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Abstract

Recent research has highlighted the properties that deep-learning inspired causal models
such as Deep-Structural Causal Model (Deep-SCM), Causal Autoregressive Flow (CAREFL)
and Causal-Graphical Normalizing Flow (c-GNF) should exhibit to guarantee observational
and interventional distribution equivalence with the true underlying causal data generating
process (DGP), making them suitable for estimating average causal effect (ACE) or condi-
tional ACE (CACE). However, for accurate individual-level causal effect (ICE) estimation
and personalized treatment/public-policy formulation, it is crucial to ensure counterfac-
tual equivalence between these models and the DGP. Firstly, we demonstrate that c-GNFs
provide counterfactual equivalence under certain monotonicity assumption of the DGP, en-
abling precise ICE estimation and personalized treatment/public-policy analysis. Secondly,
using this counterfactual equivalence of c-GNFs, we perform a counterfactual analysis and
personalized public-policy analysis of the impact of International Monetary Fund (IMF)
programs on child poverty using large-scale real-world observational data. Our results in-
dicate a reduction in child poverty due to the IMF program at different personalization
granularities. Our study also performs sensitivity analyses to assess potential threats to
the unconfoundedness assumption and estimates ACE bounds and the E-value. This il-
lustrates the potential of c-GNFs for causal and counterfactual inference in fields such as
social, natural, and medical sciences.

Keywords: Causality; counterfactual reasoning; normalizing flows; social sciences.

1. Introduction

While many studies have enhanced our understanding of the factors that contribute to
poverty among vulnerable groups, such as children, hindering their development (Banerjee
and Duflo, 2011), there is a lack of knowledge on how to tailor public policies effectively to
alleviate poverty for these vulnerable groups, especially during periods of macroeconomic
instability (Halleröd et al., 2013; Kino et al., 2021). In other words, a crucial question is
whether policymakers can customize policies to each child’s specific circumstances rather
than implementing a single policy for the entire population. This idea of personalization
follows from a policy vision of tailoring interventions to an individual’s needs and context
for optimal outcome achievement. Specifically, Banerjee and Duflo (2011) state,
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“... We have to abandon the habit of reducing the poor to cartoon characters
and take the time to really understand their lives, in all their complexity and
richness.”

For instance, the International Monetary Fund (IMF) is a powerful international orga-
nization responsible for promoting global macroeconomic stability. However, the impact of
IMF programs on children is a subject of debate (Daoud et al., 2017; Daoud and Reins-
berg, 2018; Daoud et al., 2019). One of the reasons is that, currently, government officials
primarily rely on an individual’s income and similar characteristics to identify vulnerable
populations for social welfare programs. However, these programs often follow a simple
rule: Eligible individuals receive a fixed “one-size-fits-all” policy, while ineligible individu-
als receive no policy support. Although this approach is transparent and applies the best
average solution for the population (average causal effect or ACE) or group (conditional
ACE or CACE), it lacks adaptability to individuals’ specific needs, which is crucial for ef-
fectively addressing poverty, health issues, and other social problems (Potash et al., 2015;
Ghani, 2018; Ye et al., 2019; Shiba et al., 2021b,a; Kino et al., 2021). To combat these
challenges, policymakers need methods that can personalize public policies (Tabar et al.,
2022). This requires moving beyond ACE/CACE estimation and employing counterfactual
inference (Pearl, 2009). This enables personalized public policy analysis (P3A), tailoring
policies to the specific contexts of each individual child, also known as individual causal
effect or ICE.

The main reason for the above mentioned lack of personalized policy making is that it
requires answering counterfactual questions at a desired personalized granular level. Com-
pared with causal questions, counterfactual questions are “what if ..?” questions that
need a finer understanding/assumption of the underlying data generation process (DGP) or
structural causal model (SCM) to be answered (Haavelmo, 1943; Goldberger, 1972; Ploch
et al., 1975; Fienberg and Duncan, 1975; Pearl, 2009; Matsueda, 2012; Peters et al., 2017).
Typically, the true DGP (which is unknown in most real-world applications) or at least
a counterfactually equivalent SCM to the true DGP is requiered to answer counterfactual
queries (Mooij et al., 2016; Peters et al., 2017). In other words, while there are machine
learning algorithms for estimating ACE and CACE (Shalit et al., 2017; Künzel et al., 2019;
Athey et al., 2019; Wodtke, 2020), there is a lack of similar methods for estimating ICE, as
it involves modeling and estimating the unobserved causes that impact individual-level out-
comes. Recent developments in deep-learning based generative models for causal inference,
such as Neural Causal Model (NCM) (Xia et al., 2021), Deep-SCM (Pawlowski et al., 2020),
Causal Autoregressive Flow (CAREFL) (Khemakhem et al., 2021), Causal-Graphical Nor-
malizing Flow (c-GNF) (Balgi et al., 2022), and Causal Normalizing Flow (CNF) (Javaloy
et al., 2023), have demonstrated the applicability of deep-learning based methods for causal
effect estimation. Especially, c-GNFs stand out as they allow counterfactual inference since
they are invertible by construction and, thus, they enable the estimation of individually
specific unobserved causes.

