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Abstract

Maximal ancestral graphs (MAGs) can represent causal relationships in systems that in-
clude unmeasured common direct causes. Constraint-based causal discovery methods are
able to find solely the Markov Equivalence Class (MEC) of the causal structure given a
set of observational data. To bound the total effect estimation between a pair of variables,
when the MEC of the causal structure is known, the causal effect on each member in the
MEC are computed, while keeping the minimum and maximum values as the lower and
upper bounds for the total causal effect. However, when the modeling is done using MAGs,
i.e., the MEC is encoded as a Partial Ancestral Graph (PAG), it is not always possible to
find an adjustment set over some pairs of variables for the computation of the causal effect
by covariance adjustment. In such cases, the LV-IDA algorithm returns missing values on
the causal effects computation for some, and occasionally all, of the MAGs in the PAG. We
present an extension of the LV-IDA algorithm, which we call the LV-IDA+ algorithm, that
can compute approximated bounds of causal effects between every pair of the variables on a
PAG. To achieve this, we propose a way to approximate the causal effect estimations when
it is not possible to find adjustment sets for some pairs of variables on the MAGs in a PAG.
We evaluate the performance of LV-IDA+ using simulated data generated by a canonical
DAGs and compare with the LV-IDA algorithm. The results suggest the approximations
of causal effects computed by LV-IDA+, are better than the missing values (simple NAs)
returned by the LV-IDA algorithm, at least for the case of observational data generated by
a canonical DAGs with latent variables.

Keywords: Causal Graphical Models, Causal Effect Estimation, Causally Insufficient Sys-
tems, Maximal Ancestral Graphs, Gaussian Linear Models, Unmeasured Common Causes.

1. Introduction

The causal effect between a pair of variables (X,Y ) it is a measure of how much the
variable Y is modified when manipulating the variable X. The prevailing mean of estimating
such effects is using randomized controlled experiments, in which the treatment variable
(the cause) is randomized while the outcome variable (the effect) is passively observed.
Nevertheless, experimental data are not always available given that randomized controlled
experiments can be unethical, infeasible, time consuming, or expensive. On the other hand,
observational data, i.e., data associated with processes that cannot be reproduced and are
therefore not appropriate for conducting controlled experiments, are often abundant. In this
research, we consider the problem of estimating the causal effects between pairs of variables
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given only observational data. Causal effect estimation is notoriously hard to calculate from
this kind of data, but recently there has been much interest to this problem (see Montero-
Hernandez et al. (2018); Perković et al. (2018); van der Zander et al. (2019)). However,
most works consider the assumption of causal sufficiency. This assumption stipulates that no
variables which are common direct causes of at least two measured variables are unmeasured.
In this paper we do not consider this assumption, which is often not realistic in applied
contexts.

The general approach we use to solve this problem is the covariate adjustment method
in the context of causal graphical models. This method can be divided in three parts: (i)
First, a causal structure represented by a graph is estimated, where the vertices are the
variables in the system and the edges indicate direct causal relationships between them.
(ii) Then, the structure of the causal graph is used to find a set of variables, called the
adjustment set, which is a sufficient set, along with the treatment variable, to compute the
needed interventions. (iii) Lastly, using an adjustment set, the interventions required to
estimate total causal effect can be calculated (see Section 3 for details).

Our contribution deals with the second and third part of the covariant adjustment
method. Concerning the first part, we consider that the causal structure is estimated by
a constraint-based algorithm. These algorithms consider conditional dependencies on the
observational distribution, to infer the causal directed acyclic graph (DAG) that generated
the data. Unfortunately, multiple DAGs can encode the same set of conditional indepen-
dence relationships so these methods can exclusively find an equivalence class, called the
Markov Equivalence Class (MEC), of the underlying causal structure given a set of obser-
vational data (see Glymour et al. (2019)). If the assumption of causal sufficiency is relaxed,
then the causal structure is represented as a Maximal Ancestral Graph (MAG). Under this
scenario, a constraint-based algorithms, such as the Fast Causal Inference algorithm (FCI),
will estimate a Partial Ancestral Graph (PAG), which encodes a MEC of MAGs (see Zhang
(2008b); Ogarrio et al. (2016)).

Regarding the search for adjustment sets, in Maathuis and Colombo (2015); Perković
et al. (2018) and van der Zander et al. (2019) are defined graphical criterion over DAGs
and MAGs for finding sets of variables that can be used in order to estimate the total
causal effect from observational data. In particular, in Perković et al. (2018) and van der
Zander et al. (2019), sound and complete algorithms are shown for constructing sets that
satisfy their criterion for MAGs. These results play a fundamental role for the causal effects
estimations in the algorithm we propose.

Since by means of a constraint-based algorithm it is not possible to specify a single causal
structureM but a summary structure P that represents the MEC to whichM belongs. It is
possible to unfold P to list all the structures represented by P and calculate the causal effect
among a variables pair (X,Y ) in each of the causal structures in P, performing the second
and third part of the covariante adjustment method. Under this framework, we can bound
the real causal effect between a pair of variables (X,Y ) as the minimum and maximum of
the effects calculated in each of the models in P. This framework to bound total causal
effects in causal sufficient system, i.e., considering that M is given as a DAG and P as a
Completed Partially Directed Acyclic Graph, was proposed in Maathuis et al. (2009) as the
IDA (“Intervention when the DAG is Absent”) algorithm. The IDA algorithm was extended
for insufficient system in Malinsky and Spirtes (2017), where the LV-IDA (Latent Variables
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IDA) algorithm was proposed. This algorithm works with MAGs as the underlying causal
structures, M, and PAGs as their summary structure, P, allowing the possibility of latent
confounders in the modeling.

