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Abstract
In recent years, unmanned aerial vehicles (UAVs) have found increased application across various
domains. Clusters of Multi-UAV can accomplish more complex tasks, optimizing overall efficiency
through rational task allocation. In practical scenarios, they exhibit distinct advantages and char-
acteristics. However, the allocation of tasks to Multi-UAV in special environments or emergency
conditions poses a widely studied problem. Existing research or methods often impose fixed task
priorities (task sequences) during Multi-UAV task allocation. Yet, real-world UAV operations may
witness fluctuations in task priorities due to environmental changes or human factors. For instance,
areas experiencing a drop in temperature may heighten the urgency of certain supplies, or sudden
outbreaks of disease may increase the demand for medical supplies. In such cases, convention-al
planning methods become inadequate. Hence, this paper addresses these scenarios by proposing a
model for dynamic task priority changes in Multi-UAV task allocation within special environments.
This thesis introduces an improved genetic algorithm, termed the improved partheno genetic-greedy
combination algorithm. Through comparative experiments, the efficacy of the proposed algorithm
in addressing dynamic priority changes in Multi-UAV collaborative task allocation problems is
validated, enhancing problem-solving efficiency.
Keywords: Multi-UAV; Task Allocation, Task Priority; Genetic Algorithm

1. Introduction

In recent years, there is a significant surge in the utilization of Unmanned Aerial Vehicles (UAVs)
across various domains, including domestic and military spheres. Such domains necessitate the
implementation of task allocation methodologies within multi-UAV systems. (Skaltsis et al., 2023)
Considering task priority is an essential aspect of ensuring effective task allocation in Multi-UAV
systems. Luo et al. (2021) prioritized objectives based on their value and proximity or minimum ex-
ecution time when planning tasks for Multi-UAV systems. Zhang et al. (2020) assign higher priority
to targets of greater importance in their research on the allocation of objectives for coordinated UAV
attacks against enemies. Chen et al. (2018) focus on giving priority to tasks closer to each UAV,
proposing a cluster first strategy combined with a CBBA based algorithm for task allocation. Many
studies typically fix task priorities (task sequences) without considering changes in task priorities.
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This thesis establishes a model for Multi-UAV task allocation with dynamic task priority changes.
This model uses the safety stock model as a reference to generate a demand state change function
to generate differ-ent task priorities (A, B, C), thereby generating dynamic priorities for different
receiving points. On the basis of considering the priority of the target task, maximizing the total
reward value is the main goal of the task. This article improves the genetic algorithm, proposes an
improved partheno genetic-greedy combination algorithm suitable for solving this problem, designs
an encoding method that conforms to the problem model, adds corresponding constraints for drones,
and designs adaptive mutation operators and adaptive crossover operators.

2. Problem formulation

2.1. Model Description

Given N UAVs: UN = {u1, u2, . . . , un} at a distribution center, all of which possess identical
performance capabilities. These UAVs are tasked with delivering supplies to various receiving
points in need of assistance, accomplishing this by shuttling between the receiving points and the
distribution center. The primary objective of Multi-UAVs is to efficiently execute distribution tasks
to all M receiving points within a defined number of rounds while satisfying various constraints.
The main focus is to determine the optimal task allocation plan for multiple UAVs. As shown in
Figure 1, the distribution task area is divided into z sub-regions: G = {G1, G2, . . . , Gz}, where
several receiving points exist in each sub-region.

Figure 1: The receiving points in different sub-regions are indicated by symbols of different shapes,
and black square indicates the delivery center.

During the execution of delivery tasks by UAVs, the demand and urgency for sup-plies in dif-
ferent sub-regions may fluctuate. In such cases, periodic functions are employed to represent the
demand status of receiving points in sub-region Gz. To avoid overly complex function designs, this
paper adopts simple yet representative functions to model the functions within the cycle. Drawing
on recent research, the safety stock model, which has been widely used, is referenced (Gonçalves
et al., 2020). The function describing the variation of demand status in sub-region Gz over time is
derived from this model, with certain simplifications and modifications made based on the original
literature.
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The WGZ
(t) represents the demand status value of sub-region Gz at time tt, ξz denoting the

rate of change of demand status in sub-region Gz, c denotes the level of material consumption
coefficient, and the function operates within a period of T .