Our current work makes the following main contributions:

1. We show that under certain monotonicity assumption of the underlying true DGP,
c-GNFs are counterfactually equivalent to the unknown underlying causal system, en-
abling exact individual-level counterfactual analysis for personalized treatment/public-
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policy prediction. Since the most common noise models in the literature, such as
additive noise models (Hoyer et al., 2008) and post-nonlinear causal models (Zhang
and Hyvärinen, 2009), are monotonic transformations of the respective noises, they
satisfy our monotonicity assumption. Therefore, c-GNFs satisfy counterfactual equiv-
alence under the assumption of such noise models and hence they are applicable for
individual level counterfactual analysis and personalized treatments.

2. Equipped with the counterfactual equivalence, we apply c-GNFs to a large-scale real-
world dataset on child poverty in IMF programs, recovering a counterfactually equiva-
lent SCM using c-GNFs and thus conducting counterfactual analysis at different levels
of personalization: ACE at the global level, CACE at the country level, and ICE at
the individual (child) level. Our analysis achieves this personalization by combining
micro (i.e., child and family conditions) and macro factors (i.e., politics, economy, and
society) about the families and countries in which children reside when a government
introduces an IMF program. This personalized approach aligns with the policy vision
of tailoring interventions to individuals’ needs and contexts.

The structure of our paper is as follows. Firstly, in Section 2, we introduce the necessary
notations and define the problem. We also define the causal estimand of interest at different
levels of personalization, i.e., the ACE, CACE, and ICE. In Section 3, we demonstrate that
the c-GNF models an SCM that is counterfactually equivalent to the underlying causal DGP
when certain monotonicity assumption holds. In Section 4, we present the experimental
setup, followed by the analysis of the results, and a discussion on the assumptions and
limitations. We also include a sensitivity analysis for the unconfoundedness assumption.
Finally, in Section 5, we conclude the paper by summarizing our key contributions and
highlighting their significance.

2. Problem Definition

Figure 1(a) presents the DAG of the social system under study in this work as derived by
domain experts (i.e., social scientists) and prior work (Daoud and Johansson, 2024). In
the figure, the green node IT prog cgn denotes the cause/policy/treatment of interest, and
the blue node CP degree denotes the effect/outcome of interest. Pink nodes denotes the
observed confounders (i.e., causes of both the treatment and the outcome), and the blue
nodes denote effect modifiers (i.e., causes of the outcome but not of the treatment).

In the social system under study, the degree of the child poverty CP degree is calcu-
lated as the sum of seven binary individual dimensions of poverty: (i) education, (ii) health,
(iii) information, (iv) malnutrition, (v) sanitization, (vi) shelter, (vii) water, resulting in an
aggregate degree of child poverty between 0 and 7 with 0 indicating no poverty and 7 indi-
cating severe poverty. The corresponding nodes are prefixed by CP in Figure 1(a). The set of
macroeconomic factors confounding the causal effect of the IMF program include economic
factors (prefixed by EC), political factors (prefixed by PO), political will (prefixed by PW) and
fiscal factors (prefixed by PS). These factors respectively span a country’s level of economic
development/inflation/trade, democracy/laws/corruption/war, political will/motivation to
implement IMF programs and institutional arrangements/spending. Finally, the set of mi-
croeconomic and family living condition factors acting as effect modifiers include factors
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Figure 1: (a) Hypothesized DAG with the 32 observed variables (treatment, outcome and
confounders/covariates) for the IMF causal system. (b) Conceptual DAG G for the IMF
causal system. The solid-lined and the dash-lined nodes respectively indicate observed and
unobserved variables.

such as child’s age, sex and family wealth. These are prefixed by LC. Although these ef-
fect modifiers are unnecessary for adjusting given the macro-economic confounders, as we
will explain later, they are critical to identify potential outcomes and personalized optimal
treatment.

