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Abstract
To improve the speed and accuracy of online apple defect detection, a modified PP-PicoDet model
based on mixed Gaussian color modeling and spatial attention mechanism is proposed. Firstly,
in order to enhance the detection performance of small and low-contrast defects, the method con-
structs an offline color model based on GMM theory and builds a saliency numerical channel that
integrates the saliency of anomalous targets on RGB data. Secondly, the SE mechanism of the
network is optimized, integrating the CBAM (convolution block attention module) structure to
enhance the perception of structural features in anomalous regions through strengthened spatial at-
tention mechanisms. Furthermore, the abnormal loss function is adjusted by employing a Gaussian
model to establish a label assignment loss function strategy, simplifying parameter tuning and im-
proving the model’s motivation for small proportion defects. This enhancement aims to improve
the detection performance of the model under conditions of imbalanced samples. Experiments indi-
cate that the algorithm, implemented on a self-built application platform using real-world datasets,
achieved a 5.6% increase in accuracy and a 5.8% increase in recall at the cost of only 0.5% time de-
lay. The algorithm meets the requirements of timeliness and reliability for detecting defects online,
contributing to the enhancement of efficiency in apple quality grading and production.
Keywords: Defect detection, PP-PicoDet, GMM, Attention mechanism

1. Introduction

Apple is an important crop in China, with its yield and planting area ranking first in the world.
Surface defect detection is an important part of apple quality inspection, but currently, the detection
method still relies mainly on manual visual inspection, which is costly and inefficient, making it
difficult to apply to large-scale production. Therefore, achieving automation and high-precision
detection of apple surface defects is of great practical significance for ensuring apple quality and
improving enterprise profits.

With the continuous promotion and application of deep learning theory in fruit detection, com-
pared to traditional image processing algorithms, deep learning models do not need to design com-
plex feature extractors for the detected object. They have important performance advantages in
practical detection applications, attracting researchers to continuously introduce new network model
structures into fruit defect detection applications. XUE et al. (2020) proposed using the Google Net
model and using transfer learning for training to achieve apple surface defect detection. Wang
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et al. (2022) addressed the issue of overly complex existing plant disease identification models and
used the Ghost module to lightweight improve VGG16. ZHANG et al. (2022) used a combination of
GhostNet and transfer learning to improve the accuracy of network classification by using a Dropout
layer. With the continuous development of object detection models, classic object detection frame-
works with better performance such as R-CNN, SSD, YOLO (Redmon and Farhadi, 2018; Kaur and
Singh, 2023) are constantly being introduced. However, online detection models often pursue speed
improvement in online detection applications, leading to a significant performance decline in model
recognition accuracy when faced with the diversity of surface defects in natural products such as
apples. This problem is a common problem in online agricultural product testing, and the key to
solving this problem is to balance the speed and accuracy of lightweight defect detection models.

In summary, classic lightweight deep learning networks need to further enhance the expression
ability of feature extraction networks for various types of defects in order to improve the accuracy of
target defect detection while maintaining detection speed. Therefore, this article takes apple defect
detection as an example and proposes a visual attention mechanism based on offline GMM (WANG
and ZHAO, 2014) color modeling using the PP-PicoDet (Yu et al., 2021) lightweight detection
model. By integrating the network spatial attention mechanism, the detection performance of the
lightweight defect detection network is optimized on small and weak contrast targets, improving the
stable performance of the lightweight model when facing diverse defects.

2. Target saliency detection based on GMM

2.1. Effective color background modeling

Assuming the distribution of colors on the surface of healthy apples follows a certain probability
distribution pattern, a probabilistic statistical model is used to fit the color sample space by approx-
imating the distribution of data points using a weighted sum of multiple Gaussian distributions.
GMM (WANG and ZHAO, 2014) (Gaussian Mixture Model) is one type of finite probability mix-
ture model, which enhances the model’s ability to express complex distributions by utilizing a linear
combination of a finite number of independent Gaussian probability models. The GMM model is
proposed to fit the distribution of complex apple surface color data, capturing the color distribution
characteristics of normal areas on the apple surface for pre-screening color abnormal regions, as
shown in Figure 1. An offline approach is employed to construct a color probability distribution
field and establish significant features of target colors, enabling enhanced expression of features for
abnormal defect targets while ensuring speed is not compromised.

