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Abstract

Being a ubiquitous aspect of human cognition, causality has made its way into modern-day
machine-learning research. Despite its importance in real-world applications, contemporary
research still struggles with high-dimensional causal problems. Leveraging the efficiency of
probabilistic circuits, which offer tractable computation of marginal probabilities, we intro-
duce Ψnet, a probabilistic model designed for large-scale causal inference. Ψnet is a type
of sum-product network where layering and the einsum operation allow for efficient paral-
lelization. By incorporating interventional data into the learning process, the model can
learn the effects of interventions and make predictions based on the specific interventional
setting. Overall, Ψnet is a causal probabilistic circuit that efficiently answers causal queries
in large-scale problems. We present evaluations conducted on both synthetic data and a
substantial real-world dataset, demonstrating Ψnet’s ability to capture causal relationships
in high-dimensional settings.

Keywords: Probabilistic Circuits; Sum-Product Networks; Causality; Tractable Inference.

1. Introduction

Causal models, in contrast to purely correlational models, provide significantly higher ro-
bustness and allow the prediction of the effect of intervening in a system without the need
to perform the intervention in real life (Schölkopf and von Kügelgen, 2022). However, the
vast majority of machine learning (ML) models still rely purely on correlations between
variables to make predictions. Disregarding causality diminishes ML models’ robustness
in out-of-distribution scenarios and can lead them to incorrect inferences and predictions
(Schölkopf and von Kügelgen, 2022; Pearl, 2009). By means of correlational training, bound
to the first level of the Pearl Causal Hierarchy (PHC; Bareinboim et al. (2022)), they are
unable to reason beyond correlational quantities and are unable to predict the effects of in-
terventions or reason counterfactually. Multiple approaches have been proposed to remedy
this situation (Pearl, 2019; Shi et al., 2019; Xia et al., 2021). Giving ML models access to
interventional (and possibly counterfactual) information lifts them to a higher level of the
PHC. Classical neural approaches are often bound to a particular set of queries or –in the
case of (tractable) probabilistic models– do not extend to marginal inference (Khemakhem
et al., 2021; Melnychuk et al., 2023; Javaloy et al., 2023). Switching to hybrid approaches
such as neural causal models (NCM; Xia et al. (2021)) yields more expressive approximators
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Figure 1: Moving Causal Models into Large-Scale Domains. Conventional models
struggle with application in larger domains, partly but not exclusively due to non-tractable
inference of marginal questions. We introduce Ψnet, a causal probabilistic circuit equipped
with optimizations directed at efficiency that allows for quick and large-scale evaluation of
causal questions, surpassing simpler causal circuits such as iSPNs.

but still suffers from the same #P-hard time complexity (Eiter and Lukasiewicz, 2002) for
exact inference as Bayesian Networks (BN; Pearl (1985, 1995)). Thus, developing efficient
algorithms for large data with complex causal structures is an important endeavor.

To mitigate the problem of intractable exact causal inference, recent works (Zečević
et al., 2021; Zečević et al., 2023; Cruz and Batista, 2024) have utilized probabilistic circuits
that provide exact and tractable inference and marginalization (Choi et al., 2020; Vergari
et al., 2021). In this work, we introduce a novel model at the intersection of causality and
probabilistic circuits, allowing us to scale causal inference beyond the usual employed toy
examples. To this end, we equip einsum networks (Peharz et al., 2020) with the ability to
answer interventional queries akin to Zečević et al. (2021). Our model, Ψnet (causal EiNet
→ Ψnet), leverages the einsum operator to scale exact causal (marginal) inference to more
than a thousand variables on a real-world dataset. Fig. 1 shows the motivation for Ψnet.

We demonstrate the abilities of Ψnet on a large synthetic dataset and, more importantly,
on the large-scale, real-world “CausalBench” datasets (Zhou et al., 2024). While other
models suffer excessive runtime explosions or can only perform approximate inference, Ψnet
remains competitive to alternative models in terms of performance while staying in linear
time complexity, thus increasing the speed of computing queries by orders of magnitude for
high-dimensional problems. Overall, we make the following important contributions:

• We introduce Ψnets, powerful causal models capable of large-scale causal inference.

• We build upon CausalBench, a real-world, large-scale benchmark, to introduce an
evaluation for marginal inference of interventional queries.

• We show that Ψnet performs competitively to other models while being much faster.

We proceed as follows: after introducing the required background and notations, we present
the construction and learning of our Ψnet model. We then go over our extensive evaluations
and present the related work before concluding. We make our code publicly available:
https://github.com/olfub/psinet.
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2. Background and Notation

Before introducing the Ψnet model, we briefly revisit causal models and probabilistic cir-
cuits. We denote random variables by upper-case letters V , sets of random variables in
boldface V, values of single and sets of random variables as v and v respectively, and
probabilities of random variables as P (v) or P (v).