Figure 1(b) represents a conceptualization/abstraction of the DAG in Figure 1(a). In
the conceptual DAG, A denotes the cause/policy/treatment of interest and Y denotes the
effect/outcome of interest. The node C encompasses all the macroeconomic factors, the
node O encompasses all the microeconomic and family living condition factors. The dashed
nodes and arrows will be explained later.

As mentioned above, the DAG introduced in this section has previously been considered
by Daoud and Johansson (2024) for heterogeneous treatment effect identification and esti-
mation by means of generalized random forests (GRFs) (Athey et al., 2019). However, the
authors made the following simplifying assumption for computational ease: They considered
an indicator of child poverty obtained by thresholding the actual degree of child poverty so
that degrees 2 to 7 indicate poor and degrees 0 and 1 indicate not poor. This assumption
changes the expressions of ICE/CACE/ACE leading to wrong conclusions as we detail in
Appendix A. Moreover, GRFs do not model the unobserved causes that are crucial for the
counterfactual equivalence necessary for the ICE estimation, thus limiting P3A that is of
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interest to us. Also, GRFs lack the possibility to make the assumption of a detailed DAG
as in Figure 1(a), which is also necessary for counterfactual equivalence. Our work has not
such limitations.

2.1. Causal Estimands of Interest

Let Y :=tY (A,C,O, εY )=tY |A,C,O(εY ) be the true DGP or structural equation for the out-
come of interest Y in Figure 1(b) as a function of all its observed {A,C,O} and un-
observed εY causes/parents such that the potential outcome under intervention A:=a is
Ya(C,O, εY ):=tY |a,C,O(εY ). Then, our causal estimands of interest are formally defined as
follows.

ICE(C,O, εY )=Y1(C,O, εY )−Y0(C,O, εY ) (1a)

CACE(X=x)=E{C,O,εY }\X=x[ICE(C,O, εY )] (1b)

ACE=CACE({∅})=E{C,O,εY }[ICE(C,O, εY )] (1c)

That is, the difference of the potential outcomes under interventions A:=0, 1 provides
the ICE in Eq. (1a), and marginalizing/averaging the ICEs over the respective popula-
tion of interest provides the CACE in Eq. (1b) and ACE in Eq. (1c). The term ‘aver-
age’ in the ACE/CACE corresponds to the expectation over the non-conditioning causes
{C,O, εY }\X=x where X=x denotes the conditioning set. Therefore, in the personaliza-
tion granularity spectrum, we have that the ICE offers the highest personalization and
the ACE that offers no personalization at the extremes, with the CACE offering condi-
tional/intermediate personalization. Even though do-calculus (Huang and Valtorta, 2006;
Shpitser and Pearl, 2006; Pearl, 2012) identifies the non-parametric expression for the ACE
or CACE based on the interventional distribution expressions, do-calculus cannot be used
to estimate the ICE as the knowledge of the structural equation or the exogenous noise of
the SCM εY for the outcome of interest Y is unobserved/unknown.

Our main objective in this work is to estimate the causal effect of the treatment (IMF
program) on child poverty at any given population level or granularity, and personalize
treatments at the desired granularity. Depending on the granularity, the instantiation of
the causal effect of interest might vary, i.e., the ACE defines the causal effect when the
granularity is the entire population level (Global-South), the CACE defines the causal
effect when granularity is a sub-population level (e.g., country, age, gender, etc.), and
the ICE defines the causal effect when personalization granularity is the individual child
level. Since the IMF program in the observational dataset in our experimental application
is personalized at the country level, country-wise CACE is considered for intermediate
granularity level.

3. Counterfactual Equivalence with Causal-Graphical Normalizing Flows

In this section, we establish a condition under which a c-GNF is counterfactually equivalent
to the underlying true SCM. Although we focus on the DAG in Figure 1(b), the result holds
for any DAG.
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Any given observed variable X∈{O,C,A, Y } in Figure 1(b) may be expressed as a
SCM with functional mechanism/transformation tX , its observed parents/causes Xpa, and
unobserved parent/cause εX , i.e.,

X := tX(Xpa, εX) = tX|Xpa
(εX) . (2a)

The unobserved/unknown cause εX in Eq. (2a) may follow any unknown arbitrary dis-
tribution that we may represent in terms of an uniform random variable UX in [0, 1] as
εX := F−1

εX
(UX), where FεX denotes the cumulative distribution function (CDF) of εX .

