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Abstract
Athletes’ performances are often influenced by an intangible factor, momentum, which reflects
the ability to perform exceptionally or consistently at a specific moment. Our model quantifies
momentum and predicts match win rates, aiding athletes and coaches in optimizing their game
strategies. We analyzed factors such as break points and winning streaks, employing a Random
Forest Model to evaluate momentum’s influence. Through the SHAP model, we established a
quantifiable relationship with momentum and considered previous momentum using exponential
weighted moving averages (EWMA). We developed a Gaussian Distribution Maximum Distance
(GDMD) Threshold and utilized an LSTM-ARIMA model to predict momentum differences and
identify turning points. The most critical factors were winning break points, running distance, and
runs of success. Players are advised to be aware of their opponents’ turning points and conserve
energy to break them. Potential improvements include considering external factors like audience
impact and expected goals, as well as incorporating more data to enhance model generalization
capability.
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1. Introduction

The 2023 Wimbledon Men’s Singles final became a focal point as the 20-year-old Spanish sen-
sation, Carlos Alcaraz, defeated 36-year-old Novak Djokovic, marking Djokovic’s first defeat at
Wimbledon since 2013. In the match, Djokovic initially dominated with a 6-1 advantage, but Al-
caraz staged a comeback in the second set tiebreak, causing multiple shifts in the direction of the
game and making momentum (Dietl and Nesseler, 2017) a key point of focus.

In previous studies, researchers have acknowledged the significant role of momentum in tennis
matches (Meier et al., 2019). However, their investigations have primarily been qualitative, lacking
a quantitative formula for momentum (Morgulev, 2023). To address this gap, we utilize a random
forest model to derive a quantitative formula for momentum. This formula can guide coaches and
players in devising strategic tactics and allocating physical resources effectively. Additionally, we
employ an LSTM-ARIMA model to forecast the development of momentum in matches.
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2. Method

2.1. Quantitative Formula for Momentum Based on Random Forest

In a match, a player’s winning depends on various factors (Moss and O’Donoghue, 2015). We
believe their skill level remains stable throughout. Momentum reflects their performance at key
moments, influenced by multiple factors. This paper only considers their prior performance in the
match.

We use an exponentially weighted averaging algorithm to update momentum systematically.
This technique assigns varying weights to data, prioritizing recent data over historical data, align-
ing well with competitive environments where recent performance matters more. The Exponential
Weighted Moving Average (EWMA) algorithm is expressed as follows (Crowder and Hamilton,
1992):

Dt = αDt−1 + (1− α) dt (1)

In the formula provided, α represents the rate of weight decline, often called the attenuation
factor. A smaller α leads to a faster decline, meaning less influence from past time periods on the
present one. dt is the observed value at time t, while Dt and Dt−1 are the exponentially weighted
averages at times t and t− 1 respectively. Adjusting α allows for controlling how much the current
state ignores historical data. With its trend sensitivity and data smoothing capabilities, this method
is particularly useful for detecting trends and subtle changes, fitting well with the objectives outlined
in this article. To quantify the magnitude of momentum, we have defined Formula 2:

Mt = αMt−1 + (1− α)
n∑

i=0

βixi (2)

We use the EWMA method to track momentum changes smoothly. Mt denotes momentum
magnitude at time t. Parameters α and 1 − α determine the influence of prior momentum and
past performance on current momentum. The term

∑n
i=0 βixi indicates the combined impact of

performance indicators on momentum, with α set to 0.3.
We use Random Forest (RF) Karabadji et al. (2023) to determine β and interpret the results

with SHAP. RF constructs multiple decision trees for classification or regression tasks, forming
a “Forest” of models. Prediction results from the trees are aggregated, and a new sample’s final
prediction is calculated using averaging. The regression decision formula is represented as follows:

f̂K (x) =
1

K

K∑
k=1

tk (x) (3)