2.1. Causal Models

Different approaches to describe causal relationships among a set of variables have been
proposed (Rubin, 1974; Pearl, 2009). One outstanding and widely adapted framework for
causal modeling is Pearl’s formalism of structural causal models (SCM). Due to its wide
application, we adapt the notion of SCMs.

Definition 1 (Structural Causal Model) A structural causal model (SCM) is a tuple
M := ⟨V,U,F, PU⟩ over a set of variables X = {X1, . . . , XK} taking values in XXX =
⊗k∈{1...K}Xk subject to a strict partial order <X, where

• V = {X1, . . . , XN} ⊆ X, N ≤ K is the set of endogenous variables,

• U = X \V = {XN+1, . . . , XK} is the set of exogenous variables,

• F = {f1, . . . , fN} is the set of deterministic structural equations, i. e. Vi := fi(X
′) for

Vi ∈ V and X′ ⊆ {Xj ∈ X|Xj <X Vi},

• PU is the probability distribution over the exogenous variables U.

The set of structural equations F induces a directed graph G(M) which by definition is
acyclic due to <X. The exogenous variables U are unobserved and treated as noise. Thus,
U is commonly assumed to follow a distribution of mutually independent noise terms.
The noise distributions in conjunction with the structural assignments in F induce the
probability distribution PM

V over the set of endogenous variables V.

Since the structural equations have a causal interpretation in SCMs, interventions can
be made that result in a new SCM. In general, an intervention on a variable Vi ∈ V re-
places the structural equation fi ∈ F determining the value of Vi by some other function
f∗i . Replacing a function fi with another function f∗i changes the induced joint probability
distribution over the set of endogenous variables, often referred to as the interventional
distribution. Commonly, one distinguishes between soft interventions and perfect inter-
ventions. While soft interventions describe a non-deterministic intervention (e.g., replacing
a square function with a sinus function), perfect interventions set the intervened variable
to a constant value (Bongers et al., 2021). Perfect interventions are commonly written in
terms of the do-operator (Pearl, 2009) as do(Vi = vi), i.e., Vi is set to vi. Since an in-
tervention do(Vi = vi) removes all dependencies between Vi and its parents, it induces an
SCM Mdo(Vi=vi) with a different associated causal graph G(Mdo(Vi=vi)). The experimental
section considers problems with both perfect and soft interventions.
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2.2. The Challenge of Tractable Inference

Given a fully defined SCM, computing probabilities for full evidence queries of the form
P (V1 = v1, V2 = v2, . . . , Vn = vn) is straightforward and can be done by following the
factorization of the induced distribution. Since the factorization can be read off the directed
acyclic graph (DAG) induced by the SCM, models closely resembling the SCM structure
such as Causal Bayesian Networks (CBNs) (Heckerman et al., 1995; Pearl, 1995; Neapolitan
et al., 2004; Acharya et al., 2018) are a natural choice here.

However, in many situations, only a subset of variables is of interest. For example, a
physician might want to know the probability of a patient having a disease, regardless of the
realization of certain (maybe even unobserved) variables. In such cases, one is interested
in the marginal probability of a variable. In contrast to complete evidence queries, exact
marginalization in (C)BNs and SCMs has exponential complexity in general (Park and
Darwiche, 2004). Besides marginals, computing conditional probabilities plays a crucial role
in real-world applications as they allow us to make predictions even if only partial evidence
is available. From Bayes rule stating that P (V1 = v1|V2 = v2) =

p(V1=v1,V2=v2)
P (V2=v2)

, it follows

that computing the exact conditional probability is also not tractable in general for (C)BNs
and SCMs as it involves computing a marginal distribution.

Given that marginal and conditional inference over (interventional) distributions is in-
tractable in CBNs and SCMs, we aim for an alternative representation of (interventional)
distributions that allows tractable inference. Probabilistic circuits enable tractable compu-
tation of marginals and conditionals in purely probabilistic (i.e., non-causal) settings. Thus,
besides the probabilistic setting, we aim to utilize PCs to perform tractable marginal and
conditional inference in large-scale causal problems as well.

2.3. Causal Probabilistic Circuits

A probabilistic circuit (PC) (Choi et al., 2020; Peharz et al., 2020) is a computational graph
encoding a distribution over a set of random variables X. It is defined as a tuple (G, ϕ)
where G = (V,E) is a rooted, directed acyclic graph and ϕ : V → 2X is the scope function
assigning a subset of random variables to each node in G. For each internal node N of G, the
scope is defined as the union of scopes of its children, i.e., ϕ(N) = ∪N′∈ch(N)ϕ(N

′). Each leaf
node L computes a distribution/density over its scope ϕ(L). All internal nodes are either
sum nodes S or product nodes P where each sum node computes a convex combination of
its children, i.e., S =

∑
N∈ch(S)wS,NN, and each product computes a product of its children,

i.e., P =
∏

N∈ch(P)N. For a more thorough introduction to PCs, refer to Choi et al. (2020).