In this paper, we propose an algorithm based on the IDA and LV-IDA algorithms to
calculate the bounds of the causal effects between any pair of variables (X,Y ) in a insuf-
ficient system, i.e., considering non-measured direct causes. As in IDA and LV-IDA, we
consider the case that the system V = {X1, . . . , Xp} is jointly Gaussian, and as in LV-IDA,
we use MAGs and PAGs, to represent the causal structure and the MEC, respectively, of
the system. The main difference of the LV-IDA algorithm with respect to the proposed al-
gorithm, LV-IDA+, is that LV-IDA+ always guarantees the calculation of the causal effect
between any pair of variables in the system. LV-IDA cannot always calculate this effect for
some pairs of variables and then occasionally returns missing values as output. This is due
to the fact that in these cases there is no adjustment set for the pair of variables (X,Y )
in some, and occasionally all, MAGs in the PAG. Our main contribution proposes a way
to approximate the causal effect when these degenerate cases are presented. The LV-IDA+
algorithm uses the adjustment sets of the canonical DAGs associated with the MAGs in
the PAG to compute the bounds on the causal effects in these special cases. Experimental
results over synthetic models show a higher accuracy in the estimation of the bounds on
causal effects using the proposed approach compared to LV-IDA, in particular when LV-IDA
returns NAs.

After discussing the preliminaries on MAGs and its relation with causal DAGs in the
next section; in Section 3, we review the needed concepts on interventions calculus and
covariate adjustment over Causal Bayesian Networks in the context of the IDA framework,
upon which we base this research. Following this, we give the description of the proposed
method in Section 4, and present the experimental setup and the simulations results in
Section 5.

2. Preliminaries

A directed mixed graphM is a graph (V ,E) that may contain two kinds of edges: directed
edges (→) and bi-directed edges (↔).1 Between any two vertices there is at most one edge.
The two ends of an edge are called marks and there are two kinds of marks: arrowhead (>)
and tail (−). Two vertices are said to be adjacent in a graph if there is an edge between
them. If X → Y inM then X is a parent of Y and X ∈ pa(Y ). A vertex X is said to be an
ancestor of a vertex Y , X ∈ an(Y ), if either there is a directed path X → · · · → Y from X
to Y , or X = Y . A mixed directed graph is an ancestral graph if: (a) there are no directed
cycles (b) whenever there is an edge X ↔ Y , then there is no directed path from X to Y , or
from Y to X. In an ancestral graph, a nonendpoint vertex X on a path is said to be a collider
if two arrowheads meet at X. All other nonendpoint vertices on a path are noncolliders. A
path along which every nonendpoint is a collider is called a collider path. An inducing path
π relative to a set L, between vertices X and Y in an ancestral graph G, is a path on which
every nonendpoint vertex not in L is both a collider on π and an ancestor of at least one of
the endpoints, X and Y . An ancestral graph is called a Maximal Ancestral Graph (MAG)

1. We use the notation convention that all sets in the article appear in bold and reserve calligraphic font
for graphics, e.g., G is a graph and E is a set of edges.
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if there is no inducing path between any two non-adjacent vertices (see Zhang (2008a)).
As a probabilistic model, the vertices of a MAG M represent random variables, and the
structure ofM is interpreted as encoding a set of conditional independence relations by the
m-separation graphical criterion (see Zhang (2008a,b)), which generalizes the well-known
d-separation criterion for Directed Acyclic Graphs (DAGs).

A causal model is a pair (M,ΦM) whereM is a graph that is called the causal structure
and ΦM is the set of parameter of the model. The set of parameter Φ is given as set of
functional relationship among the variables which are known as Structural Equations (SE).
This set of SEs ΦM assign a function Xi = fi(pa(Xi), εi) to each Xi ∈ V and a probability
distribution P (εi) to each εi, where εi is a random disturbance distributed according to
P (εi), independently of all other εj with i 6= j (see Pearl (2009)). A special case, important
for this work, is when the fi functions are linear and the errors εi are Gaussian distributed
random variables.

It is common to assume that the set of variables V , also referred to as the system,
is causally sufficient and therefore, the causal structure of the system is represented by a
DAG D, i.e., an ancestral graph (V ,E) with no bi-directed edges, where the vertices in V
corresponds to a set of random variables V = {X1, . . . , Xp} and each edge in E represents
a direct functional relationship among the corresponding variables, which is expressed by
saying that Xi is the direct cause of Xj for an edge (Xi, Xj) ∈ E. The system V is said to
be causally sufficient if there are no variables in V which are common direct causes of at
least two measured variables that are unmeasured. If some of the variables in the set V are
unmeasured, V can be partitioned as V = O ∪ L, where O are the observed (measured)
variables and L are the latents variables (unmeasured). MAGs can represent conditional
independence information and causal relationships in DAGs that include unmeasured (hid-
den or latent) variables. A MAG represents a DAG after all latent variables have been
marginalized out, and it preserves all entailed conditional independence relations among
the measured variables (see Zhang (2008a)). This is, given any DAG D over V = O ∪ L
there is a MAGM over O alone, such that for any disjoint sets X,Y ,Z ⊆ O, X and Y are
d-separated by Z in D (See Pearl (2009)) if and only if they are m-separated by Z in the
MAG M. The following construction gives us such a MAG: (i) For each pair of variables
X,Y ∈ O, X and Y are adjacent in M if and only if there is an inducing path between
them relative to L in D. (ii) For each pair of adjacent variables X,Y in M: (a) orient the
edge as X → Y inM if X is an ancestor of Y in D; (b) orient it as X ← Y inM if Y is an
ancestor of X in D; (c) orient it as X ↔ Y inM, otherwise. (see Figure 1a for an example
of this construction).