In this context, f̂K (x) represents the combined regression model, with tk denoting an indi-
vidual decision tree regression model, and K representing the total number of regression trees (N
estimators). For models like Random Forest, several hyperparameters significantly affect predictive
accuracy. Thus, tuning these hyperparameters, known as hyperparameter optimization, is crucial.
However, this optimization poses a combinatorial problem, not suited for gradient descent optimiza-
tion methods used for general parameters. Adjusting individual hyperparameters requires retraining,
making computation resource-intensive.
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To overcome these challenges, automated hyperparameter tuning processes aim to find optimal
settings in less time through informed strategy-based searches. Bayesian optimization is a favored
method for optimizing objective functions, constructing a probability model based on past evalu-
ations to minimize the objective function. It’s widely used for hyperparameter tuning in machine
learning, offering better generalization and requiring fewer iterations compared to Grid Search (GS)
and Random Search (RS) methods. (Zhang et al., 2021)

SHAP (Kim and Kim, 2022), or Shapley Additive Explanations, interprets machine learning
models using Shapley values. In Random Forest models, each Decision Tree node provides condi-
tions for dataset splits. These criteria help find optimal conditions for splitting data during classifi-
cation, revealing each feature’s contribution to reducing classification errors. However, this method
struggles to explain individual predictions. To address this, SHAP calculates the importance of
individual variables in predicting outcomes, introduced by Lundberg and Lee through an additive
feature attribution method with a linear explanatory model for binary variables (Lundberg and Lee,
2017).

g
(
z′
)
= ϕ0 +

M∑
i=1

ϕiz
′ (4)

Here, g is a linear function of binary features.z′ represents the set of observed (z
′
i = 1) or

unknown (z
′
i = 0) features. The variable M denotes the number of simplified input features, and ϕi

indicates the contribution of each feature.

2.2. Gaussian Distribution Maximum Distance Threshold

Following initial modeling, we quantitatively assess player momentum using performance data,
where differences in momentum signal advantage. However, during stalemates, these differences
fluctuate, obscuring who has the upper hand. Hence, a threshold, known as the “turning point,” is
essential to identify significant momentum shifts.

We propose the Gaussian Distribution Maximum Distance Method to determine this threshold,
tailored for time series data with Gaussian distribution. Similar to Otsu’s Method (Liu and Yu,
2009), it segments data into positive and negative subsets, then applies Otsu’s Method independently
to find thresholds for each.

This modification acknowledges the dual nature of time series data, enhancing accuracy, espe-
cially for datasets with positive and negative aspects. Histograms are computed and normalized
separately for positive and negative data, and thresholds are iterated from minimum to maximum
values, calculating between-class variance for transitional and non-transitional periods.

σ2
b =

ω1ω2(µ1 − µ2 )
2

(ω1 + ω2)
2 (5)

Here, σ2
b represents the between-class variance, while w1 and w2 are the weights of the two

classes separated by the threshold, and µ1 and µ2 are the means of the two classes.
In this formula, the between-class variance is a measure of the spread between two classes

separated by a threshold. The weights w1 and w2 represent the probabilities of the two classes,
and µ1 and µ2 are the means of these classes. The formula aims to find the optimal threshold that
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maximizes the between-class variance, leading to effective separation of classes in the context of
image segmentation or thresholding applications.

We use an iterative approach to obtain the threshold T . The iterative method proceeds as fol-
lows: a threshold, denoted as T , is set. The momentum values are then partitioned using T , resulting
in two groups: inflection points and non-inflection points. The between-group variance is calculated
using the distributions obtained from this partition. The process is repeated by traversing through
various values of T . The optimal threshold is determined as the one that maximizes the between-
group variance.

2.3. Swings prediction Based on LSTM-ARIMA Model

The ARIMA model (Piccolo, 1990) is a classic time series forecasting model used for analyzing and
predicting time series data. It combines autoregressive (AR) and moving average (MA) methods
while considering the differencing of the time series. After ARIMA model predictions revealed
unexpected stability in the forecast data, contrary to our expectations, we decided to augment our
approach by incorporating the Long Short-Term Memory (LSTM) model. The LSTM model (Yu
et al., 2019) is a specialized type of recurrent neural network (RNN) designed for handling and
predicting time series data. LSTM has memory cells that can capture long-term dependencies,
enabling it to better handle long-term memory and information in time series data.