This work considers Sum-Product Networks (SPNs). SPNs are decomposable and smooth
PCs (Poon and Domingos, 2011; Peharz et al., 2020). A PC is decomposable if for each
product node P ∈ V it holds that ϕ(N)∩ϕ(N′) = ∅ for N,N′ ∈ ch(P), N ̸= N′, i.e., the children
of a product node P have non-overlapping scopes. Decomposability allows marginalization
in linear time of the circuit size (Peharz et al., 2015). A PC is said to be smooth if for
each sum node S ∈ V it holds that ϕ(N) = ϕ(N′) for N,N′ ∈ ch(S), i.e., all children of a
sum node S have the same scope. While smoothness has no computational implications, it
ensures that an SPN represents a valid probability distribution.

While SPNs are purely probabilistic models, let us now turn to the intersection of
causality and probabilistic circuits to achieve tractable inference for causal queries (Cruz
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and Batista, 2024). Previous works introduced methods to transform SCMs and CBNs
to PCs (Darwiche, 2022; Papantonis and Belle, 2020). However, information can be lost
in the transformation from CBNs to PCs, and the transformation from SCMs to PCs
requires variable elimination (Zhang et al., 1994), which is generally inefficient (Chavira
and Darwiche, 2007). A model closer to our approach is the interventional Sum-Product
Network (iSPN, Zečević et al. (2021)). An iSPN is a joint model of a SPN and a neural
network. The neural network uses the (mutilated) causal graph as its input to predict
SPN weights. The so-parameterized SPN can then be queried in the same manner as
conventional SPNs. By conditioning the weights on the causal graph, the SPN is able to
learn the difference between different types of interventions and can thus be used to compute
causal queries.

Although iSPNs take an important step towards efficient causal inference, they employ
a standard SPN structure, which is still a bottleneck for large datasets. The inference
algorithm of SPNs has to traverse all nodes which prohibits scaling iSPNs to datasets with
thousands of variables (as we will show in our experimental evaluation). Therefore, we aim
to leverage the benefits of the einsum architecture (Peharz et al., 2020) to propose Ψnet, a
causal circuit for large-scale causal inference.

3. Ψnet: A Large-Scale Causal Model

Approximating causal quantities remains a challenging task, especially in problems consist-
ing of a large number of variables. As the typically employed causal models –such as CBNs
and SCMs and derived models– suffer from #P-hard complexity, we investigate and discuss
the practical challenges of scaling up models of the more efficient class of PCs to large num-
bers of variables in causal settings. Scaling beyond scenarios with hundreds of variables also
brings classical PCs to their practical limits and requires us to select particularly efficient
models that still obtain results within practically feasible run times.

Einsum networks (Peharz et al., 2020). A promising class of candidate models is
Einsum networks (in short EiNets; Peharz et al. (2020)), which represent SPNs by a set of
layers building on top of each other, where succeeding layers make use of the einsum oper-
ation to aggregate the leaf probabilities towards the next layers efficiently. More precisely,
the leaf densities are represented using exponential families and form the input layer. The
succeeding layers are so-called einsum layers that contain both sum and product nodes as
used in conventional SPNs. Say that K is the number of densities computed for each sum
node, and L is the number of sum nodes in a layer. Then, the kth value of the lth sum node
with a single product node as a child can be calculated as Slk = WlkijNliN

′
lj , where N

and N′ are L ×K matrices, representing the left and right children of the product nodes,
and W is a weight tensor with L × K × K × K dimensions. This computation can be
performed using the efficient einsum operation. Given such sum nodes with only one child
each, another sum node can be used on top, thereby combining the outputs of multiple
product nodes with sum nodes in two steps. The computation in this so-called mixing layer
can also be conducted using an einsum operation. The use of the efficient einsum operation,
the layer-parallelism, together with a large number of repetitions (i.e., multiple sum nodes
with the same scope), results in a highly efficient large-scale SPN.
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Figure 2: Architecture of Ψnet. Given a causal setting (i.e., a specific intervention), a
neural network sets all the parameters of an EiNet model (a probabilistic circuit utilizing
the einsum operation). The so-parameterized EiNet can be queried to answer causal queries
in a tractable manner.

