = µL
a2 , µU

a1 = µU
a2 , νLa1 = νLa2 , νUa1 = νUa2 .

Definition 7 (Xu and Yager, 2008). The positive and negative ideal solutions of the evaluation
results (α+, α−) are:

α+ =
〈[
µL
+, µ

U
+

]
,
[
vL+, v

U
+

]
,
[
πL
+, π

U
+

]〉
=
〈[

maxµ−
ij ,maxµ+

ij

]
,
[
min v−ij ,min v+ij

]
,[√

1−
(
maxµ+

ij

)2
−
(
min v+ij

)2
,

√
1−

(
maxµ−

ij

)2
−
(
min v−ij

)2]〉 (6)

α− =
〈[
µL
−, µ

U
−
]
,
[
vL−, v

U
−
]
,
[
πL
−, π

U
−
]〉

=
〈[

minµ−
ij ,minµ+

ij

]
,
[
max v−ij ,max v+ij

]
,[√

1−
(
minµ+

ij

)2
−
(
max v+ij

)2
,

√
1−

(
minµ−

ij

)2
−
(
max v−ij

)2]〉 (7)

2.2. Distinctness operator construction considering the geometric significance of IVPFNs

As shown in Figure 1, any IVPFN can represent the area of a rectangle, and the formula is as
follows:

Q(P̄ ) =
(
µU
p − µL

p

) (
νUp − νLp

)
(8)

If S (αi) and H (αi) are the same, the smaller the Q
(
P̄
)

value, the better the P̄ . Applying Eq.
(1) and Eq. (2) cannot distinguish between P̄1 = ⟨[0.3, 0.6] , [0.2, 0.7]⟩ and P̄2 = ⟨[

√
0.14,

√
0.31],

[
√
0.13,

√
0.40]⟩, then Eq. (8) can be applied to calculate the area of the rectangle covered by the

two IVPFNs, which is calculated as Q
(
P̄1

)
= 0.15 and Q

(
P̄2

)
= 0.05, then it can be seen that P̄2

is better.
Subsequently, by introducing the distance between the centers of gravity of the rectangle, the

distance N
(
P̄1, P̄2

)
between the centers of gravity of two different IVPFNs can be calculated.

Definition 8. The definition of the comprehensive differentiation between any two different
IVPFNs α1 =

〈[
µL
a1 , µ

U
a1

]
,
[
νLa1 , ν

U
a1

]〉
and α2 =

〈[
µL
a2 , µ

U
a2

]
,
[
νLa2 , ν

U
a2

]〉
is:
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Figure 1: The geometric meaning image of PFN α = (µα, να).

d (α1, α2) =
1

X
(|S (α1)− S (α2)|+ |H (α1)−H (α2)|+ |T (α1)− T (α2)|

+ |G (α1)−G (α2)|+ |Q (α1)−Q (α2)|+N (α1, α2)) (9)

Where X =
(
8 + π

4 +
√
2
)
.

Theorem 2. For any three IVPFNs αi = ⟨[ai, bi], [ci, di]⟩ (i = 1, 2, 3), the following condition
can be satisfied.

1) 0 ≤ d (α1, α2) ≤ 1, in particular d (α1, α1) = 0.
2) d (α1, α2) = d (α2, α1).
3) d (α1, α3) ≤ d (α1, α2) + d (α2, α3).
Proof. From the definitions given in this paper, −1 ≤ S (αi) ≤ 1, 0 ≤ H (αi) ≤ 2, −1 ≤

T (αi) ≤ 1, −1 ≤ G (αi) ≤ 1, 0 ≤ Q (αi) ≤ π
4 , 0 ≤ N (αi, αj) ≤

√
2, i = 1, 2, 3.