Figure 1: Accumulate color samples until the color feature space pattern stabilizes.
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Assuming the entire color distribution can be represented by K Gaussian models, then the
Gaussian probability density function for any color sample vector X belonging to the i-th color
category can be expressed as:

ϕ(x;µ,
∑

) =
1

(2π)(N/2)|
∑

|1/2
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(x−µ)T
∑−1(x−µ)
2 (1)

where µ is the mean color vector for the case, Σ is the covariance matrix. (x − µ)T denotes
transpose, |Σ| and Σ−1 represent determinant and inverse matrix operations. The Gaussian mixture
color model can be considered as the probability distribution of color sample vectors belonging to
K categories of colors. The joint probability density of the Gaussian mixture model is given by:

ρ(X|θ) =
K∑
k=1

αkϕ(x; θk)

K∑
k=1

αk = 1, ak ≥ 0, k = 1, ...,K

(2)

where αk represents the weights of the mixture components, θ represents the parameter set of each
sub-model in GMM, and θk represents the parameters of the k-th sub-model. Utilizing the Bayesian
Information Criterion (Dellaert, 2000) (BIC) to strike a balance between the fitting ability and com-
plexity of the model, the number of components in models like the Gaussian Mixture Model (GMM)
is determined. The formula for model calculation is as described in Equation 3.

BIC = K ln(n)− 2 ln(L̂) (3)

where L̂ represents the maximum likelihood estimation of the fitting function, specifically maximiz-
ing the likelihood function to obtain the maximum likelihood probability value, K is the number
of fitted sub-models, n is the actual number of sampled data points. A smaller BIC value indicates
a better model fit. Under the condition of setting the parameter K, the Expectation-Maximization
(Woo et al., 2018) (EM) algorithm is used for iterative estimation of parameters for each sub-model.

2.2. Generation of attention distribution field

To generate the attention distribution field for healthy apple surface colors, we map the three-
dimensional color feature space onto three axes: H (Hue), S (Saturation), and V (Value). Through
three sets of two-dimensional spatial distributions, we simplify the expression of color space dis-
tribution patterns. As shown in Figure 2, in the H-S, S-V, and H-V mapping spaces, we further
enhance color feature stability. Here, we introduce empirical threshold adjustments to regulate the
effective color feature confidence. Areas with low confidence are discarded to exchange for a more
stable probability expression in the remaining regions.

As shown in Figure 2, the color distribution ranges in the H-S, H-V, and V-S planes are rep-
resented using a mapping image of size [256*256*3]. Each time a suspected surface defect area
is extracted, the presence of the area in the effective color mapping image is evaluated pixel by
pixel. This process enables the statistical calculation of color confidence. The statistical results of
confidence are then used to generate the target attention information channel, denoted as T, which
facilitates the inference data of the fusion attention mechanism in RGB-T form.
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Figure 2: Color mapping table generation process based on Gaussian Mixture.

3. Lightweight model integrating attention mechanism

3.1. Spatial feature fusion

The PP-PICO network utilizes the ESNet to extract target features, where the SE (Hu et al., 2018)
module adjusts the weights of different channels to enhance features channel-wise. As surface
defects on apples often exhibit large size distributions and rich texture distributions on surface,
enhancing the spatial texture information of features can improve the network’s ability to represent
features effectively. Here, the CBAM (Woo et al., 2018) module, which integrates spatial and
channel attention mechanisms, is introduced into the feature extraction module of the network,
replacing the ES Block network structure, as shown in Figure 3. This strengthens the network’s
sensitivity to texture differences and enhances the model’s detection performance for surface defects
on apples.

The channel attention module of the CBAM structure is utilized to spatially optimize the abnor-
mal color attention distribution channels in the RGB-T data, obtaining channel weights. Specifically,
average pooling reinforces the structural information of regions with significant colors in the T chan-
nel, while max pooling is used to characterize the impact of channels on the overall detection when
the color specificity of the detected target is insufficient. The average pooling factor AvgPool(F) and
maximum pooling factor MaxPool(F) are connected to a shared two-layer perceptrons, generating
channel attention weights Mc(F). The first layer is set to C/r neurons, where r is the compression
ratio, and the number of neurons in the second layer is C. Then multiply the coefficients with the
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Figure 3: Spatial Attention-Enhanced Network Structure.

original feature F to form the output features.