On the other hand, if M is a MAG with vertex set V , then we define the canonical
DAG, D(M) associated with M as follows (see Richardson and Spirtes (2002) and Figure
1b): (i) Let LD(M) = {λXY | X ↔ Y in M}. (ii) DAG D(M) has vertex set V ∪ LD(M)

and edge set defined as:

If

{
X → Y
X ↔ Y

}
in M then

{
X → Y
X ← λXY → Y

}
in D(M).

Several MAGs can also encode the same conditional independencies via m-separation.
Such MAGs form a Markov Equivalence Class (MEC) which can be described uniquely by
a partial ancestral graph (PAG). Let [M] be the MEC of an arbitrary MAGM. The PAG
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Figure 1: (a) The construction of a MAG M (green) over O = {X,Y, Z,W}, from a DAG
D (blue) over the set of variables O ∪ L, with L = {L}. (b) The canonical DAG D(M)
(blue) associated with the MAG M (green), with V = {1, 2, 3, 4, 5} and LD(M)]{λ12 =
6, λ13 = 7, λ35 = 8}. (Best seen in color.)

for [M], P[M], is a partial mixed graph with possibly three kinds of mark: arrowhead (>),
tail (−) or a circle (◦), such that (i) P[M] has the same adjacencies asM (and any member
of [M]) does; (ii) Every non-circle mark in P is an invariant mark in [M], i.e., a mark of
arrowhead is in P[M] if and only if it is shared by all MAGs in [M]; a mark of tail is in P[M]

if and only if it is shared by all MAGs in [M]; and a mark of circle is in P[M], otherwise.
In Figure 2 we show a PAG and the MEC of MAGs it encodes.

Figure 2: (a) A PAG P (orange) of five variables with four circle marks representing the
MEC [M] = {M1,M2,M3,M4,M5}. (b) The five MAG M1,M2,M3,M4,M5 ∈ [M].

3. Covariate Adjustment and the IDA Framework

A causal graphical model over a set of variables V = {X1, . . . , Xp} can be represented as a
causal Bayesian network (CBN), i.e., as a pair (G, f), where G is the causal structure and
f is the joint density for V that factorizes as f(V ) =

∏p
i=1 f(Xi | pa(Xi)), where these

factors act as the set of parameters ΦG of the causal model. A density f is consistent with
a DAG D if the pair (D, f) forms a CBN and f is consistent with a MAGM if there exists
a CBN (D, g) such thatM represents D and f is the observed marginal density of g. Given
a CBN, it is possible to derive post-intervention densities. In particular, we are interested
in interventions that set X to x uniformly in the population, which are denoted using the
do-calculus as do(X = x) or shorthand do(x), with X ⊂ V (see Pearl (2009)). For this
kind of interventions the post-intervention densities are given by the so called truncated

502



Estimating Bounds on Causal Effects Considering Unmeasured Common Causes

factorization formula:

f(v | do(x)) =

{∏
{i|Xi∈V \X} f(xi | pa(xi)), if v is conssitent with x,

0, otherwise.

Let G = (V ,E) be a DAG or a MAG, and let X,Y and Z be pairwise disjoint subsets
of the set of continuous random variables V , with X 6= ∅ and Y 6= ∅, where X and Y
represents the manipulated and outcome variables, respectively. The set of variables Z is
an adjustment set relative to (X,Y ) in G if for any density f consistent with G we have
that:

f(y | do(x)) =

{
f(y | x), if Z = ∅∫
Z f(y | xz)f(z)dz, otherwise.

(1)

Observe that adjustment sets allow post-intervention densities involving the do-operator
to be identified, i.e., expressed only as specific functions of conditional densities which can
be estimated from observational data, so the search for adjustment sets is fundamental for
the computation of causal effects. The use of Equation 1 for computing total causal effects
over a CBN is what is called the covariate adjustment method. For the particular case of
computing the covariate adjustment of pairs of single variables X and Y over multivariate
Gaussian densities, (case in which we are interested in this research) we can use the fact
that this kind of densities are fully defined by expectations, and for expressing conditional
independencies P (Y | x, z) = P (Y | z) we can use equivalently conditional expectations
E(Y | x, z) = E(Y | z). Furthermore, since conditional expectations are linear in a
multivariate Gaussian distribution, the substitution of probabilities by expectations, allows
to use regression for estimate E(Y | x, z) as E(Y | x, z) = α+ βx+ γTz, for some α, β ∈ R
and γ ∈ R|z|. The total causal effect of X on Y for continuous random variables setting
is defined as ∂

∂xE(Y | do(x)) (see Maathuis et al. (2009)), so the total causal effect of X
on Y in this setting is β, that is, the coefficient of X in the regression of Y on X and the
adjustment set Z, since by the adjustment set definition, we have that

E(Y | do(x)) =

∫
z
E(Y | x, z)f(z)dz = α+ βx+ γTE(Z).