Construction of Ψnet. In this paper, we introduce an extension of EiNets to the
causal domain. To be precise, the Ψnet model consists of a neural network and an EiNet
component. The EiNet is a regular EiNet, parameterized by the sum weights W and the
leaf distributions N (·|λ).1 Given the probabilities in the leaves, probabilities of queries can
be calculated by making a pass through the EiNet einsum and mixing layers. Since product
nodes are not parametrized, the EiNet parameters are given by the sum node weights and
the parameters of the leaf distributions, i.e., as ψ = {W,λ}. Ψnet, instead of learning fixed
ψ directly, makes use of a neural network component fθ parametrized by θ to set these
weights depending on the causal setting C. The causal setting should consist of information
describing how the SCM of the interventional setting differs from the observational SCM
(thus, the difference can also be 0). We arrive at the following definition:

Definition 2 (Ψnet) A Ψnet is a tuple Ψ = (gψ, fθ), where g is an EiNet parameterized
by ψ = {W,λ}, such that W and λ are the sum and leaf node parameters of g, respectively.
Parameters ψ are assigned via a universal function approximator f , such that f : C → ψ,
where C is the intervention information of the causal setting.

The Ψnet model is shown in Figure 2. There are two parts to computing a causal query.
Firstly, the causal setting C needs to be specified. We deliberately opted for a general
definition as different types of causal settings can be used depending on the application.
Generally, the causal setting contains all the causal elements in a query, such as the in-
tervention considered. For example, if we allow interventions on any variable of our set
of variables X, we require |X| input variables to indicate which variables are intervened
upon. If there is only one kind of intervention that is considered for each variable (such
is the case in the CausalBench experiment, see Section 4.2), this input suffices to describe
the causal setting, and we have C ∈ R|X|. If it should be specified to which value an in-
tervention changes a variable and only interventions on a single variable are considered at

1. We use Gaussian distributions in the leaf nodes as computation is simple and as mixture of Gaussian
distributions are very expressive. Other distributions could just as easily be used.
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a time, our causal setting requires an additional value containing the intervention value
C ∈ R|X|+1. For multiple interventions, it can be expanded even further to specify the new
values for all intervened variables C ∈ R2|X|. One type of causal setting is also used in
the iSPN paper (Zečević et al., 2021) where the (mutilated) causal graph is input into the
neural network. In this case, the neural network part of the iSPN falls in line with the Ψnet
definition, however iSPN does not use an EiNet for computing probabilities.

Given a causal setting, the neural network f then takes such a setting as input (e.g.,
observational, do(V2), . . . ) and outputs the EiNet parameters W and λ. Note that for
conventional SPNs/EiNets, these parameters are only changed during training but remain
fixed once a model is trained. By conditioning them on the causal setting, we introduce
variability in the model such that parameters and, thereby, probability distributions can
vary in different interventional settings. Also note that once a causal setting has been
passed through the neural network and the EiNet parameters are set, the resulting EiNet is
a conventional EiNet model and can be queried as such. For example, the queries P (X =
x|do(X1 = 1)), P (X2 = 0|do(X1 = 1), X3 = 0), arg maxxP (X = x|do(X1 = 1)) can all
be computed with only one pass of do(X1 = 1) through the neural network. The neural
network part needs only be executed again when queries for a different causal setting should
be computed.

Training Ψnet. Ψnets can be trained end-to-end using a standard negative log-
likelihood loss (akin to training iSPNs or conditional SPNs (Shao et al., 2020)). In contrast
to traditional SPNs, we do not update the SPN parameters ψ = {W,λ} during training
but instead continue backpropagating through the neural network and update its weights
θ. For each causal setting C, the SPN parameters ψ are set by the neural network fθ and,
therefore, only the parameters θ of this network need to be updated and learned. The
neural network takes interventional data as its inputs to make the EiNet approximate the
interventional distribution. In order to be able to correlate interventional signals of the
causal setting C with the required change in EiNet parameters ψ, we require interventional
data to be present during Ψnet training.

Adapting to large-scale problems. A particular challenge of our paper lies in the
practical application of Ψnets to real-world problems. When working with Ψnets, there are
a large number of hyperparameters to deal with. Choosing bad ones can hinder successful
learning, which can become a particularly prominent problem, given the large-scale nature
of our datasets. As we will highlight in our experimental section on CausalBench, simply
optimizing for training loss can also considerably hinder the model’s performance. For in-
stance, using deep neural networks improves training loss but leads to overfitting, resulting
in reduced evaluation performance. Choosing shallow, single-layer neural networks com-
bined with a large depth of the EiNet component proved to be the most important factor
in obtaining the best results for our experiments.

4. Experiments

In order to properly illustrate the capabilities of the Ψnet model, we start by generating
large synthetic datasets and investigating the model performance. We then follow up with
an extensive evaluation on a large-scale real-world causal benchmark called CausalBench
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(Zhou et al., 2024). We support our evaluation using two baseline models, a conventional
iSPN (Zečević et al., 2021) and a neural causal model (NCM) (Xia et al., 2021).

