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Abstract
As the realms of quantum computing and machine learning converge, a novel domain, termed quan-
tum machine learning, is progressively forming within the sphere of artificial intelligence studies.
Nonetheless, akin to its classical counterpart, this emerging field is not exempt from security vul-
nerabilities. Quantum machine learning systems, regardless of whether they process classical or
quantum inputs, are susceptible to minor perturbations that can erroneously skew classification out-
comes. These minute disruptions, often imperceptible to human observation, present a significant
challenge in ensuring the integrity of quantum classifiers. As the complexity of quantum classi-
fiers increases, their vulnerability also gradually grows. To mitigate this issue, this paper proposes
a novel hybrid classical-quantum neural network model that enhances the model’s adversarial ro-
bustness by adding a preprocessing layer for noise reduction and data reconstruction. Experiments
demonstrate that this model exhibits higher efficiency and accuracy in noisy environments and
against adversarial attacks.
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1. Introduction

The unique properties of superposition and parallelism inherent in quantum mechanics have demon-
strated significant advantages in large-scale computations, thereby bringing quantum computing
into the focus of scientists as a burgeoning field. In 1980, Paul Benioff proposed the concept of
the quantum Turing machine (Benioff, 1980). By 1994, the introduction of Shor’s algorithm had
demonstrated the potential to decrypt RSA Algorithm in significantly shorter times. In 1996, Grover
introduced a quantum search algorithm for unsorted databases, significantly improving the speed of
quantum algorithms in solving search problems. Advancements in quantum computing have led
to the fusion of machine learning with quantum principles, creating the field of quantum machine
learning. Many such QML (Quantum Machine Learning) efforts are based on the HHL algorithm,
which proposes a solution for solving systems of linear equations using quantum operations. Anal-
ysis and proofs have shown that these quantum machine learning algorithms exhibit exponential
improvements in computational speed compared to classical machine learning algorithms (Schuld
et al., 2015). Driven by advances in deep learning, quantum neural networks, which bear similarities
to classical neural networks and include variational parameters, have garnered widespread attention
(Cerezo et al., 2021).

In recent years, research on Quantum Neural Network (QNN) models has emerged. In 2018,
LI and Zhao (2018) proposed a new QNN model based on controlled rotation gates. In 2021,
Blance and Spannowsky (2021) introduced a quantum classification algorithm that employs a hy-
brid approach combining the steepest descent method with quantum gradient descent for network
parameter optimization. There are numerous variants of quantum neural networks, including hy-
brid quantum-classical convolutional neural networks (Liu et al., 2021), quantum graph convolu-
tional neural networks (Zheng et al., 2021), quantum convolutional neural networks (Cong et al.,
2019), among others. Yet, quantum neural networks remain prone to disturbances that can dimin-
ish the classifiers’ accuracy. Therefore, constructing a robust quantum neural network model is
of paramount importance. Gong et al. (2024) proposed enhancing quantum adversarial robustness
through randomized encoding. You et al. (2019) suggested regularizing neural networks by adding
a noise layer, demonstrating that models trained with this method exhibit strong robustness under
FGSM attacks. This paper presents enhancements to hybrid quantum-classical neural networks,
resulting in our model achieving higher robust accuracy compared to both conventional network
models and those subjected to adversarial training.

2. Related Work

2.1. Quantum Computing

Research in quantum computing is built upon the principles of quantum theory, utilizing distinctive
quantum properties like state superposition and entanglement to execute computational operations.

2.1.1. QUBIT

In classical information theory, the bit is the basic information unit, representing binary 0 or 1.
Similarly, quantum information theory’s fundamental unit is the quantum bit, or qubit. Leveraging
quantum superposition, a qubit exists in a state that combines these basis states, enhancing informa-
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tion representation beyond classical binary constraints:

| ψ⟩ = α | 0⟩+ β | 1⟩ (1)

The coefficients α and β in the linear combination must satisfy the normalization condition
| α |2 + | β |2= 1, ensuring that the total probability of finding the qubit in either state | 0⟩
or | 1⟩ is 1. When performing a measurement operation on | ψ⟩, the probability of obtaining the
state | 0⟩ is | α |2, and the probability of obtaining the state | 1⟩ is | β |2. α and β are known as
probability amplitudes. Prior to observation, a qubit may concurrently inhabit the states of 0 and 1,
a phenomenon described as the superposition state.

2.2. Quantum Neural Network

2.2.1. ENCODING OF DATA

In machine learning, classical data formats cannot be used directly. Therefore, it’s necessary to
encode classical data into a form that quantum systems can process, a process known as quantum
data embedding. Currently, common quantum data encoding methods include amplitude encoding
and angle encoding.