1)

d (α1, α2) =
1

X
(|S (α1)− S (α2)|+ |H (α1)−H (α2)|+ |T (α1)− T (α2)|

+ |G (α1)−G (α2)|+ |Q (α1)−Q (α2)|+N (α1, α2)) ≥ 0

d (α1, α2) =
1

X
(|S (α1)− S (α2)|+ |H (α1)−H (α2)|+ |T (α1)− T (α2)|+ |G (α1)−G (α2)|

+ |Q (α1)−Q (α2)|+N (α1, α2)) ≤
1

X

(
2 + 2 + 2 + 2 +

π

4
+
√
2
)
≤ 1

d (α1, α1) =
1

X
(|S (α1)− S (α1)|+ |H (α1)−H (α1)|+ |T (α1)− T (α1)|

+ |G (α1)−G (α1)|+ |Q (α1)−Q (α1)|+N (α1α1)) = 0

i.e.0 ≤ d (α1, α2) ≤ 1, d (α1, α1) = 0.

2)

d (α1, α2) =
1

X
(|S (α1)− S (α2)|+ |H (α1)−H (α2)|+ |T (α1)− T (α2)|

4
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+ |G (α1)−G (α2)|+ |Q (α1)−Q (α2)|+N (α1, α2))

=
1

X
(|S (α2)− S (α1)|+ |H (α2)−H (α1)|+ |T (α2)− T (α1)|+ |G (α2)−G (α1)|

+ |Q (α2)−Q (α1)|+N (α2, α1)) = d (α2, α1)

3)

d (α1, α3) =
1

X

(∣∣∣∣12 (b21 − d21 + a21 − c21
)
− 1

2

(
b23 − d23 + a23 − c23

)∣∣∣∣
+

∣∣∣∣12 (a21 + b21 + c21 + d21
)
− 1

2

(
a23 + b23 + c23 + d23

)∣∣∣∣+∣∣∣∣12 (b21 + c21 − a21 − d21
)
− 1

2

(
b23 + c23 − a23 − d23

)∣∣∣∣
+

∣∣∣∣12 (b21 + d21 − a21 − c21
)
− 1

2

(
b23 + d23 − a23 − c23

)∣∣∣∣
+ |(b1 − a1) (d1 − c1)− (b3 − a3) (d3 − c3)|+N (α1, α3))

=
1

X

(∣∣∣∣12 (b21 − d21 + a21 − c21
)
− 1

2

(
b22 − d22 + a22 − c22

)
+

1

2

(
b22 − d22 + a22 − c22

)
− 1

2

(
b23 − d23 + a23 − c23

)∣∣∣∣
+

∣∣∣∣12 (a21 + b21 + c21 + d21
)
− 1

2

(
a22 + b22 + c22 + d22

)
+

1

2

(
a22 + b22 + c22 + d22

)
− 1

2

(
a23 + b23 + c23 + d23

)∣∣∣∣
+

∣∣∣∣12 (b21 + c21 − a21 − d21
)
− 1

2

(
b22 + c22 − a22 − d22

)
+

1

2

(
b22 + c22 − a22 − d22

)
− 1

2

(
b23 + c23 − a23 − d23

)∣∣∣∣
+

∣∣∣∣12 (b21 + d21 − a21 − c21
)
− 1

2

(
b22 + d22 − a22 − c22

)
+

1

2

(
b22 + d22 − a22 − c22

)
− 1

2

(
b23 + d23 − a23 − c23

)∣∣∣∣
+ | (b1 − a1) (d1 − c1)−(b2 − a2) (d2 − c2)+(b2 − a2) (d2 − c2) − (b3 − a3) (d3 − c3) | +N (α1, α3))

≤ 1

X
(|S (α1)− S (α2)|+ |H (α1)−H (α2)|+ |T (α1)− T (α2)|+|G (α1)−G (α2)|+|Q (α1)−Q (α2)|

+(|S (α2)− S (α3)|+ |H (α2)−H (α3)|+ |T (α2)− T (α3)|

+ |G (α2)−G (α3)|+ |Q (α2)−Q (α3)|+N (α1, α2) +N (α2, α3)) = d (α1, α2) + d (α2, α3)

3. Evaluation criteria weighting model

The model in literature (You and Chen, 2017) is improved to construct the following model. Let Cj ,
j = 1, 2, . . . , n be the set of evaluation criteria and let Ai, i = 1, 2, . . . ,m be the set of alternatives.