Causal structure learning methods for CBNs consider conditional independencies in the
observational distribution, to reconstruct the causal structure that generated the data. Un-
fortunately, this does not solve completely the problem of learning the causal structure,
because the same set of conditional independencies relationships can be encoded by several
DAGs of MAGs (see Zhang (2008b)). The majority of causal structure learning methods
estimate graphical representations of such Markov Equivalence Class (MEC). If we want
to estimate the total causal effect of X on a response variable Y , when only a representa-
tion of the MEC of the causal structure is known, as is the case after a constraint-based
causal structure learning methods are powered with only observational data, Maathuis et al.
(2009) proposed the “Intervention-calculus when the DAG is Absent” (IDA) algorithm. The
general idea of the IDA algorithm is as follows: After estimating a representation of the
MEC given as a Completed Partial DAG (CPDAG), list all DAGs in the MEC and then
apply covariate adjustment for each DAG, yielding an estimated total causal effect of X
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on Y for each possible DAG. All these total causal effects, one for each DAG in the MEC,
are collected in a multiset Θ̂, and the minimum and maximum value in Θ̂ are returned as
bounds estimators for the true causal effect.

The conceptual framework of the IDA algorihm was extended to insufficient causal sys-
tems by Malinsky and Spirtes in (Malinsky and Spirtes, 2017). They named their algorithm
LV-IDA (Latent Variables IDA), where they worked with PAGs as representations of MECs,
and used the results in Maathuis and Colombo (2015) to found adjustment set in MAGs
for the covariate adjustment computations. Listing all the MAGs represented by a PAG is
more complicated than listing all the DAGs represented by a CPDAG. The naive approach
would be to exhaustively try every combination for substitute the circle marks and then
checks by the m-separation criteria if the resulting graph is Markov equivalent to the start-
ing graph. An important contribution from the LV-IDA algorithm that we will use in our
proposed algorithm, is the procedure for listing all the MAGs. This procedure is based on
the transformational characterization of equivalence between MAGs introduced in Zhang
and Spirtes (2005). We have been talking about the global versions of IDA and LV-IDA.
Nonetheless, it is worth mentioning that local versions of these algorithms were also defined
in Maathuis et al. (2009) and Malinsky and Spirtes (2017), respectively. Local versions
work on the principle that only certain information about DAGs or MAGs in the MEC
needs to be known, and this is enough to determine adjustment sets for the desired pairs of
variables. When we mention LV-IDA we refer to its global version. The main motivation of
this paper is to approximate the estimates of causal effects when it is not possible to find
adjustment sets on a MAG for a pair of variables. Finally, we specify that both, IDA and
LV-IDA algorithms, assume a Gaussian linear parameterization of the causal model, as we
will also assume.

4. The LV-IDA+ Algorithm

A mayor drawback of the LV-IDA algorithm is that it is not always possible to find an
adjustment set for some pairs of nodes in some MAGs to perform covariate adjustment. In
such cases, the estimated multisets of total causal effects Θ̂ contains missing values and
the fundamental idea of using the minimum and maximum value in Θ̂ to bound the true
causal effect, it is not longer valid. We refer to this kind of missing values as simple NAs.
More over, in some cases there are only missing values in Θ̂ for some pairs of variables.
We call these more problematic types of missing values, extreme NAs. Following the same
principles of the IDA and LV-IDA algorithms, the proposed LV-IDA+ algorithm presents a
way to approximate the calculation of the total causal effect when it is not possible to find
an adjustment sets on the MAGs that belong to the MEC for some pairs of variables.

A schematic representation of the operation of the LV-IDA+ algorithm is shown in Fig-
ure 3. The LV-IDA+ algorithm, shown in Algorithm 1 computes a matrix of estimated
causal effect intervals: CE∗ =

(
[θ̂min, θ̂max]ij

)
p×p, where the interval [θ̂min, θ̂max] is calcu-

lated for each pair (i, j) of the p variables in the system, i.e., i, j = 1 . . . p, and θ̂min, θ̂max

are the lower, upper bounds, respectively, for the estimated causal effect. After listing all
MAGs in the MEC encoded as a PAG (Line 1 in the algorithm), at first, the LV-IDA+
algorithm computes a matrix CEMw = (θ̂Mw

ij )p×p for each of the k MAGs in the MEC

(Lines 7, 8, 9, 11), where each total casual effect θ̂Mw
ij is estimated by covariate adjustment
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Data Set

Figure 3: The LV-IDA+ framework. (a) A PAG P (orange) learned from data. (b) The
set of MAGs (green) in the Markov equivalences class [M] encoded by P. (c) The set of
associated canonical DAGs (blue) from each of the MAGs in [M]. (d) CEMw = (θ̂ij)

Mw
p×p

and CEDw = (θ̂ij)
Dw

(p+lw)×(p+lw) are the square matrices of causal effects estimated from
the MAG Mw, and from the canonical DAG Dw, respectively, where w = 1 . . . k, p is the
number of variables and lw is the number of latent variables in the Dw DAG. Note that the
CEMw matrices may have missing values but the CEDw matrices not. We denote by ⊕, the
operation of substitute all the NA values in a CEMw matrix by the corresponding values
in the CEDw matrix. (e) CE∗ = ([θ̂min, θ̂max]ij)p×p denote the square matrix of interval

of causal effect, where the extremes in the intervals [θ̂min, θ̂max]ij are obtained by getting

the minimum θ̂min and maximum θ̂max, from the θ̂ij estimations in the CE+
Mw

= (θ̂ij)p×p
matrices. (Best seen in color.)