To incorporate a metric reflecting the urgency of task demands, a set of dynamic priority levels
P = {A,B,C} is established. Here, A, B, and C respectively denote different levels of task priority,
where A signifies critical scarcity, B denotes moderate scarcity, and C indicates non-urgent status.
When the periodic function values of the demand status in sub-region Gz increase and reach the
boundary value (WGZ

(tn) = W0)during each cycle, all receiving points in sub-region Gz transition
to priority level A. For each receiving point in every sub-region, the default initial state is assumed
to be B. Upon receiving supplies from a UAV, the state transitions to C. In the absence of supplies,
at time t1, sub-region GZ transitions from state B to state A. After spending a certain duration in
state C, sub-region GZ transitions back to state A at the next scheduled state transition moment.
Upon receiving supplies from a UAV, state A transitions back to state C. This cycle between states
A and C repeats thereafter.

2.2. Objective Function

In the process of constructing the objective function for the Multi-UAV task allocation, the param-
eters related to the UAVs are set as shown in Table 1.

Table 1: Parameter settings.
Parameter Symbol

Each receiving point receives a single fixed load item L0

Unloading time of each UAV at the receiving point Tunload
The time when the UAV returns to the delivery center for the loading and refueling process Tload
The average speed of each UAV in its operational state VAVG
The distance between the target receiving point MZ1ml and the target task point MZ2m2 Dz1m1

z2m2

Delivery center position P
The distance between the receiving point MZm and the delivery center DP

zm

(0-1) Variable, if the UAV un moves from the target receiving point MZ1ml to the target mission point MZ2m2 xz1m1
z2m2 = 1, other-wisexz1m1

z2m2 = 0
(0-1) Variable, if the UAV un moves from the delivery center to the receiving point MZm xpzm = 1, otherwise xpzm = 0
Cost of transportation in unit distance d

The reward value of the UAV at the receiving point Mzm in the subarea Gz is PZm(ti), which
is obtained by equation (2).

PZm (ti) =

P1 ×
[
1− 2(ti−tAstart )

T

]
(ti ∈ TA)

P2 ×
[
1− 2(ti−tBstart )

T

]
(ti ∈ TB)

(2)

In equation (2), PZm (ti) represents the moment when UAV arrives at receiving point MZm,
where ti ∈ (0, Tmax], and Tmax denotes the latest arrival time. P1 and P2 represent the initial reward
values for delivery tasks in critical scarcity (state A) and moderate scarcity (state B) respectively.
The initial reward value for critical scarcity state A should exceed that for moderate scarcity state
B, thus requiring P1 > P2. TA and TB denote the periods of critical scarcity and moderate scarcity
respectively. tAstart and tBstart represent the moment before when the most recent transition to
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state A or state B occurred.The objective function is defined as the final profit value obtained by
subtracting the costs of all UAVs from the total reward values obtained by all UAVs within the time
constraint Tmax. The objective function is represented as equation (3).

MaxP = [

imax∑
1

n∑
1

PZm(ti)]− Fcost − Tcost (3)

The imax represents the most number of times a single UAV performs the same receiving point
mission. The fixed cost is denoted by Fcost, which encompasses expenses such as UAV mainte-
nance, repair costs, and administrative insurance fees. The transportation cost is represented as
Tcost, calculated by multiplying the transportation cost per unit distance by the total transportation
distance.