4.1. Baseline Models

Ψnet can answer full evidence, marginal, and conditional queries in interventional and ob-
servational settings. In our experimental evaluation, we compare Ψnet with iSPNs (Zečević
et al., 2021) and neural causal models (NCMs) (Xia et al., 2021). Since Ψnet and iSPNs
follow a similar approach, they are directly comparable. In contrast, NCMs require some
adaptations to serve as a proper baseline which we discuss below. Another alternative
approach to learning (interventional) distributions is interventional normalizing flows (Mel-
nychuk et al., 2023), where a dedicated model is trained for each intervention-target variable
pair available. However, as this approach fundamentally differs from ours, a proper com-
parison to our approach is not trivial. Thus, we do not include it in our evaluation.

The Neural Causal Model: A good Baseline? NCMs train a model given a causal
graph and observational data. For each variable, a neural network is trained on its parents
and the applicable exogenous variables. In order to allow for a fair comparison between
NCM and Ψnets, we had to extend NCMs in multiple aspects. We support training NCMs
on interventional data by adjusting the loss function to not include any loss on the in-
tervened variable. We add continuous leaves using normalizing flows instead of standard
neural networks as function approximators. Lastly, one experiment in CausalBench (more
information in Subsection 4.2) uses interventions on a variable where the precise effect of
the intervention is unknown. Here, the distributions of the soft interventions themselves
need to be learned as well. NCMs do not allow for this directly. Thus, we introduce binary
instrumental variables for all variables. Each is connected to cause one regular variable and
indicates the presence/absence of an intervention. Despite changing the model in these ways,
the NCM still has significant downsides. Firstly, it does not support the direct computation
of marginal probabilities. Instead, marginalization in NCMs is näıvly performed by first
sampling and then averaging values of a large number of samples. Secondly, a causal graph
is required to train the actual NCM. Learning a robust causal graph for high-dimensional
real-world problems is known to be a particularly challenging task (Kitson et al., 2023).

4.2. CausalBench - An Extended Benchmark

CausalBench (Zhou et al., 2024) was introduced as a benchmarking tool for causal discovery
algorithms. It consists of two datasets on biological cell activations (continuous variables)
and includes both observational and interventional data. Within the data, interventions
indicate a knockdown of a particular gene. The causal effects of individual knockdowns can
vary in strength. Hence, we regard interventional data as data resulting from soft inter-
ventions. In the original paper, the authors compare different methods to discover (causal)
graphs using multiple evaluations. These evaluations include biological evaluations, where
the graphs are evaluated based on known gene interactions. In the statistical evaluation,
any potential path A → · · · → B from variable A to B in a causal graph is evaluated by
comparing the marginal interventional distribution P (B|do(A)) of the effect variable with
the marginal observational distribution P (B) of the effect variable. If these distributions
significantly differ, it is assumed that a directed path from A to B exists.
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We argue that this should be taken one step further and, instead of merely detecting that
the observational and interventional distributions differ, we consider how the distributions
differ. In our evaluation, we investigate the effect of interventions on each variable by
considering their marginal probability distributions. For any variables A and B, we consider
the interventional (observational) marginal distribution P (B|do(A)) (observational: P (B))
predicted by a trained model, compute its most probable explanation (MPE) and compare
it to the interventional (observational) mean of the test data. The MPE is defined as
argmaxBP (B|do(A)) in the interventional case and argmaxBP (B) in the observational case.
Since we parameterize the leaves of our Ψnet and iSPN with Gaussian distributions, the
MPE corresponds to the mean in the leaves. Note that this comparison reflects how well
a model predicts the actual causal effect of A on B instead of merely predicting whether
a connection exists at all. By breaking the comparison down to single values per pair of
variables A and B, we enable a full evaluation on all pairs (i.e., over a million comparisons).

4.3. Setup

In the following, we briefly introduce the experimental setup for this paper. We include
further information on hyperparameters and technical details in the appendix.

Synthetic Problems. To conduct an experiment under controlled conditions, we ran-
domly generate causal graphs consisting of a fixed number of nodes and edges. We then
sample 10,000 data points from the unintervened ’observational’ case and a further 10,000
interventional samples for each variable. We run experiments over 5 seeds and evaluate the
following configurations of nodes/edges: 5/5, 10/12, 15/20, 20/30, 50/100, 100/250. Model
performance is recorded after 0.5, 1, 2, 4, and 5 hours of training. We train the NCM
models using the ground-truth causal graph.