2.2.2. HYBRID CLASSICAL QUANTUM NEURAL NETWORKS

Quantum neural networks, a new model blending neural networks with quantum computing. Gen-
erally, the input layer serves as the data encoding layer, the intermediate layer comprises parameter-
ized quantum circuits made up of multiple layers of quantum circuits, and the output layer involves
measurement operations, as illustrated in Figure 1. Generally, there are three types of measure-
ment bases: the X, Y, and Z bases. In quantum neural networks, the Z basis is commonly used
for measurements, which involves measuring the quantum state along the Z direction to obtain the
expectation value.

Figure 1: Quantum neural networks.

Currently, there are two types of hybrid classical-quantum neural network models. The first type
has the quantum neural network as the main component, with classical computing serving as an
auxiliary computation. The second type is primarily a classical neural network, which incorporates
a quantum layer to enhance model training efficiency. Depending on the specific requirements,
the quantum layer can be utilized as part of feature extraction, embedding within hidden layers,
or as part of the output recognition process to fulfil the task’s needs. Figure 2 illustrates a simple
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hybrid classical-quantum neural network model structure, where xi represents the input vector to
the classical layer, hi is the output of the i-th neuron in the hidden layer, E denotes the quantum
encoding layer, U is the intermediate layer, Z represents the measurement operation, and y is the
final prediction value obtained from the hybrid model.

Figure 2: Hybrid classical quantum neural networks.

The training and optimization process of hybrid networks is similar to that of classical net-
works, requiring continuous updates to the parameters within the quantum circuits to minimize
the loss function. For optimizing quantum parameters, gradient-based optimization techniques are
employed. Typically, the parameter shift rule (Crooks, 2019) is used to compute gradients for the
quantum circuit, which are then incorporated into the backward propagation process of the classical
network.

3. HCQNN with Preprocessing Layer

We have made improvements to the hybrid classical-quantum neural network by replacing the clas-
sical network layer preceding the quantum layer with a preprocessing layer, proposing a new type
of hybrid classical-quantum neural network model that exhibits higher robustness to disturbances.
The specific framework is shown in Figure 3. In this model, the first step is a preprocessing layer
used for denoising and reconstructing the data. This is followed by encoding operations on the pre-
processed data, then a parameterized quantum circuit, and finally, measurement operations to obtain
the model’s prediction results.

Figure 3: The network model of this paper.

Our preprocessing layer, inspired by denoising autoencoders, reconstructs the input data, reduc-
ing the impact of noise and other disturbances on the dataset and ensuring the overall accuracy of
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the model. This paper employs a Denoising Autoencoder (DAE) (Vincent et al., 2010). First, the
autoencoder is trained, and the obtained pre-encoding layer is used for data reconstruction. After-
wards, this pre-encoding layer is combined with the quantum neural network.

This paper employs Mean Squared Error (MSE) and Cosine Similarity to evaluate the similarity
between the data output by the pre-encoding layer and the original data. Mean Squared Error is a
common metric for measuring the difference between two sets of data, typically used to assess the
discrepancy between predicted and actual values in regression tasks. The calculation formula is as
follows:

MSE =
1

n

∑n
i=1(yi − ŷl)

2 (2)

where n is the number of samples, yi is the actual value of the i-th sample, and ŷi is the predicted
value of the i-th sample. In this paper, the calculation is performed between the input sample x and
the preprocessed output sample x́ . The lower the MSE, the closer the reconstructed data is to the
original data in numerical value, indicating a smaller error.

Cosine similarity measures the similarity in direction between two non-zero vectors by calculat-
ing the cosine of the angle between them. The closer the cosine similarity is to 1, the more similar
the direction of the reconstructed data is to the original data. The formula is as follows:

CosineSimilarity =
A · B

∥ A ∥∥ B ∥
=

∑n
i=1Ai ×Bi√∑n

i=1A
2
i ×

√∑n
i=1B

2
i

(3)

where A and B are two non-zero vectors, Ai and Bi are the components of A and B at the i-th
position, respectively, and ∥ A ∥ and ∥ B ∥ are the Euclidean norms (i.e., the lengths) of vectors
A and B, respectively. These two metrics each have their strengths: MSE focuses on quantifying
the magnitude of the difference, while cosine similarity emphasizes the consistency in direction and
pattern.