For an alternative Ai, the larger the values of S (αi) and H (αi), the better Ai is. The smaller
the values of T (αi), G (αi) and Q

(
P̄
)
, the more explicit their decision information is. Construct

the model M1 from the perspective of evaluation results.
max f1(ω) =

∑m
i=1

∑n
j=1 ωj

S(aij)+H(aij)
S(aij)+H(aij)+T (aij)+G(aij)+Q(aij)

;

s.t.
∑n

j=1 ωj = 1;

0 ≤ ωj ≤ 1

If the difference in the evaluation results given by the decision-making experts under Cj is large,
it means that Cj is more capable of distinguishing between alternatives and should be given a higher
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weight, and vice versa. Construct the model M2 from the ability to distinguish evaluation criteria,
with the use of Eq. (9).

max f2(ω) =
∑m

i=1

∑n
j=1

∑
1≤i≤k≤n ωjd (aij , akj)

s.t.
∑n

j=1 ωj = 1;

0 ≤ ωj ≤ 1

Considering the above two aspects together, the adjustment coefficient α is introduced and the
model M is constructed. 

max f(ω) = αf1(ω) + (1− α)f2(ω)
s.t.

∑n
j=1 ωj = 1

0 ≤ ωj ≤ 1;
0 ≤ α ≤ 1

where α denotes a pre-given adjustment factor by the decision maker. The model M is solved below
by constructing a Lagrangian auxiliary function L (ω, λ).

L (ω, λ) = f (ω) + λ
(∑n

j=1
ωj − 1

)
Find the partial derivatives of ωj and λ, making them equal to 0.

{
∂L
∂ωj

=
∑m

i=1

(
α

S(aij)+H(aij)
S(aij)+H(aij)+T (aij)+G(aij)+Q(aij)

+
∑

1≤i≤k≤n(1− α)d (aij , akj)
)
+ λ = 0;

∂L
∂λ =

∑n
j=1 ωj − 1 = 0.

Solving the above equation gives:

ωj =

∑m
i=1

(
α

S(aij)+H(aij)
S(aij)+H(aij)+T (aij)+G(aij)+Q(aij)

+
∑

1≤i≤k≤n(1− α)d (aij , akj)
)

∑n
j=1

∑m
i=1

(
α

S(aij)+H(aij)
S(aij)+H(aij)+T (aij)+G(aij)+Q(aij)

+
∑

1≤i≤k≤n(1− α)d (aij , akj)
) (10)

Using Eq. (11) can calculate the final weights of evaluation criteria.

ωend =

∑
The i-th evaluation criterion ωi∑

All evaluation criteria ωi
(11)

4. Similarity-based clustering algorithm

Referring to the data “similarity” in (Hu and Luo, 2007) and “correlation” in (Xu and Chen, 2005),
the following definitions are given.

Definition 9. In an m × n dimensional linear space, ρ(u, v) = |u−ū|·|v−v̄|T
∥u−ū∥2·∥v−v̄∥2 is said to be the

similarity of evaluation matrices u and v, where the mean vector of the set of vectors composed

of vectors vij is v̄ = (v1, v2, · · · , vm)T, vi = 1
n

n∑
j=1

vij . The definition of ū is the same as above.

∥ v∥2 =

(
m∑
i=1

n∑
j=1

|vij |2
) 1

2

represents the calculation of norm, and u · v =
n∑

i=1

n∑
j=1

uijvij represents

6
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dot product. The similarity between V and v̄ is ρ(v, V ) = 1
T

T∑
t=1

ρ
(
v, vt

)
, where T satisfying

1 ≤ t ≤ T , T ≥ 2 is the number of all elements in the set of decision matrices. ρ(v, V ) =
1
C2

T

∑
1≤i<j≤T

ρ
(
vi, vj

)
is the average similarity between all vectors in the vector set V , and it is also

the average consistency of clustering, where C2
T = T (T−1)

2 . If T = 1, let ρ(V ) = 0.
The specific simulation steps are as follows:
Step 1. Determine the group Ω, and label the evaluation vectors given by the members therein

from 1 to T in order after randomly ordering them to form a set Ψ. At the same time, let Q denote
a temporary set, which is initially set to be the empty set.