Mc(F ) = σ(MLP (AvgPool(F )) +MLP (MaxPool(F )))
= σ(W1(W0(F

c
avg)) +W1(W0(F

c
max)

(4)

The spatial attention mechanism describes the spatial distribution aggregation of features and
complements the channel weights. The feature extraction network utilizes the connection between
average pooling and maximum pooling to obtain feature descriptors, and generates spatial attention
maps through a convolutional layer Ms(F ) ∈ C×H×W . The spatial weights are formed through
convolutional structure encoding, as follows:

Ms(F ) = σ(f7×7([AvgPool(F );MaxPool(F )]))
= σ(f7×7([F c

avg;F
c
max]))

(5)

where σ is the sigmoid function and f7×7 is the empirical value which implemented as a large kernel
convolution. As shown in Figure 3, the network utilizes a connection through average pooling and
max pooling along the channels to obtain feature descriptions. A convolutional layer is used to
generate spatial attention maps.

3.2. Loss Functions

In the PicoDet network model, SimOTA utilizes a combination of weighted VFLoss (Lin et al.,
2020) and GIoUloss (Tian et al., 2019) to construct the loss matrix. While VFLoss (Lin et al., 2020)
addresses dense object detection problems using an asymmetric processing structure, it does not
offer intuitive advantages in practical parameter tuning. Hence, this paper selects the symmetrically
structured FocalLoss loss in combination with GIoUloss (Tian et al., 2019) to construct the loss
matrix. {

cost = lossfl + λlossgiou
lossfl = −αt(1− ρt)

γ log(ρt)
(6)

The Focal Loss is used to adjust the difficulty of sample classification, giving higher weight
to hard-to-classify samples and lower weight to easy samples in the loss function. The classical
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Focal Loss function utilizes hyperparameters to control the degree of loss attenuation, with a larger
parameter leading to more significant loss attenuation.

However, the contrast between the weights of easy and hard cases in the exponential function
parameter tuning is not intuitive. Here, a probability density function constructed using a standard
Gaussian function is used to describe the distribution of easy and hard samples. As shown in Equa-
tion 7, the Gaussian function is employed to adjust the degree of weight attenuation for easy and
hard samples based on probability indicators.

lossfl = αt
1√
2πσ

e−(pt)
2/(2σ2) (7)

Assuming that the distribution of positive and negative samples follows an independent and
identically distributed model, when computing the cross-entropy loss, the imbalance of small sam-
ple cases in apple defect samples is adjusted by increasing the balance parameter αt. Adjusting the
parameters using the Gaussian function provides a smoother model. By utilizing a standard prob-
ability distribution model and combining it with sample proportions, the relative distribution ratio
of easy-to-separate areas to difficult-to-separate areas is directly calculated. This yields modulation
results for comprehensive probability model parameters. Empirical parameters are obtained through
specific experiments: λ = 3.0 σ = 0.25.

4. Experiments

4.1. Dataset and evaluation criteria

4.1.1. DATASET

The experiment utilized Fuji apples, with a total of 3000 apple image samples collected using a
Hikvision MVCA013-A0UC industrial camera. The resolution of the target fruits was 540×540.
The defects were annotated into 7 categories using Labelimg annotation software. The dataset was
randomly divided into training, validation, and testing sets in a ratio of 7:2:1. The distribution of
data labels and categories is shown in Table 1. From Table 1, it can be observed that the distribution
of cases in each category is uneven. During specific model training, samples from each category
need to be proportionally selected for model training.

Table 1: Categories of apple defects.

Code Defect Category Number of Instances Number of Labels

1 Disease 1002 1756
2 Stem Cuts 805 964
3 Rust Spots 604 814
4 Blemishes 403 814
5 Insect Damage 146 160
6 Bruising 1460 1708
7 Black Spots 873 1068
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4.1.2. EVALUATION CRITERIA

In classical object detection tasks, the mean values of evaluation metrics such as mAP@0.5 and
mAP@0.5:0.95 are used to evaluate detection performance. The mAP is computed as shown in
Equation 8. FPS represents the number of images detected per second and serves as a standard
measure of detection performance.

P = TP
TP+FP

R = TP
TP+FN

AP =
∫ 1

0
P (R)dR

mAP@0.5 = 1
N

N∑
k=1

AP@0.5k

mAP@0.5 : 0.95 = 1
10(mAP@0.5 +mAP@0.55 + ...+mAP@0.95)

(8)

In the equation, TP represents the number of detection boxes with an Intersection over Union
(IOU) greater than or equal to the specified threshold, FP represents the number of detection boxes
with an IOU less than the specified threshold, and FN represents the number of missed targets.