Hence, substituting for εX in Eq. (2a), we have

X := tX|Xpa
(F−1

εX
(UX)) . (2b)

The uniform random variable UX can further be represented in terms of the standard
normal random variable ZX , i.e., UX :=Φ(ZX) where Φ denotes the CDF of the standard
normal variable ZX . Hence, substituting for UX , the SCMs in Eqs. (2a)-(2b) may be
equivalently written as

X := tX|Xpa
(F−1

εX
(Φ(ZX))) . (2c)

A graphical representation of the equation above can be seen in Figure 1(b). As
Eqs. (2a)-(2c) are simple substitutions, they represent observationally, interventionally and
counterfactually equivalent SCMs, which implies that the causal and counterfactual effects
of these SCMs are the same.

We represent the SCM in Eq. (2c) as

X := TX|Xpa
(ZX) , (3)

and we refer to it as encapsulated-SCM because it encapsulates the underlying true DGP.

Given that F−1
εX

and Φ are monotonic functions, suppose that tX|Xpa
is also a monotonic

transformation. Then, from the results of compositions of monotonic functions (Lorch and
Newman, 1983), the composition tX|Xpa

◦ F−1
εX

◦ Φ in Eq. (2c) is also monotonic and unique.

Hence, T−1
X|Xpa

is an invertible transformation of an arbitrarily distributed observed variable

X into a standard normal variable ZX , i.e. a normalizing flow or c-GNF since we are in a
causal setting (Balgi et al., 2022). Thus, a c-GNF represents a counterfactually-equivalent
SCM to the underlying true SCM, under the assumption of a monotonic DGP tX|Xpa

. As
the most common noise models in the literature, such as additive noise models (Hoyer
et al., 2008) or post-nonlinear causal models (Zhang and Hyvärinen, 2009), are monotonic
transformations of the respective noises, c-GNFs satisfy counterfactual equivalence for those
models. Nasr-Esfahany et al. (2023) has derived similar results under similar conditions.

For compact notation, the encapsulated-SCM TX|Xpa
:ZX→X for the random variable

X in Eq. (3) is extended to the random vector in the DAG in Figure 1(b) as TG :Z→X.
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We model the c-GNF T−1
G :X→Z as a deep-neural-network (DNN), specifically, as a Uncon-

strained Monotonic Neural Network (UMNN) (Wehenkel and Louppe, 2019) and the graph-
ical conditioner from GNFs (Wehenkel and Louppe, 2021) for appropriately conditioning
the transformation with the respective parent variables as defined in G. The UMNN (We-
henkel and Louppe, 2019) transformer, a strictly monotonic integration based transformer
ensures that T−1

G and TG are monotonic. Hence, c-GNFs are able to universally model
any arbitrary data distribution and thus the underlying non-linear DGP (Huang et al.,
2018). The DNN parameterised c-GNF T−1

G (•; θ) is trained as any other normalizing flow

by maximizing the log-likelihood of the observational training dataset {Xℓ}Ntrain
ℓ=1 (Kobyzev

et al., 2021; Papamakarios et al., 2021; Wehenkel and Louppe, 2021), expressed as

LL(θ)=
Ntrain∑
ℓ=1

log
(
fX(Xℓ; θ)

)
, (4)

fX(Xℓ; θ)=fZ

(
T−1
G (Xℓ; θ)

)
∗
∣∣∣det(JT−1

G (Xℓ;θ)(X
ℓ)
)∣∣∣ , (5)

where θ denotes the parameters of the UMNN transformer and the graphical conditioner,
which are optimized using minibatch stochastic gradient descent. From the construction of
normalizing flows, the joint probability density function of a multivariate standard normal
fZ(Z

ℓ) and the determinant of the Jacobian of the c-GNF det(JT−1
G (Xℓ;θ)(X

ℓ)) are compu-

tationally efficient to obtain, resulting in computationally efficient training of the c-GNF
T−1
G :X→Z.