with adjustment sets found using the sound and complete algorithms in van der Zander
et al. (2019) and Perković et al. (2018). These algorithms guarantee finding adjustment
sets for the variables of interest on MAGs when they exist. However, when this is not the
case, the matrices CEMw = (θ̂Mw

ij )p×p obtain NA values. To approximate these missing
values, LV-IDA+ generates the canonical DAGs associated with each of the k MAGs in the
MEC (Lines 3, 4). Then, it learns the parameters for each of these canonical DAGs and
calculate the matrix of causal effects CEDw = (θ̂Dw

ij )(p+lw)×(p+lw) for each of them, where
lw stands for the number of latent variables in the canonical DAG Dw (Lines 13, 14). It is
always possible to find an adjustment set in a DAG, i.e., calculate a value for the estimation
of the causal effect between a pair of variables. However it is important to note that even
though some of the parameters can be learned from the original data, in the construction
of the canonical DAG Dw for each MAG Mw, hidden variables are introduced for which
there are no data. This issue is solved by Expectation Maximization (EM) techniques to
learn the parameters in Gaussians DAGs given the structure of the model in the presence
of hidden variables (see Sucar (2015)). With matrices CEMw and CEDw computed, the
LV-IDA+ algorithm obtains a matrix CE+

Mw
of size p × p (the same dimension as matrix

CEMw) for each MAG in the PAG by combining the matrices CEMw and CEDw , in such
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a way that if θ̂Mw
ij is NA in CEMw it is replaced by the value of θ̂Dw

ij in CEDw , and the

θ̂Mw
ij values of the matrix CEMw are kept in CE+

Mw
in any other case (Line 17). Finally,

the matrix of estimated causal effect intervals CE∗ = ([θ̂min, θ̂max]ij)p×p, i.e., the output

of the LV-IDA+ algoritm, is computed by recording the minimum (θ̂min)ij and maximum

(θ̂max)ij values for each of the k MAGs in the matrices CE+
Mw

(Line 19 of the algorithm).

The rationale behind the LV-IDA+ algorithm is that it is reasonable to calculate the
causal effect on one of the DAGs that belongs to the set of DAGs represented by the
MAG as an approximation to the causal effect on a pair of variables when this cannot be
calculated directly on the MAG in question. The canonical DAG has the advantage that it
can be efficiently built from a MAG and this type of DAGs encompasses the most significant
aspects of the causal structure of an infinity of DAGs represented by a MAG (see Appendix
B for more details).

Algorithm 1: LV-IDA+

Input: A PAG P, and a set of observational data D, for p variables
Output: A matrix of interval of causal effects CE∗ =

(
[θ̂min, θ̂max]ij

)
p×p

1 Determine all MAGs M1, . . .Mk in the MEC [M] encoded as P
2 for w = 1, . . . , k do
3 Compute de canonical DAG Dw from Mw

4 Learn the parameters of Dw from data D using EM for the lw hidden variables
in Dw

5 for i = 1, . . . , p do
6 for j = 1, . . . , p do

7 Compute an adjustment set ZMw

(i,j) for the pair of variables (i, j) in Mw

8 if an adjustment set ZMw

(i,j) exists then

9 θ̂Mw
ij ← β, where β is the coefficient of i in the regression

j = α+ βi+ γTE(ZMw

(i,j) )

10 else θ̂Mw
ij ← NA

11

12 end

13 Compute an adjustment set ZDw

(i,j) for the pair of variables (i, j) in Dw

14 θ̂Dw
ij ← β, where β is the coefficient of i in the regression

j = α+ βi+ γTE(ZDw

(i,j))

15 end

16 end
17 CE+

Mw
← CEMw ⊕ CEDw

18 end

19 return CE∗ =
(
[θ̂min, θ̂max]ij

)
p×p
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5. Experiments and Results

Evaluation Metric. To evaluate the causal effect interval matrix returned by LV-IDA+
and compare it against the computed by LV-IDA, we use the Average Interval Mean Square
Error (AIntMSE), base on the Interval Mean Square Error metric (IntMSE) (see Malinsky
and Spirtes (2017)). The AIntMSE is the average IntMSE error calculated on the estimates
of the causal effect between each ordered pair of variables (X,Y ) of a model with p variables.

Let CEReal = (θij) be the real total causal effects matrix, where θij is the true total
causal effect from the pair of variables (i, j) for i, j = 1, . . . , p. The IntMSE between the
true total effect θij from CEReal, and the estimate interval of causal effect [θ̂min, θ̂max]ij
from the CE∗ matrix, returned by the LV-IDA+ and the LV-IDA algorithms, is defined as:

IntMSE =

{
0 if θij ∈ [θ̂min, θ̂max]ij

min{|θij − (θ̂min)ij |, |θij − (θ̂max)ij |} otherwise,

Let IEM = (εij) be the Interval Error Matrix where the εij are defined as the IntMSE
between the true total effect θij in CEReal, and the estimate interval of causal effect

[θ̂min, θ̂max]ij in CE∗. Let Σ be the sum of the elements εij of the Interval Error Matrix
IEM = (εij). The Average Interval Mean Square Error (AIntMSE), is defined as:

AIntMSE =
Σ

p2 − (p+ eNA)
,

where p is the number of variables and eNA is the number of extreme NAs. Note that the
denominator corresponds to the total number of elements of the matrices CE∗, minus the
elements of the diagonal (which always has value [1, 1]), and the number of extreme NAs,
which are the returned NA values on the matrices CE∗ when it is not possible to estimate
the interval of causal effects by LV-IDA. This corresponds to the number of estimated
interval actually computed by the LV-IDA+ or LV-IDA algorithms, so this evaluation gives
us an average of the error in the calculation of the estimated intervals of causal effect in the
CE∗ matrices. We include an example of the AIntMSE evaluation metric computation for
a real case in the experimentation in Appendix A.