Step 2. Choose the appropriate threshold γ, where 0 ≤ γ ≤ 1.
Step 3. Assuming the initial number of clusters is k = 1, and the evaluation vector selected

from set Ψ has the sequence number i = 1.
Step 4. Select the vector V i from the set Ψ in numbered order and place it in the cluster Ωk.

The number of decision members in the cluster Ωk at this point is nk = 1.
Step 5. If the set Ψ is non-empty, select the next vector V i, i = i + 1 from it in turn, if the set

Ψ is empty then go to Step 7.
Step 6. The ρ

(
V i,Ωk

)
between V i and the set composed of vectors in the cluster Ωk is cal-

culated. If ρ
(
V i,Ωk

)
> γ then V i is assigned to that cluster Ωk; if ρ

(
V i,Ωk

)
≤ γ then it is

temporarily assigned to the set of temporary vectors Q. In the meantime V i needs to be removed
from the set Ψ. Go to Step 5.

Step 7. If Q is non-empty, let the set Ψ = Q; Q be the empty set, at this time the count of
clustering is k = k + 1, go to Step 4; if Q is the empty set, go to Step 8.

Step 8. Output the result and end the calculation.

5. Calculus analysis

Organize and analyze the existing literature to give a set of alternatives: A1 building a modern cul-
tural tourism project based on ethnic culture, A2 building a cultural tourism expansion project based
on folklore and folk villages, A3 building a cultural tourism project based on “culture+specialty”,
A4 building an internet celebrity cultural tourism project, A5 building a cultural tourism project
based on a small portion of the relevant local ethnic cultures and a set of evaluation criteria: C1

agreeableness, C2 effectiveness of the previous construction program budget, C3 degree of influ-
ence and C4 ecological and economic benefits.

20 experts in relevant fields will be invited and involved in the decision-making, as follows:
Step 1. Under the evaluation criterion C = (C1, C2, C3, · · · , Cn), the expert community gives

the evaluation results of the set of alternatives A = (A1, A2, A3, · · · , Am) to form a decision matrix.
Step 2. It was processed and analyzed using the large population clustering algorithm described

above. The initial clustering of 20 expert decision matrices was carried out and brought into the
computational software Netlogo for 5000 evolutions in the following process.

Setting different thresholds, 20 decision data are subjected to clustering operations. Due to the
selection of 20 samples in this article, small adjustments to the threshold will not result in significant
changes in clustering results. Therefore, this article sets thresholds of 0.70, 0.75, 0.80, and 0.85 for
clustering operations. From the results, it can be seen that the optimal result is achieved when the
threshold is 0.85, where the number of clustered groups is 4, and the number of internal groups in
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each group is relatively uniform. In addition, there is a high and stable average consistency in this
result, as shown in Figure 2.

Next, the clustering results at the threshold value of 0.85 are processed, and the average con-
sistency is ranked from high to low under the consideration of the number of members within the
clustered group, and it can be seen that the 502nd evolution is optimal, as shown in Table 1. The
classification of cluster members is shown in Table 2. The clustering results are shown in Figure 3.

Figure 2: Number of clusters with a threshold of 0.85 and mean consistency.

Table 1: Sorting of clustering results at the threshold of 0.85.

Evolutionary number Number of clusters Average consistency

502 4 0.97347
594 4 0.97252
4866 4 0.97213
1225 4 0.97209
166 4 0.97156

Table 2: Member partitioning results of the 502nd clustering population with the threshold of 0.85.

Serial number of the cluster Number of members Serial numbers of members Average consistency

1 7 5, 6, 13, 14, 15, 16, 19 0.96399
2 5 7, 8, 9, 10, 12 0.98267
3 4 1, 2, 3, 20 0.98672
4 4 4, 11, 17, 18 0.96052
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Figure 3: The 502nd clustering result graph with the threshold of 0.85.