The c-GNF T−1
G or the corresponding SCM TG are invertible by construction, facili-

tating computationally efficient counterfactual inference using Pearl’s first law of causal
inference (Pearl, 1999, 2009). Specifically, let Y :=TY (A,C,O,ZY )=TY |A,C,O(ZY ) be the
counterfactually-equivalent SCM of the outcome of interest Y , identified as explained above
under the monotonicity assumption of the underlying true DGP of Y , i.e., Y :=tY |A,C,O(εY ).
Pearl’s first law of causal inference provides three steps to identify the unknown potential
outcome Y ℓ

a of the ℓth individual under the intervention A:=a that is necessary to estimate
the ICE, CACE and ACE in Eqs. (1a)-(1c):

(i) Abduction step: For the set of N individual observational samples {(yℓ, aℓ, cℓ, oℓ)}Nℓ=1

from the given dataset, their respective individual unobserved exogenous noises {zℓY }Nℓ=1 are
identified using zℓ=T−1

Y |aℓ,cℓ,oℓ(y
ℓ).

(ii) Action step: The structural equation corresponding to the treatment/interventional
variable A in Eq. (2c) is replaced with the desired interventional value A:=a to obtain the
mutilated structural equation Ya:=TY (a,C,O,ZY )=TY |a,C,O(ZY ).

(iii) Prediction step: The counterfactual Y ℓ
a (C

ℓ, Oℓ, Zℓ
Y ) necessary for the ICE esti-

mation in Eq. (1a) for the ℓth individual sample with respective observed causes {cℓ, oℓ}
and unobserved cause {zℓY } is computed with the following mutilated structural equation
Ya:=TY (a,C,O,ZY )=TY |a,C,O(ZY ) as Y

ℓ
a :=TY (a, c

ℓ, oℓ, zℓY ).

The ICE in Eq. (1a) for the ℓth individual is estimated as ICEℓ=Y ℓ
1−Y ℓ

0 . The av-
erage causal effects such as the CACE in Eq. (1b) and ACE in Eq. (1c) are estimated
using Monte-Carlo expectation estimation by averaging the ICE of all the individuals is the
(sub)population of interest. That is, averaging the ICE of all the individuals in a country
estimates the CACE for the specific conditioning country, while averaging over the entire
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(a) (b)

Figure 2: (a) Country-wise distribution of the child population in the IMF dataset. (b)
Average degree of child poverty in the factual world, i.e., under TSOb.

population estimates the ACE of the entire population. Note that it is sufficient to model
counterfactually equivalently the structural equations of the variables on the causal paths
from treatment to outcome, while the rest are irrelevant. In our DAG in Figure 1(a),
this corresponds to the seven binary CP prefixed variables because, recall, the outcome
CP degree is just the sum of them.

4. Experimental Results

4.1. Experimental Setup and IMF Dataset Details

We consider the IMF child poverty dataset used by Daoud and Johansson (2024), Daoud
et al. (2017), and Halleröd et al. (2013) with 1,941,734 children under the age of 18, residing
in 67 countries from the Global-South. The benefit of this dataset is that it represents 2.8
billion children (50%) of the world’s population by the year 2000. Due to the sensitive nature
and the accompanying ethical considerations, the IMF dataset is not publicly available but
it can be requested upon from the original authors. Figure 2(a) shows the country-wise
distribution of the number of children in the dataset. Figure 2(b) shows the country-wise
average degree of child poverty as observed in the dataset.

Since DNNs are prone to overfit, we split the data into 1,922,316 training, 9,709 valida-
tion and 9,709 test samples (as few thousand samples for the validation and test sets are
typical in social sciences). We use only the training set samples for training and use the
held-out validation set for early stopping to get the model with best validation loss. We
further evaluate the generalization of the best validation loss model on the held-out test set.
We use fully-connected layers with [40, 30, 20] hidden units for the graphical conditioner
and fully-connected layers with [15, 10, 5] hidden units for the UMNN transformer. We
consider the PyTorch (Paszke et al., 2017) baseline codes from c-GNFs1 (Balgi et al., 2024,
2022), UMNNs (Wehenkel and Louppe, 2019), and GNFs (Wehenkel and Louppe, 2021)
setting AdamW (Loshchilov and Hutter, 2019) optimizer with learning-rate=3e−4 and a
batch-size of 1024 (4GB of GPU memory) for all our experiments. We rerun our experi-
ments with five random seeded initializations to assess the robustness of the training and

1. https://github.com/cGNF-Dev
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the model counterfactual predictions, and we report box-plots to show the variability of the
results across simulations.