CausalBench. For our large-scale real-world evaluation, we use the train and test sets
of the K562 and RPE1 datasets provided within the CausalBench repository.2 All models
are trained on observational and interventional data and with a time budget of 8 hours for
training. We conducted a preliminary hyperparameter search for the Ψnet model to arrive
at an optimized Ψnet model. For the NCM, we use binary instrumental leaves to allow
for soft interventions and implement all continuous variables using normalizing flows. In
our evaluation, we compare the ground truth marginal probabilities of observational and
interventional distributions with the MPE predictions of Ψnet and iSPN. For NCM we
compare with the näıve marginal probabilities obtained from sampling. Just like for the
ground truth, the NCM calculates the mean over samples for the evaluation.

4.4. Synthetic Experiments

Figure 3 shows the errors between model prediction and ground truth. The error is shown
for each node/edge pair and after different points in time. We see that Ψnet and iSPN
outperform NCM, especially on smaller problems where NCM performs worse than on
larger problems. This might be due to the problem creation, where the smaller problems
are more likely to include variables with a higher number of inputs (causes), which might
be more difficult to learn for the NCM since the functions that need to be learned are more

2. https://github.com/causalbench/causalbench
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Figure 3: Average Error on Synthetic Data. On the y-axis, the average error between
the true marginal distribution and the model prediction is plotted. Each x-axis consists of
6 sets of bars, indicating the number of nodes/edges the model has been trained on. Each
adjacent block of bars in the same color for the same node/edge pair has results for different
times of training. Ψnet and iSPN outperform NCM and Ψnet appears to converge towards
better results more quickly than iSPN for larger problems (best viewed in color).

complex. While both Ψnet and iSPN perform well, we can see that Ψnet starts off better
than iSPN on the larger problems. For 50 and 100 nodes, the iSPN failed to finish a single
training epoch within the first time thresholds. Here, only a single seed managed to finish
one epoch after 5 hours for the 100/250 problem (as the time for finishing one epoch of this
problem size is almost exactly 5 hours)3. This indicates that the iSPN is as expressive as
the Ψnet, however learning is much more difficult and time consuming.

This is emphasized by the inference times shown in Table 1. For Ψnet and iSPN, we
looked at all marginal probabilities for all possible interventions (plus one observational
setting), i.e., for n variables, we run (n + 1)n queries. This is the time recorded in the
table. For NCM, we only run n+ 1 queries as all marginal probabilities here are based on
samples that are identical within an interventional setting. To allow for a fair comparison,
we multiplied the NCM time by the number of variables involved (the resulting values are
entered in the NCM∗ row in the table). Thus, the relation between inference time represents
the relation between the speed of inference. Ψnet is much faster than iSPN, improving upon
the iSPN by orders of magnitude for the larger problems. Having adjusted for single queries,
we see that NCM is far slower than both causal circuits.

4.5. CausalBench

The CausalBench benchmark, composed of two datasets with 1158 and 651 variables, is a
large-scale, real-world benchmark with true interventional data. Contrary to assumptions
often made in theoretical causality research, the interventions are not perfect but instead
soft interventions; representing a knockdown of the intervened gene. Learning a causal
graph or model of a problem of this size is considerably difficult with current methods.

3. If all 5 seeds would be considered nevertheless, mean and variance of this configuration would compute
as 0.0088± 0.00065.
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graph 5/5 10/12 15/20 20/30 50/100 100/250
N/E mean±std mean±std mean±std mean±std mean±std mean±std

Ψnet 0.39± 0.00 1.91± 0.08 4.08± 0.03 8.68± 0.08 61.24± 0.64 278.00± 2.28
iSPN 0.59± 0.01 4.56± 0.05 15.24± 0.16 35.78± 0.45 565.68± 9.96 4580.71± 26.46
NCM∗ 1.48± 0.12 12.06± 0.44 40.96± 1.89 98.84± 2.15 1579.39± 42.11 12820.70± 70.23

Table 1: Inference Times (Seconds). Time taken to compute the marginal probability
for each variable under any intervention. Ψnet is clearly much faster than the other models.
The sample-based approach by NCM is by far the slowest since it has to traverse an entire
causal graph. Note that the values specified for NCM∗ illustrate the projected times when
computing the same amount of queries as the other models (more information in the text).

K562 RPE1
Ψnet Ψnet∗ iSPN NCM Ψnet Ψnet∗ iSPN NCM

MSE 0.0942 0.0791 0.0615 1.0165 0.1131 0.0617 0.0627 0.1438
Time (s) 548.36 534.67 2595.26 48778.51 168.54 165.35 907.19 15325.26

Table 2: CausalBench Results. The mean squared error shows the average error when
predicting the most likely value. The time to conduct this evaluation is shown in the
second row. Despite the Ψnet configuration that was optimized for loss achieving the best
loss values, we see a simpler neural network architecture (Ψnet∗), more similar to the iSPN,
performing well. Both variants of Ψnet are significantly faster than the competing methods.