3. Task Allocation Algorithms

3.1. Greedy Algorithm

The Greedy Algorithm is a heuristic method that makes locally optimal choices at each step, aiming
to achieve an overall optimal solution in terms of a certain metric (Kim and Feron, 2017). Al-
though the greedy approach is a general strategy, its specific application to new problems requires
refinement based on specific conditions. In this thesis, a Greedy Algorithm designed for solving the
dynamic priority change Multi-UAV task allocation problem is outlined as follows:

Step 1: Initialize UAV and receiving point positions, and set up the scenario.
Step 2: Define the total number of rounds of tasks as k.
Step 3: Iterate over all unassigned receiving points. Calculate the expected reward value of as-

signing the current task to the UAV that is expected to arrive at this receiving point next, considering
the current positions of UAVs and the time required to reach this point after completing previously
assigned tasks.

Step 4: Sort all reward values, identify the maximum reward value, and record the combination
of UAV and task with the highest reward value.

Step 5: Update UAV positions and assigned tasks. If all tasks are assigned and executed, proceed
to Step 6; otherwise, return to Step 3.

Step 6: Return all UAVs to the distribution center and calculate the total reward value for this
round.

Step 7: Accumulate the reward values obtained in each round. Determine whether the total
number of rounds has been reached. If k rounds have been completed, output the total reward
value; otherwise, return to Step 3.

The time complexity of the Greedy Algorithm applied to this problem as equation (4), mun is
the number of unassigned receiving points.

O(T ) = k • n •O((m−mun) + (m−mun + 1) + ...+ (m− 1)) (4)

3.2. Partheno Genetic Algorithm

The Partheno Genetic Algorithm(PGA) is a specialized genetic algorithm (Yang et al., 2015). This
algorithm deviates from traditional genetic algorithms in solving combinatorial optimization prob-
lems by abandoning the specialized crossover operators found in traditional genetic algorithms.
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Instead, PGA achieves genetic recombination solely by performing operations such as gene inver-
sion and gene shifting on a single chromosome. The core of the PGA algorithm lies in single-parent
mutation, where individuals undergo mutations based on their parents. The mutation operations
combined with the concept of random insertion to form the following four single-parent mutation
operations:

(1) Gene flip-insert operation: Two random exchange points are generated, and the genes be-
tween these two points are exchanged. Then, the segment between these two exchange points is cut
as a whole and inserted between two adjacent genes randomly outside the segment.

(2) Gene swap-insert operation: Two random inversion points are generated, and the genes
between these two points are rearranged in reverse order. Then, the new segment is cut and inserted
between two adjacent genes randomly outside the segment.

(3) Gene left-shift operation: Two random left shift points are generated, and each gene within
these two left shift points is moved one point to the left. Then, the new gene segment is cut and
inserted between two adjacent genes randomly outside the segment.

(4) Gene right-shift operation: Two random right shift points are generated, and each gene
within these two right shift points is moved one point to the right. Then, the new gene segment is
cut and inserted between two adjacent genes randomly outside the segment.

3.3. Improved Partheno Genetic-Greedy Combination Algorithm

For the task allocation of Multi-UAV, it is necessary to cut the chromosomes of the task sequence
into several segments to represent the route scheme for each UAV to access the receiving point.
IPGA-G algorithm uses two-segment chromosome coding, which consists of two parts. (Zhou et al.,
2018) As shown in Figure 2, the first part is the random arrangement of n material receiving points,
and the second part represents the coding segment of discontinuous points, and the first part is
divided into m segments. The starting point delivery center of the UAV is 0, the first UAV‘s current
mission access receiving point route is (0-4-6-0). The first part has n!kinds of arrangement, the
second part has Cm−1

n−1 kinds of arrangement, and the solution space of the two-segment chromosome
is n! ∗ Cm−1

n−1 .