For any given personalization granularity, we aim to identify the optimal treatment to
prescribe. In our analysis, we consider five treatment strategies at three personalization
granularities. The granularities are Global-South (no personalization), country (intermedi-
ate personalization), and individual child (finest personalization) levels. The five treatment
strategies are described as follows: (i) TSOb : The IMF program is encouraged (A:=1) or
discouraged (A:=0) for the entire country based on the observed treatment, i.e., the coun-
tries treated get encouraged and the rest do not. (ii) TS1 : The IMF program is encouraged
(A:=1) for the entire Global-South. Then, there is no personalization at any granularity.
(iii) TS0 : The IMF program is discouraged (A:=0) for the entire Global-South. Then, there
is no personalization at any granularity. (iv) TSC : The IMF program is encouraged (A:=1)
or discouraged (A:=0) or neither for the entire country based on the country’s CACE in
Eq. (1b). Then, there is personalization at country level. (v) TSI : The IMF program is
encouraged(A:=1) or discouraged (A:=0) or neither based on the child’s ICE in Eq. (1a).
Then, there is personalization at child level.

4.2. Analysis of the Experimental Results

Figure 3(a) indicates the country-wise average degree of child poverty in the counterfactual
world under TS1, i.e., all the countries in the Global-South receive IMF program. Similarly,
Figure 3(b) indicates the country-wise average degree of child poverty in the counterfactual
world under TS0, i.e., none of the countries in the Global-South receives IMF program.
Comparing Figures 3(a) and 3(b) indicates that the IMF program in expectation is beneficial
in the poverty reduction when countries are prescribed the IMF program over not prescribing
the IMF program. Figure 3(c) shows the boxplots of the differences of the counterfactual
worlds under TS1 and TS0 indicating the CACE, over five random seeded simulations
plotted along with the zero-ACE line for reference. Figure 3(c) reconfirms the beneficial
nature of the IMF program in the Global-South across multiple simulations as the average
degree of the child poverty is observed to be reduced by 1.2±0.24 degrees. In Appendix A, we
additionally present and discuss the degree-wise statistics of child-poverty across treatment
strategies aggregated over five random seeded simulations.

Figure 3(d) indicates the country-wise average degree of child poverty in the counter-
factual world under TSC , i.e., there is optimal treatment personalization at country-level
via the optimal treatment identified based on the CACE in Figure 3(c). Figure 3(e) in-
dicate the country-wise average degree of child poverty in the counterfactual world under
TSI , i.e., there is optimal treatment personalization at individual child-level via the optimal
treatment identified based on the ICE. From Figures 2(b) and 3, the treatment strategies
can be sorted in the decreasing order of their expected degree of child poverty E[YTSa ] as
follows: TS0 > TSOb > TS1 > TSC > TSI . This indicates that the IMF program is bene-
ficial for the Global-South (TS0 > TSOb > TS1). The personalization at country level due
to the treatment strategy TSC represents a significant reduction in child poverty over the
‘one-size-fits-all’ treatment strategy TS1 and the sub-optimal naturally observed treatment
strategy TSOb. Moreover, personalization at the individual child level also exhibits further
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(a) (b)

(c)

(d) (e)

Figure 3: (a) Average degree of child poverty in the counterfactual world under TS1. (b)
Average degree of child poverty in the counterfactual world under TS0. (c) Boxplots of the
differences of the counterfactual worlds under TS1 and TS0 indicating the CACE, over five
random seeded simulations plotted along with the zero-ACE line for reference. (d) Average
degree of child poverty in the counterfactual world under TSC . (e) Average degree of child
poverty in the counterfactual world under TSI .

benefits (TSC > TSI). Our results indicate the benefits of performing P3A to effectively
combat social ills in contrast to the ‘one-size-fits-all’ approaches.

4.3. Assumptions and Limitations

Performing counterfactual inference at the top rung in Pearl’s ladder of causation necessi-
tates the assumption of a causal DAG, which requires domain knowledge expertise (Pearl,
2009; Pearl and Mackenzie, 2018). Furthermore, it is necessary that the SCM is known
and is counterfactually-equivalent to the underlying causal DGP, which requires additional
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assumptions on the functional forms of the DGP. In this work, we showed the counter-
factual equivalence of the DGP with the c-GNF, under the assumption of monotonicity
of the observed effects with respect to their respective unobserved causes, an assumption
satisfied by the most well studied and widely assumed models such as such as additive
noise models (Hoyer et al., 2008) and post-nonlinear causal models (Zhang and Hyvärinen,
2009). Unconfoundedness or no unobserved confounders is also assumed in our work, as the
DAG is expressed only respect to the observed confounders/variables. We present below a
sensitivity analysis of our results to assess the impact of violations of the unconfoundedness
assumption. The results obtained confirm our previous conclusions.