Data Generation Process. We evaluate the LV-IDA+ and LV-IDA algorithms using
data simulated from synthetic models. We describe the data generation process for insuf-
ficient systems next. First, a random PAG P is generated. Later, unfolding P the set of
MAGs in the MEC [M] are listed, and we selected randomly a MAGM∗ from [M]. Then,
the canonical DAG D∗ is obtained fromM∗. Finally, a data set D′ is generated simulating
the DAG D∗ (see Figure 4). We parameterized the DAG D∗ with linear Gaussian structural
equations, where the coefficients are distributed as ±Uniform([0.5, 1.5]), and the random
disturbances according to a normal distribution with mean zero and standard deviations
taken from a Uniform([1, 3])).

Experimentation. From the data generation process we keep the PAG P, and remove
the columns of the variables that were added in the construction of the canonical DAG D∗
over the data set D′, to build the data set D. This PAG P and the data set D are used
as the input for the LV-IDA+ and LV-IDA algorithms. We preserve the parameterized
DAG D∗ and the complete data set D′ to calculate the true causal effects in the CEReal
matrix. We generate 80 synthetic causal models by varying the number of variables p using
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p ∈ {5, 8, 11, 14}, 20 different synthetic models for each value of p and their respective data
sets, generated with samples of size 1000. For a total of 7,360 causal effect estimations, for
each of the two algorithms: LV-IDA+ and LV-IDA. We use the LV-IDA implementation on
the R programming language, given in Malinsky and Spirtes (2017), and we implement the
LV-IDA+ algorithm also in the R language. Both implementations of the algorithms were
used to calculate the causal effect on all pairs of variables in each of the synthetic models.
All experiments were run on a computer with an Intel Core i5 processor running at 2.0 GHz
and 8 GB of RAM.

Data Set

Figure 4: The data generation process. (a) A random generated PAG P (orange). (b) The
set of MAGs in the Markov equivalences class [M]. (c) The random selected MAG M∗
(green) from [M]. (d) The canonical DAG D∗ obtained from M∗ (blue). (e) The data set
is generated simulating the DAG D∗. (Best seen in color.)

AIntMSE SimpleNAs ExtremeNAs Time (sec)
p = 5

LV-IDA+ 0.0223 ± 0.0182 0 0 6.6 ± 2.4
LV-IDA 0.0357 ± 0.0413 28.88 ± 16.04 3.50 ± 2.27 1.4 ± 0.7
p = 8

LV-IDA+ 0.0441 ± 0.0333 0 0 14.4 ± 7.5
LV-IDA 0.0710 ± 0.0611 107.8 ± 28.32 20.3 ± 4.44 4.6 ± 1.6
p = 11

LV-IDA+ 0.1040 ± 0.1130 0 0 17.0 ± 11.1
LV-IDA 0.1797 ± 0.2133 177.3 ± 78.2 49.4 ± 26.6 16.4 ± 7.1
p = 14

LV-IDA+ 0.2353 ± 0.2028 0 0 18.4 ± 18.2
LV-IDA 0.4101 ± 0.3605 340.3 ± 98.69 74.1 ± 8.37 12.2 ± 21.6

Table 1: Performance comparisons between LV-IDA+ and LV-IDA (mean ± standard de-
viation) over AIntMSE, for p = 5, 8, 11 and 14 where p is the number of variables. The best
results for each evaluation are highlighted in bold type. The mean and standard deviation
of simple and extreme NAs, and the running time in seconds for each algorithm are shown.
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Results. Table 1 summarizes the estimation results for the 80 different synthetic causal
models. One can observe the growth of the number of simple and extreme NAs for the LV-
IDA algorithm as the number of variables in the models increases. The count for extremes
NA values in the results give us an idea of how many more estimation bounds on causal
effects we can calculate (or at least approximate) for pairs of variables in a model with the
LV-IDA+ algorithm. The results suggest that ignoring missing values in the multisets of
causal effects (simple NAs) in the LV-IDA algorithm produce misleading bounds in causal
effects, and according to the AIntMSE evaluation metric, using the approximations of causal
effects computed by LV-IDA+ algorithm, is better than the missing values (simple NAs)
returned by the LV-IDA algorithm, at least for the case of observational data generated
by a canonical DAGs with latent variables. We are aware that anti-canonical DAGs, could
be problematic for the approximation used in the LV-IDA algorithm (see Appendix B).
Therefore, to explore further the generality of our algorithm, it is necessary to extend the
spectrum of synthetic models for the data generation in the experimentation.