Figure 2: Example of a two-segment chromosome encoding.
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In order to make the offspring population more diversified and expand the optimal range of the
offspring population, the IPGA-G algorithm modifies the variation mode of the IPGA algorithm,
and expands the genetic recombination to ten genetic recombination methods:

(1) Do not do anything to the first individual.
(2) The second individual performs the gene flip-insert operation.
(3) The third individual performs the gene swap-insert operation.
(4) The fourth individual performs the gene left-shift operation.
(5) The fifth individual performs the gene right-shift operation.
(6) The sixth individual performs the modification of discontinuous points.
(7) The seventh individual performs a gene flip-insert operation and a modification of discon-

tinuous points.
(8) The eighth individual performs a gene swap-insert operation and a modification of discon-

tinuous points.
(9) The ninth individual performs a gene left-shift operation and a modification of discontinuous

points.
(10) The tenth individual performs the right-shift operation and the modification of discontinu-

ous points.
Based on the algorithm proposed by Srinivas and Patnaik (1994), the IPGA-G algorithm has de-

signed an adaptive crossover operator that can improve computational speed. Set different crossover
probabilities based on different fitness values, and use the adaptive crossover operator Pc to repre-
sent the probability of executing operation (2-5) during gene recombination. The calculation of the
adaptive crossover operator in the IPGA-G algorithm is shown in equation (5).

Pc =

{
k1 − (k1−k2)×|F−Favg |

Fmax−Favg
F ≥ Favg

k1F < Favg
(5)

The Fmax is the current maximum fitness value; Favg is the average fitness value of this gener-
ation, and k1 and k2 are the crossover operator coefficients, satisfying the condition that k1 > k2.
When performing mutation operations, the mutation operator is used to represent the probability
of performing modification discontinuous points operation during gene recombination. k3 and k4
are the mutation operator coefficients and k3 > k4. The adaptive mutation operator calculation is
shown in equation (6).

Pm =

{
k3 − (k3−k4)×|F−Favg |

Fmax−Favg
F ≥ Favg

k3F < Favg
(6)

The IPGA-G algorithm can improve the formula for calculating genetic operators and the search
efficiency to some extent by incorporating feasible solutions obtained from greedy algorithms into
the initial population. By genetic recombination of feasible solutions obtained through greedy algo-
rithms, the mutated solution is highly likely to have higher fitness values than randomly generated
chromosomes, and is more likely to be selected to continue with the next round of reproduction.

There are five main steps in the IPGA-G algorithm process:
(1)Initialize the population and add the solution obtained by the greedy algorithm to the popu-

lation.
(2)Fitness value calculation.
(3)Perform the sorting and selection operation.
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(4)Calculate the cross operator and the mutation operator, and perform gene re-combination.
(5)Determine whether the maximum number of iterations is reached, and if so, output the re-

sults; if not, return to step 2.

4. Simulation Results

To validate the effectiveness of the IPGA-G algorithm for dynamic priority Multi-UAV task allo-
cation problem, a comparative experiment was conducted between the Greedy Algorithm and the
IPGA algorithm. The simulation experiments were conducted on hardware with an Intel(R) Core
i5 processor running at 2.50GHz. The simulation environment was implemented using Matlab soft-
ware.

The experimental simulation was set in a 50*50 square kilometer area, with coordinates rep-
resenting various locations. The coordinates of the distribution center were set as (25,25). The
experimental area was divided into sub-regions G1 (x > 25, y > 25), G2 (x > 25, y < 25), G3

(x < 25, y < 25), and G4 (x < 25,y > 25).
Each region was assigned a fixed rate of demand status change. The data are shown in Table 2.

Table 2: Rate of demand state change in different sub-regions.

ξ1 ξ2 ξ3 ξ4

0.4 0.8 1.3 1.6

In this section, all experiments were set with a total of 4 rounds of task allocation for UAVs.
Four UAVs were deployed from the distribution center. The average flight speed was set to VAV G =
11 km/h, with loading time Tload = 0.5 hours and unloading time Tunload = 0.1 hours. Each
delivery carried a fixed weight of material L0 = 2.5 kg. The coefficient of material consumption
was set to c = 2. The parameters for the task reward function were P1 = 200 and P2 = 180. The
transportation cost per unit distance was . The fixed cost for each UAV was Fn = 80.