Causal effect identification from observational studies inevitably presumes certain un-
confoundedness assumption in the DAG, e.g., between the treatment and the outcome in the
case of back-door adjustment (Pearl, 2009) or between the treatment’s parent and the out-
come in the case of instrumental variables (Angrist et al., 1996) or between the treatment’s
child and the outcome in the case of the front-door criterion (Robins and Greenland, 1992;
Pearl, 2014). However carefully one formulates the DAG, it is probable that some confound-
ing variables might be missing. While unconfoundedness is an untestable assumption (Ru-
bin, 1990; Robins and Hernán, 2008), sensitivity analysis enables scholars to evaluate the
influence of such unmeasured confounding (Cornfield et al., 1959; Sjölander, 2020). Hence,
we present here two sensitivity analyses: Assumption-free (AF) bounds (Robins, 1989; Man-
ski, 1990) and the E-value (VanderWeele and Ding, 2017; Mathur et al., 2018).2 None of
the analyses makes use of our monotonicity assumption.

Unlike for binary outcomes, the AF bounds are not available for non-binary outcomes
such as the categorical total degree of child poverty (degree 0: no poverty to degree 7:
severe poverty). Since the degree of child poverty is formulated as the sum of seven binary
individual dimension of child poverty, we may identify the AF bounds for each binary
individual dimension of child poverty and extend the AF bounds to the total degree of
child poverty as the sum of the respective lower and upper bounds. From the observational
dataset, the AF lower and upper bounds for the seven binary individual dimensions of child
poverty are identified as (i) education: [−0.4843, 0.5157], (ii) health: [−0.5009, 0.4991],
(iii) information: [−0.4893, 0.5107], (iv) malnutrition: [−0.5111, 0.4889], (v) sanitization:
[−0.5012, 0.4988], (vi) shelter: [−0.4756, 0.5244], (vii) water: [−0.4738, 0.5262]. Note that
since the binary AF bounds are of width 1, and the total degree of child poverty is a sum of
seven binary variables, the AF bounds for the total degree of the child poverty is of width
7. Our ACE estimate of −1.2±0.24 is indeed within the bounds.

Further, the E-value (VanderWeele and Ding, 2017; Mathur et al., 2018) for the ACE
estimate of −1.2 under the observed confounding is obtained as 5.47, i.e., a significant
measure of unobserved confounding is required over the observed confounding to explain
away the ACE of −1.2. This high E-value indicates that to explain away the identified ACE,
it is required that the unobserved confounding to be significant. Based on the expertise of
domain professionals, it is considered improbable that such strong unobserved confounding
exists.

2. https://www.evalue-calculator.com/evalue/
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5. Conclusion

In this article, we presented the monotonicity assumption of the underlying true causal data
generating process necessary for counterfactual equivalence to the SCM modeled using nor-
malizing flows, particularly c-GNFs. Utilizing this counterfactual equivalence of c-GNFs,
we showcased a real-world application to draw counterfactual insights on the impact of
the IMF program on child poverty from the observational data. Our findings in terms of
ACE indicated the IMF program to be beneficial for the Global-South, in expectation. The
sensitivity analysis via assumption-free bounds and the E-value confirmed our conclusions.
Unlike the traditional ‘one-size-fits-all’ treatment, we proposed an empirical framework to
formulate and identify personalized treatment strategies at different population granular-
ity levels by computing the ACE, country-wise CACE, and child-wise ICE. Though we
demonstrated the personalized treatment strategy formulation framework in a social sci-
ence setting, the applicability of c-GNFs to the field of medical science for personalized
medicine also follows.
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Appendix A. Additional Degree-wise Child Poverty Results and Analysis

Figure 4: Boxplots over five random seeded simulations to assess c-GNF robustness across
multiple simulations. (a) Number of samples in each of the 8 possible degrees of child
poverty across different treatment strategies. (b) Advisability of the IMF program for each
treatment strategy. (c) Average degree of child poverty for each treatment strategy. (d)
The ACE estimate between treatments TS1 and TS0.