For the larger K562 dataset, we conducted an extensive hyperparameter search to op-
timize our Ψnet performance. We applied the same parameters to the RPE1 dataset. The
results of these experiments are shown in Table 2. The so-trained Ψnets (no star) perform
worse than the iSPN models in the evaluation. For this reason, we also trained additional
Ψnet models, which are closer to the iSPN architecture. To reduce overfitting, we increased
the batch size to 64 and used only a single hidden layer with a small number of neurons
instead of the larger neural network architecture employed before. The new Ψnet∗ models
reach roughly the same error margins as the iSPN while still being considerably faster.

A comparison of the errors reveals several things. For one, optimizing for loss does
not appear to be sufficient. Instead, a validation set should be used to assess the model
performance on the metrics of interest. The iSPN error is on the same level as Ψnet∗

while the NCM performs much worse, especially in the K562 dataset. While better results
when training for a much longer amount of time are plausible, the additional overhead of
the graph discovery part required for the NCM indicates that much more time would be
needed, which is a crucial disadvantage when considering even larger problems.

Most importantly, we observe strong differences in the inference time of our models.
Here, Ψnet is far superior to both competing models, beating especially NCM by orders of
magnitude. Therefore, while Ψnet does not provide the smallest errors here, its errors are
still comparable to that of the best method while being much faster to run. In applications
where inference speed is crucial, the small trade-off in accuracy for the significant speed-up
in inference time is acceptable.
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5. Related Work

Arithmetic circuits (Darwiche, 2003) in general are a precursor to SPNs and have also been
considered for a preliminary approach to causal inference (Darwiche, 2022). There are also
other tractable probabilistic models next to SPNs (Kisa et al., 2014; Van den Broeck et al.,
2019). While Causal Bayesian Networks are powerful and can be transformed into SPNs
and back (Zhao et al., 2015), this transformation from SPNs generally leads to degenerate4

Bayesian Networks incapable of subsequent causal inference (Papantonis and Belle, 2020),
seemingly contradicting the possibility of causal SPNs. This seeming contradiction is ad-
dressed in Zečević et al. (2021) in which a model class extension for SPNs is introduced
that basically conditions the model on the do-operator. More recently, Papantonis and
Belle (2023) introduced an algorithm to transform SPNs into Bayesian Networks which
simplifies the calculation of interventional queries. Considering not only interventional but
also counterfactual questions, Han et al. (2023) highlighted that calculating counterfactuals
using circuits is not any more complex than interventional or observational questions and
Huber et al. (2023) consider counterfactuals in circuits by investigating partial identifia-
bility. A compositional perspective on inference in probabilistic circuits allows inferring
interventional distributions (Wang and Kwiatkowska, 2023). Recently, normalizing flows
have also been used for causality (Khemakhem et al., 2021; Javaloy et al., 2023; Melnychuk
et al., 2023) but lack the capability to perform marginal inference.

Shao et al. (2020) introduced conditional SPN where a NN is used to set the SPN
parameters depending on some set of conditional variables that are input in the NN. Building
on top of this work, Zečević et al. (2021) introduced interventional SPN (iSPNs) which use
the same idea of a combined NN and SPN architecture to allow for interventional queries and
thus inspired this paper. Recently, SPN’s were combined with characteristic circuits (Yu
et al., 2023), to develop the first causal model for mixed domain consisting of heterogeneous
data (Poonia et al., 2024) thereby highlighting the significance of this research direction.

6. Conclusion

We introduce Ψnet, a causal probabilistic circuit capable of tackling tractable marginal in-
ference in high-dimensional real-world settings. Our experimental evaluation demonstrated
Ψnets competitive performance on synthetic data, and, –using a new evaluation on the large-
scale real-world CausalBench dataset– competitive results while being significantly faster
than competing methods. When scaling up to even larger problems or when short inference
time is crucial, Ψnet might be the only existing model able to tackle such problems.

Future work involves improving the model performance even further and making finding
the right model parameters easier. An important bottleneck of applying causal models on
a large scale remains to be a lack of real-world datasets next to CausalBench.

Limitations. In this paper, we only considered interventions on single variables. In-
tervening on multiple variables at the same time can follow the same procedure. As our ex-
periments on CausalBench showed, it is not sufficient to transfer hyperparameters from one
well-performing dataset (K562) to another (RPE1) in the hope of preserving high accuracy.
We hope that future work can make Ψnets more robust to the choice of hyper-parameters.

4. A bipartite graph in which the actual variables of interest are not connected is called degenerate.
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Appendix A. Experimental Setup

In this appendix, we give full details on the experimental setup, expanding on the informa-
tion given in the main paper.