4.2. Analysis of ablation experiment results

The training environment for the experiment consists of a system with 16 cores Intel(R) CoreTM

i7-12700F CPU @ 2.60GHz, 32GB of RAM, and an NVIDIA GeForce RTX 3070 GPU with 32GB
of memory. The coding environment utilizes Python 3.7.4 and PaddlePaddle V2.1. The learning
rate for the PP-PicoDet model is uniformly set to 0.0057. The image input size is set to 540x540,
and the batch size is set to 4. Regarding model parameter training, the algorithm is set to run for
100 epochs. Every 10 epochs, a validation is performed, and the model with the best performance
on the validation set is saved at the end.

To validate the effectiveness of the modifications, the optimization components of the model will
be systematically combined here to test the actual effects of different modifications. The default
PP-PICODDet model is based on the ESNet m (Yu et al., 2021) framework. Four optimization
strategies will be implemented on this framework: 1⃝ The base network is enhanced with a color
attention mechanism RGB-T. 2⃝ The base network is enhanced with a CBAM attention mechanism.
3⃝ The base network is optimized with a modified loss function. 4⃝ The base network is augmented
with data preprocessing before augmentation.

In the experiment, the detection results of the 7 defect categories are averaged for evaluation.
The effects of different optimization strategies on the model are compared, and metrics such as
accuracy and recall are calculated, as shown in Table 2.

4.3. Comparison and evaluation of different methods

Comparing the performance of the model with the dataset used in this paper against classical online
lightweight object detection network models, where the learning rates for YOLOv3 (Redmon and
Farhadi, 2018), YOLOv5s (Kaur and Singh, 2023), and YOLOv5n (Kaur and Singh, 2023) are
uniformly set to 0.0052. The number of iterations is set to 100, and the batch size is set to 4. The
comparative experimental results are shown in Table 3.
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Table 2: Performance Comparison of Model’s Optimization.

Model P R mAP@0.5 FPS

PP-PICO 0.871 0.896 0.925 54.6
1⃝ PP-PICO+RGBT 0.924 0.929 0.973 53.5
2⃝ PP-PICO+CBAM 0.897 0.941 0.935 53.8

3⃝ PP-PICO+ Optimization of the loss function 0.886 0.912 0.928 54.5
4⃝ PP-PICO+ Data preprocessing 0.887 0.903 0.921 54.6

PP-PICO+ 1⃝+ 2⃝+ 3⃝+ 4⃝ 0.935 0.928 0.976 52.5

Table 3: The performance comparison between the proposed method and classical object detection
networks.

Model P R mAP@0.5 FPS

YOLOv5s 0.931 0.897 0.873 50.1
YOLOv5n 0.851 0.858 0.704 67.6
YOLOv3 0.837 0.886 0.914 68.3

PP-PICO s 0.821 0.813 0.764 50.9
PP-PICO l 0.902 0.902 0.985 58.8

PP-PICO s + 1⃝+ 2⃝+ 3⃝+ 4⃝ 0.864 0.869 0.904 56.4
PP-PICO m + 1⃝+ 2⃝+ 3⃝+ 4⃝ 0.934 0.947 0.920 52.5
PP-PICO l+ 1⃝+ 2⃝+ 3⃝+ 4⃝ 0.958 0.960 0.987 50.1

From Table 3, it can be observed that compared to classical lightweight network models, the
method proposed in this paper achieves a unified improvement in the detection accuracy and recall
of apple defects through color modeling and complementary spatial feature saliency enhancement.
Although the improved model’s detection speed does not reach its optimum, with additional time
consumption controlled within 5%, it still satisfactorily meets the time requirements of the detection
task.

5. Conclusion

This paper proposes a rapid modification model based on the lightweight network framework PP-
PicoDet. Firstly, a color attention mechanism based on offline Gaussian Mixture Model (GMM)
is constructed to build saliency channel mechanisms. This enhances the detection effectiveness
of small and weak defect features on apple surfaces using the RGB-T data mode under limited re-
sources. Secondly, in conjunction with the saliency channel mechanism, the CBAM spatial attention
network structure is incorporated to strengthen the spatial features of small-sized and weak-textured
targets. Lastly, considering the limited number and uneven distribution of defect samples in the
measured dataset, a weighted label loss reset strategy based on Gaussian functions is introduced to
improve the efficiency of parameter weight modulation under uneven sample conditions, further en-
hancing detection stability. Experimental results demonstrate that the proposed method is suitable
for rapid detection of complex defect morphologies on apple surfaces. It effectively optimizes the
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detection performance of various and complex defects, exhibiting good stability and accuracy. This
method holds practical significance for improving online apple defect detection applications.
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