In subsequent experiments, we will utilize two types of noise: one is the addition of Gaus-
sian noise to the dataset, and the other involves generating adversarial samples using adversarial
attack algorithms. Gaussian noise, often termed normal noise, is a form of stochastic disturbance
prevalent in signal processing, image processing, communications, and various other domains. The
adversarial attack leverages the Fast Gradient Sign Method (FGSM), creating adversarial exam-
ples by manipulating the model’s gradients. Remarkably, this method necessitates merely a single
gradient adjustment to generate the adversarial instances:

xadv = x+ ε · sign(▽xJ(θ, x, y)) (4)

where xadv represents the adversarial sample; x is the original input sample; ε represents the pertur-
bation magnitude, which controls the disturbance added to the input x. The choice of ε is crucial:
too large a perturbation may be easily detected by humans, while too small may not be sufficient to
mislead the model; sign(), the sign function, is used to take the sign (positive or negative) of the
gradient, implying that the direction of the perturbation will aim to increase the loss function J, but
its magnitude is limited by ε ; ▽xJ(θ, x, y) denotes the gradient of the loss function J with respect
to the input x , where θ represents the model parameters, and y is the true label of input x.

First, we use the Iris dataset to test the preprocessing layer. In the tests, we use a dataset with
added Gaussian noise and adversarial samples generated by FGSM.
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As shown in Table 1, all data were calculated from the original dataset,for the dataset with added
random noise, after preprocessing, the MSE value decreased from 0.263 to 0.173, and the cosine
similarity increased from 0.832 to 0.895. For the adversarial samples generated by FGSM, after
preprocessing, the MSE value decreased from 0.211 to 0.176, and the cosine similarity increased
from 0.873 to 0.910. Overall, the data after preprocessing is noticeably closer to the original dataset.

Table 1: Comparison between MSE and cosine similarity in preprocessing layer.

Name Noisy Data
Reconstructed

Noise Data
FGSM Data

Reconstructed
FGSM Data

MSE 0.263 0.173 0.211 0.176
Cosine Similarity 0.832 0.895 0.873 0.910

When generating adversarial samples using the FGSM adversarial attack algorithm for different
epsilons, we observe varying effects, as shown in Figure 4. Tests reveal that with epsilons set to 0.15,
the adversarial samples, after passing through the preprocessing layer, allow the model to maintain a
classification accuracy of up to 93.3%. For epsilons at 0.30, the generated adversarial samples, after
noise reduction by the preprocessing layer, enable the model to achieve a classification accuracy of
90%. When epsilons are at 0.45, the adversarial samples processed by the preprocessing layer help
the model reach an accuracy of 86.67%. At an epsilon of 0.60, the model’s classification accuracy
for the preprocessed adversarial samples reaches 73.33%, thereby demonstrating the effective noise
reduction capability of our preprocessing layer.

Figure 4: Accuracy Comparison Against Adversarial Samplesfor Varying Epsilons: With vs. With-
out Preprocessing Layer.
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Ultimately, we evaluate our model with the MNIST dataset, comprising 70,000 labeled images
of digits 0 through 9. Each is a 28×28 pixel grayscale image. Due to qubit limitations, we focus
on a 4-class classification. As shown in Figure 5, we use quantum neural networks without pre-
processing as a comparison, and it can be seen that the pre-processing layer basically does not
affect the accuracy of the model’s classification of clean data sets in the actual training process.

Figure 5: Training accuracy with and without preprocessing layer.

Figure 6: Minst data set and presentation of the processed data.

Figure 6 is an illustration of the data set. The first row displays the original dataset, the second
row shows the data with added random noise, the third row presents the data after adding noise and
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passing it through the preprocessing layer, the fourth row displays adversarial samples generated
by the FGSM algorithm, and the fifth row shows the adversarial samples after passing through the
pre-encoding layer.

It can be observed that the data restored after passing through the pre-encoding layer is basically
close to the original data, with only a few instances showing some differences from the original. In
the experiment, we use a quantum neural network model that only employs adversarial training
as the baseline model. We incorporate selected generated adversarial examples into the training
dataset for adversarial training of the baseline model. Table 2 presents the classification accuracy of
models with and without a pre-encoding layer, as well as the adversarially trained baseline model,
against adversarial samples created at varying epsilon values. Our model shows higher accuracy
under adversarial sample attacks compared to models that have undergone adversarial training.

Table 2: The accuracy of different models under different epsilons.

Epsilons Non-preproc Preproc Adv-training

0.15 42.2% 89.9% 67.4%
0.30 24.6% 61.6% 27.5%
0.45 13.7% 34.9% 16.4%

4. Conclusions

In this paper, we improve the hybrid classical-quantum neural network by incorporating an au-
toencoder as a pre-encoding layer to enhance the model’s classification accuracy against noise and
adversarial samples. Through experimentation, it is demonstrated that the pre-encoding layer in this
paper can effectively reconstruct input datasets containing noise and adversarial samples, allowing
the model to maintain good classification accuracy. Adversarial training demands high computa-
tional requirements and takes a considerable amount of time. The advantage of this model is that
the pre-encoding layer can be trained separately, significantly reducing the complexity of model
training.
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