Training Details. We train all models using the Adam optimizer (Kingma and Ba,
2017) and use exponential learning rate decay with 0.99 for Ψnet5 and iSPN and cosine
annealing with warm restarts (Loshchilov and Hutter, 2017) for NCM, where we employ a
cycle length of 50 and a minimum learning rate of 1e-4 for all experiments. The learning
rate used for Ψnet and iSPN is 2e-4 for the synthetic experiments and 1e-3 for CausalBench.
Ψnet and iSPN are trained using a single-layer neural network with 128 (Ψnet) or 75 (iSPN)
neurons for the synthetic problems. For CausalBench, switching to a three layer (width
1024, 2048, 512) NN for Ψnet improves training loss, but decreases final evaluation metrics.
Ψnet∗ and iSPN use only 75 neurons for CausalBench. For synthetic datasets a batch size
of 128 (NCM: 50,000) is used and models are trained over 100 (NCM: 1000) epochs (using
early stopping if models converge faster). The batch size for CausalBench is 64 for Ψnet∗,
32 for Ψnet and iSPN, and 1024 for NCM. Due to the different way training works for
NCM, a larger batch size might be beneficial but is not possible due to memory constraints.
The depth of the Ψnet is set to be the maximum depth available per dataset when splitting
scope into individual variables at the leaves. This results in a depth of ⌈log2(|Variables|)⌉.
All models were built using Pytorch and trained on Nvidia DGX-clusters with A-100 GPUs
with up to 80GB.

Synthetic Problems. To conduct an experiment under controlled conditions, we ran-
domly generated the causal graphs and edge weights, consisting of a fixed number of nodes
and edges. We then sample 10,000 data points from the unintervened ’observational’ case
and a further 10,000 interventional samples for each variable. We run experiments over
5 different seeds, each, and evaluate on the following configurations of nodes/edges: 5/5,
10/12, 15/20, 20/30, 50/100, 100/250. Model performance is recorded after 0.5, 1, 2, 4, and
5 hours of training (using the model of the last epoch finished within the given amount of
time). We train the NCM models using the ground-truth causal graph.

CausalBench. For our large-scale real-world evaluation, we use the train and test sets
of the K562 and RPE1 datasets provided within the CausalBench repository.6 All models
are trained on observational and interventional data and with a time budget of 8 hours for
training. We conducted a preliminary hyperparameter search for the Ψnet model, varying
depth of the EiNet model, the neural network architecture, batch size, learning rate, and the
number of sum nodes in the EiNet to arrive at an optimized Ψnet model. A neural network
architecture with three hidden layers was used for Ψnet due to the hyperparameter search.
For the NCM, we use instrumental leaves, as described in Section 4, to allow the model to
estimate the intervention value of the soft intervention. Instrumental variables, indicating
the presence of an intervention, are binary, while all others are implemented as continuous
variables using normalizing flows. We use the Sortnregress (Reisach et al., 2021) algorithm
results as an input for the graph structure for the NCM.7 For evaluation, we compare the

5. If not specified otherwise, the training details from Ψnet also apply to Ψnet∗.
6. https://github.com/causalbench/causalbench
7. The Sortnregress algorithm only uses observational data, while the NCM is also trained with interven-

tional data. The time that the Sortnregress algorithm takes to return the causal graph is not part of
the 8-hour time budget. The 8-hour budget is fully used to train the NCM after being given the causal
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K562 RPE1
Ψnet Ψnet∗ iSPN NCM Ψnet Ψnet∗ iSPN NCM

MSE 0.0942 0.0791 0.1093 0.8448 0.1131 0.0617 0.0573 0.1563
Time (s) 543.32 551.73 2583.98 50109.32 160.04 168.77 831.04 15313.94

Table 3: CausalBench Results; 24 Hours of Training. The mean squared error shows
the average error when predicting the most likely value. The time to conduct this evaluation
is shown in the second row.

ground truth marginal probabilities of observational and interventional distributions with
the MPE predictions of Ψnet and iSPN. For NCM we compare with the näıve marginal
probabilities obtained from sampling. We only use the same number of samples as the
batch size here. Additional samples could be generated at the cost of runtime. Just like for
the ground truth, the NCM calculates the mean over samples for the evaluation. We again
implement early stopping, which stops training when the loss does not improve further.

Appendix B. Further Experimental Results

We show results when training for 24 hours instead of 8 in Table 3. Both Ψnet and Ψnet∗

results remain the same as early stopping prevents training more than 8 hours. While NCM
makes some improvements for K562, it still remain much worse in MSE than the all the
models based on SPNs.

graph. Therefore, the actual time required to train the Sortnregress + NCM pipeline is actually above
8 hours.
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