Subsequently, the decision matrix of the experts included in each clustering group is averaged,
and the decision matrices of clusters 1-4 can be obtained separately to represent the decision results
of the four clustering groups. The weight of each clustering group is assigned according to the
number of experts it contains to obtain ωj = (0.35, 0.25, 0.20, 0.20). A weighting operation can be
performed on the 4 matrices based on this weight.

Step 3. By inputting the matrix obtained above into model M and adjusting to different values
for calculation, the evaluation criteria weights for all cases can be obtained, as shown in Table 3.

Table 3: Weight of evaluation criteria under different adjustment coefficients α.

C1 C2 C3 C4

α = 0.1 0.2634 0.2461 0.2427 0.2478
α = 0.3 0.2572 0.2485 0.2442 0.2501
α = 0.5 0.2553 0.2494 0.2447 0.2506
α = 0.7 0.2543 0.2499 0.2449 0.2509
α = 0.9 0.2537 0.2502 0.2450 0.2511

Step 4. The α+, α− of the four clustering decision matrices and their weighted clustering deci-
sion matrices are found according to Definition 7, and the weights obtained in Step 3 are brought into
Eq. (5) for calculation. Next, apply Eq. (9) to the integrated distance d+(Ai, α

+) and d−(Ai, α
−)

between each decision matrix and α+, α−. Finally, using Mi =
d−(Ai,α

−)
d+(Ai,α+)+d−(Ai,α−)

to find and
order the relative distances.

α = 0.5 is selected for detailed analysis, so that the expert evaluation results and the distin-
guishing ability of evaluation criteria can be considered in a balanced way. The results are shown in
Table 4.

Step 5. Standardize the results obtained from Step 4 to obtain the final result shown in Figure 4.
From this graph, it can be seen that A2 is optimal, and the final ranking is A2 > A1 > A3 > A5 >
A4.
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As can be seen from Figure 4, the final ranking of alternatives given by different clustering
groups is consistent, but has different final scores for a specific option. In addition, the method
can analyze the situation that each clustering group contains members, which is of strong practical
significance. Members belonging to the same clustering group usually have more similar features.
Dividing decision-makers into multiple clustering groups facilitates considering the needs of differ-
ent groups of people when making decisions, thereby optimizing decision-making. The principles
of different clustering algorithms vary greatly and their purposes are not the same. Therefore, this
article only compares and analyzes the content other than clustering algorithms.

Table 4: Weight of evaluation criteria under different adjustment coefficients.

α = 0.5 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Weighted cluster

A1 0.8183 0.7681 0.7972 0.8287 0.7883
A2 0.8834 0.9668 0.8435 0.9240 0.9582
A3 0.3854 0.4360 0.3434 0.4360 0.3993
A4 0.0411 0.0417 0.1150 0.0690 0.0383
A5 0.3072 0.1773 0.2982 0.1327 0.1811

Figure 4: Comparison of combined distances between different clustered groups plot.

Let α = 0.5, and import the data from (Li et al., 2019), (Li et al., 2021) and (You and Chen,
2017) into the model of this paper for calculation. Compare the calculated results with those of the
original text, as shown in Table 5. From the final result, it can be seen that although the focus of
different methods may vary slightly, it does not affect the selection of the optimal result.
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Table 5: Comparison with the results of (Li et al., 2019), (Li et al., 2021) and (You and Chen, 2017).

Method Arrange in order

Method from the (Li et al., 2019) A2 > A4 > A1 > A3

Method in this paper A2 > A4 > A1 > A3

Method from the literature (Li et al., 2021) A2 > A3 > A1

Method in this paper A2 > A3 > A1

Method from the literature (You and Chen, 2017) A5 > A4 > A2 > A3 > A1

Method in this paper A5 > A4 > A2 > A3 > A1

6. Concluding remarks

The multi-attribute large group decision-making method system based on interval Pythagorean
fuzzy numbers proposed in this paper not only contains the basic tools for all-around description of
the evaluation results and the tools for information mining of the decision results, but also contains
the computational tools based on the weighted integration of decision matrices as well as the model
tools based on these contents. The methodology system has strong practical significance and refer-
ence value for the decision-making of cultural tourism projects and other types of decision-making
problems.
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