6. Conclusions and Future Work

The main contribution of this work is a proposal for approximating causal effects when it
is not possible to find adjustment sets for a pair of variables on a causal insufficient system
represented by a MAG. With this, the proposed LV-IDA+ algorithm can estimate the causal
effects among all pairs of variables (or at least approximate the estimate in some cases) in
each of the MAGs in a Markov equivalence class and thus it can obtain approximate lower
and upper bounds of the real value of the causal effect for each pair of system variables.
The proposed method is in principle an efficient baseline that can motivate the search for
better approximations for causal effects bounds. Since, to our knowledge, no other way for
approximating causal effects has been proposed when they cannot be calculated by covariate
adjustments directly in a MAG, for causal insufficient systems.

The experimental results for the LV-IDA+ algorithm are promising but it would be
important to extend the experimentation. An analysis of why canonical DAGs are good
representatives for a large sub-collection of DAGs with latent variables represented by a
MAG, for the purpose of estimating causal effects is presented in Appendix B. However,
it is necessary to carry out more experimentation with these structures, to see if indeed a
canonical DAG is a good representation for them. In the same analysis, a collection of DAGs
with latent variables for which we conjecture they are not well represented by canonical
DAGs for the same purpose, which we call anti-canonical DAGs, was also described but
also it is necessary to evaluate with more experiments how much a representation through
a canonical DAG fits models with anti-canonical patterns.

Extending the work in Montero-Hernandez et al. (2018) to insufficient systems is an
interesting application of this research that we are interested in exploring. In the latter,
intervals of causal effects are used to single out a unique model from the Markov equiv-
alence class in a causal structure learning process. For the aforementioned, it is essential
to be able to compute intervals of causal effects for any pairs of variables in the causal
system. Therefore, the proposed LV-IDA+ algorithm is fundamental to continue the ideas
of in Montero-Hernandez et al. (2018) and bring them to the domain of insufficient causal
systems.
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Appendix A. AIntMSE Evaluation Metric Example

To further clarify how the AIntMSE evaluation metric is computed, an example for a real
case in the experimentation is shown next. Below, we show the real total causal effect ma-
trix CEReal(θij) computed from a synthetic G model with p = 5 variables and present
the interval matrices CE∗LV−IDA+ and CE∗LV−IDA returned by the LV-IDA+ and LV-
IDA algorithms, respectively, for the synthetic G model. Then, the interval error matrices
IEMLV−IDA+ for CE∗LV−IDA+ and IEMLV−IDA for CE∗LV−IDA are computed. Finally,
we show the computation of the AIntMSE for each of these CE∗ matrices, CE∗LV−IDA+

and CE∗LV−IDA.

Equation 2 shows the CEReal matrix that is calculated from a synthetic G model with
p = 5 variables.

CEReal = (θij) =


1.00 0.00 0.00 0.00 0.67
0.00 1.00 0.79 0.58 1.74
0.00 0.30 1.00 0.00 0.00
0.00 0.53 0.00 1.00 0.62
0.40 0.31 0.00 0.25 1.00

 (2)

Equation 3 shows the CE∗LV−IDA+ matrix returned by the LV-IDA+ algorithm for the
G model.

CE∗LV−IDA+ =


[1.00, 1.00] [0.00, 0.00] [0.00, 0.16] [0.01, 0.01] [0.00, 0.67]
[0.00, 0.00] [1.00, 1.00] [0.68, 0.80] [0.55, 0.55] [1.69, 2.18]
[0.00, 0.00] [0.43, 0.48] [1.00, 1.00] [−0.04, 0.00] [0.00, 1.02]
[0.05, 0.05] [0.42, 0.42] [0.02, 0.15] [1.00, 1.00] [0.61, 0.64]
[0.00, 0.14] [0.34, 0.36] [0.00, 0.32] [0.29, 0.33] [1.00, 1.00]

 (3)

Equation 4 shows the CE∗LV−IDA matrix returned by the LV-IDA algorithm for the G
model.

CE∗LV−IDA =


[1.00, 1.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]
[0.00, 0.00] [1.00, 1.00] NA [0.55, 0.55] NA
[0.00, 0.00] [0.00, 0.00] [1.00, 1.00] [0.00, 0.00] [0.00, 0.00]
[0.00, 0.00] [0.00, 0.00] [0.00, 0.00] [1.00, 1.00] NA
[0.00, 0.00] [0.00, 0.00] [0.00, 0.27] [0.00, 0.00] [1.00, 1.00]

 (4)

Equation 5 shows the IEMLV−IDA+ matrix calculated using the CEReal matrix and
the CE∗LV−IDA+ matrix returned by the LV-IDA+ algorithm for the G model. Based on
this, the AIntMSE evaluation metric is computed below.

IEMLV−IDA+ =


0.00 0.00 0.00 0.01 0.00
0.00 0.00 0.00 0.03 0.00
0.00 0.13 0.00 0.00 0.00
0.05 0.11 0.02 0.00 0.00
0.26 0.03 0.00 0.04 0.00

 (5)
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AIntMSE =
Σ

p2 − (p+ eNA)
=

0.68

25− (5 + 0)
=
.68

20
= 0.034

Equation 6 shows the IEMLV−IDA matrix calculated using the CEReal matrix and the
CE∗LV−IDA matrix returned by the LV-IDA algorithm for the G model. Note that since
the CE∗LV−IDA matrix contains NAs (produced by extreme NAs), the IEMLV−IDA matrix
also contains NAs. Based on this IEMLV−IDA matriz, the AIntMSE evaluation metric is
computed below.