Figure 4(a) shows the child poverty degrees for the entire Global-South across multiple
treatment strategies for multiple simulations. More importantly, Figure 4(b) shows the
IMF program advisability statistics for the different treatment strategies. TSI provides the
finest personalization at the individual child level and we observe that, for this strategy
on 1,941,734 children from the Global-South, the IMF program is harmful (hence, discour-
aged) for 7.25±4.89%, beneficial (hence, encouraged) for 61.22±4.08%, and neutral for the
rest. Contrast to TSI , TSC provides intermediate personalization at country level and we
observe that for this strategy, the IMF program is discouraged for 10.8±7.1%, encouraged
for 88.1±6.04%, and neutral for the rest. With TSC , since personalization is at the country
level, we see an increase in the population that are discouraged and encouraged irrespective
of the IMF programs being individually beneficial/harmful/neutral.

Figure 4(c) shows the variation of the average degree of child poverty for all the treatment
strategies obtained from averaging Figure 4(a). From Figure 4(c), the treatment strategies
can be sorted in the decreasing order of their expected degree of child poverty E[YTSa ] as
TS0 > TSIt > TSOb > TS1 > TSC > TSI . This indicates that the IMF program is benefi-
cial for the Global-South (TS0 > TSOb > TS1). Figure 4(c) shows that the personalization
at the country level due to the treatment strategy TSC (purple) represents a significant
reduction in child poverty over the ‘one-size-fits-all’ treatment strategy TS1 (blue) and the
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sub-optimal naturally observed treatment strategy TSOb (orange). Moreover, personaliza-
tion at the individual child level also exhibits further benefits (TSC > TSI). Note that the
zero variance of the TS0, TS1 and TSOb is due to the fact that the respective treatments are
held constant for these strategies. Figure 4(d) reconfirms the beneficial nature of the IMF
program across multiple simulations as the average degree of the child poverty is observed
to be reduced by 1.2±0.24 degree. Our results indicate the benefits of performing P3A, to
effectively combat social ills in contrast to the ‘one-size-fits-all’ approaches.

Note that for A:=aℓ, we have Y ℓ
aℓ
=yℓ and this is referred as the consistency of potential

outcomes, i.e., the potential outcome Y ℓ
aℓ

under the factual treatment A:=aℓ is the same as

the factual outcome yℓ (Cole and Frangakis, 2009; VanderWeele, 2009). The invariability of
the boxplot of TSOb in Figure 4 (i.e., naturally observed treatment) validates the consistency
assumption of the c-GNF model, as the same outcome is expected for the same observed
treatments across multiple simulations.

Along with the five treatment strategies, we additionally consider the treatment strategy
TSIt where the IMF program is encouraged (A:= 1) or discouraged (A:=0) or neither based
on the child’s ICE with indicator thresholding of Y , i.e., 1[Ya(C,O,ZY )>1] from Daoud and
Johansson (2024), i.e., degrees 2 to 7 indicate poor and degrees 0 and 1 indicate not poor,
resulting in the modified ICE expression ICEt(C,O,ZY )=1[Y1(C,O,ZY )>1]−1[Y0(C,O,ZY )>1].
Then, there is personalization at child level but based on the binarized Y as opposed to
the actual degree Y . Our findings indicate the importance of considering all the seven
poverty degrees in the analysis in contrast to Daoud and Johansson (2024), because the
IMF program may help children move from severe to moderate poverty if not totally from
severe to minor/absent poverty. This critical intra-degree improvement may get obscured if
a binary indicator of poverty (poor vs non-poor) is used, leading to the erroneous conclusion
that personalization of the IMF program is irrelevant. This fundamental oversight from
over-simplification by grouping poverty degrees 2 to 7 neglects the improvements within the
group, e.g., 7 to 2 is a significant improvement for which the IMF program will be rightly
encouraged in TSI . However, TSIt considers no change in the indicator of the poverty
and hence wrongly assumes that the IMF program is neutral for resource optimization. In
other words, TSIt wrongly values a change of degree from 2 to 1 more than a change of
degree from 7 to 2. This is specifically seen in the advisability plots of TSIt in Figure 4(b)
where, compared to TSI , there is a preferential increase in the neutral advisability over
the encouragement/discouragement alternatives. This important finding of ours reinforces
the need of the radical rethinking proposed in Banerjee and Duflo (2011) that suggests one
should not resort to over-simplification.
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