4.1. Simulation results of key parameter analysis

The comparative tests were conducted on the most crucial parameters determining the timing of
demand status changes: the period T and the threshold value W0. The experimental testing was
conducted with different parameter values for the period. For T = 4, experiments were carried out
with W0 = 2, W0 = 3, and W0 = 4, totaling 100 groups of experiments. For W0 = 3, experiments
were conducted with T = 3.5, T = 4, and T = 4.5. In each group of experiments, receiving points
were randomly generated. The results are shown in Figure 3.

From the experimental results, it can be observed that the results are relatively balanced with
both upper and lower limits when W0 = 3 and T = 4. The distribution of results is relatively
moderate. Therefore, setting W0 = 3 and T = 4 as fixed parameters for subsequent experiments
would be appropriate, the schedule of demand status change in different sub-regions is shown as
table 3.
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(a) (b)

Figure 3: (a) The box-plot of the results of experiments for different threshold values W0. (b) The
box-plot of the results of experiments for periods T .

Table 3: Schedule of demand status change in different sub-regions.

Sub-region Round 1 Round 2 Round 3 Round 4

G1 3.16 7.16 11.16 15.16
G2 2.24 6.24 10.24 14.24
G3 1.75 5.75 9.75 13.75
G4 1.58 5.58 9.58 13.58

4.2. Simulation results of different algorithms

Testing the optimal solution of each algorithm under different scenarios, 50 groups of experiments
were set up. In each group, 10 receiving points were randomly generated, and these receiving
points were used to test the three algorithms. For both the IPGA and IPGA-G algorithms, the initial
population size was set to 100, and the number of iterations was set to 100. The parameters for
the IPGA-G algorithm were set as fol-lows: k1 = 0.7, k2 = 0.4, k3 = 0.1, and k4 = 0.05.
The experimental results are shown in Figure 4(a). The experiments corresponding to the median
total reward values obtained by the IPGA-G and IPGA algorithms were selected as references. From
these experiments, the convergence curves of the two algorithms were compared, as shown in Figure
4(b).

Subsequently, an analysis of the computational time for both algorithms was conducted. The
time taken for each iteration process of each algorithm to achieve or exceed the reward value of
6904.57 (the worst result of the IPGA algorithm) in each of the 50 rounds was recorded. The
average time for the 50 rounds of experiments was calculated. The average time for the IPGA was
0.69 seconds, while the average time for the IPGA-G was 0.37 seconds.

Based on the results obtained from the simulation experiments, it can be concluded that the
IPGA-G algorithm consistently achieves significantly higher average total reward values for op-
timal solutions across different scenarios compared to both the IPGA algorithm and the Greedy
Algorithm. In summary, the proposed IPGA-G algorithm effectively addresses the task allocation

8



RESEARCH ON MULTI-UAV TASK ALLOCATION ALGORITHM

(a) (b)

Figure 4: (a) The box-plot of the results of experiments for different threshold values W0 (b)The
box-plot of the results of experiments for periods T4.

problem for multiple UAVs with dynamic priority changes. It exhibits significant advantages in
terms of convergence speed, global search capability, and computational stability.

5. Conclusion

This thesis uses safety stock model as a reference to construct a problem model of Multi-UAV task
allocation under dynamic priority changes, and the periodic function is used to represent the demand
status of receiving points in sub-regions. The coding method is used to encode the greedy algorithm
into the process of population initialization. Experimental results show that the improved partheno
genetic-greedy combination algorithm has excellent solution search ability and search efficiency,
and has high adaptability in dealing with the problem.

In the research process of this paper, in order to simplify the problem size and reduce the dif-
ficulty of calculation, many factors are ignored. Based on the existing results, future work can be
further studied from the following aspects:

(1)In the process of realizing the collaborative task allocation of multiple UAVs, the communi-
cation limitations and computing power limitations of UAVs in the mode of complete centralized
control are not considered, and these two points are factors that must not be ignored in the process
of Multi-UAV collaborative operation planning in the future.

(2)In the process of constructing a Multi-UAV task allocation model in a dynamic environment,
there may be situations where dynamic priorities affect constraints. In the real world, there are many
more constraints than described in this article, and they may change as dynamic priorities changes.
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