To assess the weights of the two models, we established a loss function:

L =
∑

(ytrue − ypred)
2 (6)

We use the player’s previous momentum data to predict the subsequent changes in their mo-
mentum and calculated the loss function. After obtaining the loss function, we could determine the
weights of the two models:

ϵ1 =
L2

L1 + L2
(7)

ϵ2 =
L1

L1 + L2
(8)

Here, L1 is the loss function of the ARIMA model, L2 is the loss function of the LSTM model,
ϵ1 is the weight of the ARIMA model, and ϵ2 is the weight of the LSTM model. After computa-
tion, we found that ϵ1 = 0.21 and ϵ2 = 0.79. Thus, we obtained the final weighted combination
prediction:

P = ϵ1 × PARIMA + ϵ2 × PLSTM (9)

3. Result

3.1. Model Evaluation and Interpretation

The model performance obtained through the above method yields an MSE of 0.0036, RMSE of
0.0601, and R2 of 0.8336. It is evident that the model exhibits strong fitting between predicted and
actual data, indicating its effectiveness in capturing underlying patterns within the dataset.

The global interpretation results of SHAP indicate that, in the model, features with higher im-
portance include the player’s ability to successfully break serve, set differentials, game differentials,
point differentials, and consecutive points. All of these are positively correlated with the outcome,
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meaning that successfully breaking serve, leading in sets, games, and points, as well as achieving
consecutive points, significantly enhance the player’s momentum. On the other hand, total moving
distance and non-forced errors are negatively correlated with the outcome, indicating that a decrease
in stamina within a set and personal errors tend to weaken the player’s momentum to some extent.
Through the above methods, the final importance of various indicators is obtained, and we utilize
our model to visualize the data from the last game in the match. Figure 1 demonstrates the nor-
malized impact on tennis matches’ momentum, highlighting the influence of various factors on the
game’s flow. Figure 2 presents the scoring rate curve during the match, which aids in understanding
the scoring situations at critical moments. Figure 3 illustrates the changes in momentum and the
occurrences of key points throughout the match, thereby revealing the dynamic shifts in the game’s
progress.

Figure 1: Normalized Impact on Tennis Matches’ Momentum.

Figure 2: Scoring Rate Curve Graph During the Match.

3.2. Swings prediction

In Figure 4, we can see that upon completion of the iteration, identify the T value that maximizes the
between-class variance as the threshold, corresponding to the turning point. Following that, perform
the same procedure for the negative data, resulting in the identification of two turning points.
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Figure 3: Changes in Momentum and Key Points Occurrences During the Match.

Figure 4: Using Threshold to Divide Two Distributions.

Figure 5: Momentum Gap with Threshold.
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Figure 6: Momentum Gap with Threshold (Upper: Actual Results, Lower: Predicted Results).

In Figure 5, two distinct thresholds are evident, each indicating a turning point for the respective
players. When the performance difference surpasses threshold 1, signaling a turning point for player
1, we observe a pronounced surge in player one’s winning rate. Similarly, when the difference falls
below threshold 2, marking a turning point for player 2, we again witness a sharp rise in player
one’s winning rate. Notably, within the range defined by these two thresholds, their winning rates
tend to stabilize.

The upper part of Figure 6 displays the actual player momentum difference in a match, while
the lower part illustrates the predicted values using a mixed model. The accuracy of the predictions
is evident from the calculated RMSE and MSE. The calculated RMSE and MSE provide clear
insights into the predictive accuracy. The final prediction yields an MSE of 0.0005, an RMSE of
0.0214 and R2 of 0.93, indicating a high level of accuracy in the predictions. This suggests that the
model is effective in forecasting changes during matches.

4. Conclusion

In conclusion, our research thoroughly analyzes momentum’s influencing factors, providing practi-
cal insights for players and coaches. We believe these findings will significantly improve training
and game performance. Here are key takeaways for coaches:

• Momentum is closely tied to turning points, which can be identified using the GDMD Thresh-
old.

• Winning break points, running distance, and serving greatly impact momentum.

• Managing running distance strategically can affect the duration and outcome of turning points.

• Serving games are crucial; winning them significantly boosts momentum.
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• Note that momentum trends and winning probability may diverge, particularly when players
face unforced errors despite strong momentum.
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