IEMLV−IDA =


0.00 0.00 0.00 0.00 0.67
0.00 0.00 NA 0.03 NA
0.00 0.30 0.00 0.00 0.00
0.00 0.53 0.00 0.00 NA
0.40 0.31 0 0.25 0.00

 (6)

AIntMSE =
Σ

p2 − (p+ eNA)
=

2.49

25− (5 + 3)
=

2.49

17
= 0.146

Appendix B. Anti-canonical DAGs

The rationale behind our method is that it is reasonable to calculate the causal effect on
one of the DAGs that belongs to the set of DAGs represented by the MAG as an approx-
imation to the causal effect on a pair of variables when this cannot be calculated directly
on the MAG in question. With this in mind, we address the main question that motivated
this work, about what would be a simple approximation to estimate the effect on a pair of
variables when there are no adjustment sets on a MAG, and avoid to answer that such effect
cannot be computed. An infinite number of DAGs with latent variables are transformed
into the same MAG. However, we can at least rebuild some of the most representative
graphs DAGs represented by a MAG. The canonical DAG has the advantage that it can
be efficiently built from a MAG and this type of DAGs encompasses the most significant
aspects of the causal structure of an infinity subset of DAGs represented by a MAG. We
will now go into more detail on the latter below.

From the process of marginalizing the latent variables of a DAG, D, to construct a MAG,
M, and then construct the canonical DAG, D∗, associated with this MAG, we were able to
identify two types of substructure patterns in which although a canonical DAG, D∗, is not
an exact portrayal of the original DAG, D, a canonical DAG offers a good representation
for estimating causal effects (see Figures 5 and 6). The first type of substructure pattern
is one in which the original DAG contains a complex substructure of a set L of several
unmeasured variables and one of the latent variables L∗ is a common cause of a pair of
observed variables, say O1 and O2. When the latent variables in this substructure are
marginalized, a MAG,M, is created where none of the latent variables of the substructure
appear and it contains a bidirectional edge between O1 and O2. Then, when constructing
the canonical DAG, D∗, for this MAG, a single variable L is added as a common cause for
the observed variables O1 and O2 (see Figure 5 for an instance of this substructure pattern).
For this first substructure pattern, it can be seen that the weight of all latent variables in
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Figure 5: (a) A DAG D with a complex substructure of several unmeasured variables,
L = {L1, L2, L3, L4, L5} and L∗ = L4. (b) The MAGM obtained from D by marginalizing
the latent variables L1, L2, L3, L4 and L5. (c) The canonical DAG D∗ associated to MAG
M.

the substructure can be absorbed by a single variable, L, just as in the reconstruction of
the original DAG, D, by mean of a canonical DAG, D∗. Therefore, a canonical DAG is a
good representation for estimating the causal effect on the class of DAGs that present this
type of substructure pattern.

Figure 6: (a) A DAG D with a latent variable L that is a common cause for several observed
variables {O1, O2, O3, O4, O5}. (b) The MAG M obtained from D by marginalizing the
latent variable L. (c) The canonical DAG D∗ associated to MAG M.

The second type of structural pattern occurs when there is a latent variable, L, that is a
common cause of not only a couple of measured variables but several more, this translates
into several bi-directed edges in the MAG,M, when this variable is marginalized. When the
canonical DAG associated to this MAG is built, a new variable is added for each bi-directed
edge, although in reality it is a single unmeasured variable which is the common cause for
several variables on the bi-directed edges (see Figure 6 for an instance of this substructure
pattern). This structural pattern is not problematic for the calculation of the causal effect
with LV-IDA+ as it seems, since what happens is that this unmeasured common cause is
simply repeated for each pair of variables measured in the canonical DAG. For the LV-IDA+
algorithm, the essential is that an unmeasured common cause has been identified at each
bidirectional edge.

On the other hand, a class of DAGs that we identify are not well represented by a
canonical DAG are those we call anti-canonical DAGs. We call anti-canonical DAG to a
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Figure 7: (a) A MAGM with two directed edges and one bi-directed edge.(b) The canonical
DAG associated to the MAG M. (c) An anti-canonical DAG D∗a associated to the MAG
M with an anti-canonical pattern over the directed edge from O1 to O2. (d) The total
anti-canonical DAG D∗t associated to the MAG M.

DAG that is built from a MAG, M, in which at least one directed edge from a variable
O1 to a variable O2 in the MAG is transformed into the directed edge from O1 to O2 and
augmenting a latent variable L as the common cause of O1 and O2 in the DAG (see Figure
7 (c)). We call to this transformation from a directed edge in a MAG to a directed edge
with a latent common cause in the DAG an anti-canonical pattern. If all the directed edges
in the MAG are transformed as anti-canonical patterns we call the resulting DAG, a total
anti-canonical DAG (see Figure 7 (d)).

Anti-canonical DAGs are problematic because, if in the original DAG, D, that generates
the data there is an unmeasured common cause, L, for two variables O1 and O2, and in
addition, O1 is the direct cause of O2. When forming a MAG M by marginalizing L
from the DAG, D, the MAG has the directed edge from O1 to O2 (not a bi-directed edge
indicating the latent variable L) and then the canonical DAG, D∗, associated withM would
have simply the same directed edge from O1 to O2. This means that if we construct the
canonical DAG, D∗, associated to M we are ruling out the existence of the unmeasured
common cause L. When a direct common cause is not contemplated in a system, this causes
greater values than what they actually are on the estimations of some causal effects among
the variables in the system. So we identify this case as a possible limitation on the proposal
to approximate the calculation of the causal effect using the canonical DAG when it is not
possible to calculate it for a couple of variables directly on the MAG.
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