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Abstract

Fast arc-reversal (FAR) is proposed as a new exact inference algorithm in discrete Bayesian
networks (BNs), merging favourable features of Arc-reversal (AR) and Variable elimination
(VE). AR constantly maintains a sub-BN structure when rendering a variable barren via arc
reversals, requiring more computational effort than VE, which sacrifices a sub-BN structure
by directly eliminating a variable. We formally establish that FAR can recover a unique and
sound sub-BN structure after consecutive variable eliminations. Experimental results on
real-world benchmark networks empirically show a substantial improvement in the average
run-time and variance of FAR compared to AR. We also suggest a novel method, called
d-contraction, for graphically understanding FAR since FAR is not always the same as a
sequence of arc reversals.

Keywords: Bayesian networks; exact inference; arc-reversal; variable elimination.

1. Introduction

Bayesian networks (BNs) (Pearl, 1988; Darwiche, 2009; Koller and Friedman, 2009) are a
rich semantic modelling tool for managing uncertainty in complex domains. A BN consists
of a directed acyclic graph (DAG) and a corresponding set of conditional probability tables
(CPTs). The probabilistic conditional independence relations encoded in the DAG indicate
that the product of the CPTs is a joint probability distribution. Probabilistic inference,
also called belief propagation or belief update, answers a query, denoted P (X|Y = y),
by computing posterior probabilities of a target set of variables X through revising prior
probabilities based on the observed values y of another set of variables Y , called evidence. It
is important to continue research into improving BN inference algorithms since both exact
and approximate inference are NP-hard tasks (Cooper, 1990; Dagum and Luby, 1993).

Eliminating the non-query variables from a BN is a fundamental task in inference. In
this paper, we focus on two standard approaches, Variable elimination (VE) (Zhang and
Poole, 1994; Dechter, 1996) and Arc-reversal (AR) (Olmsted, 1983; Shachter, 1986). VE
eliminates a variable Xi by multiplying together all probability tables involving Xi and
then summing Xi out of the product. AR eliminates a variable by transforming it into a
leaf by reversing the arcs linking it to all its children in the BN. VE often involves less
computation by directly eliminating a variable but sacrifices the clarity and richness of a
BN sub-structure. Contrarily, AR stands out as an elegant inference algorithm due to its
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ability to preserve a sub-BN structure, albeit with the trade-off of increased computational
overhead. Consequently, an opportunity exists to develop a novel hybrid inference algorithm
that combines advantageous aspects of both VE and AR.

In this paper, we suggest Fast arc-reversal (FAR) as a new approach for exact inference
in discrete BNs. It is formally shown that a unique and sound sub-BN structure can be
recovered after a series of consecutive variable eliminations. The chain rule of probability,
a fixed topological order, and probabilistic inference semantics are utilized for this pur-
pose. Before eliminating a variable, AR and FAR must examine the same set of directed
paths between the children of said variable, although they handle these paths differently.
Empirical analysis of experimental results conducted on 25 real-world benchmark networks
demonstrates that the FAR algorithm generally outperforms the AR algorithm in terms of
computational speed and variance reduction on speed when eliminating variable sets for pos-
terior probability computation. Lastly, we propose a graphical method, called d-contraction,
to graphically understand FAR and compare and contrast it with AR’s sequence of arc re-
versals.

The remainder of this paper is organized as follows. Background knowledge is reviewed
in Section 2. Section 3 introduces FAR by showing how a BN sub-structure can be recov-
ered. The theoretical foundation of FAR is established in Section 4. Section 5 describes
experiments demonstrating the effectiveness of FAR. The graphical method d-contraction
is put forth in Section 6. Section 7 contains conclusions drawn and outlines future work.

2. Background Knowledge

A Bayesian network N = (G,P) has two components G and P, where G = (V,E) is a DAG
with vertices V and edges E, P = {P (Xi ||| pa(Xi)) : Xi ∈ X} is a set of CPTs, X is a
finite set of discrete variables with a one-to-one relationship between V and X , and pa(Xi)
denotes the parents of Xi in G. Subsets of X are denoted by uppercase letters X,Y, Z. We
define (Xi, Xj) as the directed edge (arc) from Xi to Xj in G. We let ch(Xi), an(Xi), and
de(Xi) respectively denote the children, ancestors, and descendants of one variable Xi in G.
These notions are naturally extended to sets of variables. A BN represents a factorization
of a joint probability distribution P (X ) over X such that

P (X ) =
∏

Xi∈X
P (Xi ||| pa(Xi)).

One example BN is in Figure 1, where each variable Xi is depicted in figures by its subscript
i for space considerations, and corresponding CPTs will not be shown.

We define a probability potential ϕ(X) as a non-negative and not-all-zero function over
a set of variables X and a probability distribution P (X) as a probability potential that
sums to one (Shafer, 1996). The domain of probability potential ϕ(X), denoted dom(ϕ), is
X. A CPT ϕ(X ||| Y ) is called singleton, if |X| = 1, and non-singleton, if |X| > 1.

Inference is defined as computing P (X ||| Y = y) posed to BN N , where Y = y is a set of
variable instantiations and X is a set of target variables (a subset of non-evidence variables
in X ). A variable Xi is barren, if Xi ̸∈ X, Xi is not an evidence variable, and Xi only has
barren descendants in G, if any (Shachter, 1986).
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Figure 1: An example Bayesian network on X = {X1, X2, . . . , X12}.

Arc-reversal (AR) (Olmsted, 1983; Shachter, 1986) removes a variable from G by revers-
ing the arcs between the variable and its children and then building the CPTs corresponding
to the modified DAG. Let (X1, X2) be an arc from X1 to X2 such that no other directed
path from X1 to X2 exists in G. The process of reversing the arc (X1, X2) amounts to
performing the following three calculations:

P (X1, X2 ||| pa(X1) ∪ pa(X2) \ {X1}) = P (X1 ||| pa(X1))P (X2 ||| pa(X2)),

P (X2 ||| pa(X1) ∪ pa(X2) \ {X1}) =
∑
X1

P (X1, X2 ||| pa(X1) ∪ pa(X2) \ {X1}), (1)

P (X1 ||| pa(X1) ∪ pa(X2) \ {X1} ∪ {X2}) =
P (X1, X2 ||| pa(X1) ∪ pa(X2) \ {X1})
P (X2 ||| pa(X1) ∪ pa(X2) \ {X1})

. (2)

Algorithm 1 specifies pseudo-code for how AR eliminates one variable Xi from a set of
probability potentials Φ. To avoid introducing directed cycles during successive variable
eliminations, edges to be added will always be oriented with respect to one fixed topological
order ≺ of the given BN N . In this paper, the topological order will always be fixed such
that Xi ≺ Xj , if i < j.

Example 1 Consider any query where AR eliminates variable X6 from the BN in Figure 1.
To make X6 a leaf, we can first reverse arc (X6, X8) as follows:

P (X6, X8|X2, X3, X5) = P (X6|X2, X3)P (X8|X5, X6),

P (X8|X2, X3, X5) =
∑
X6

P (X6, X8|X2, X3, X5), (3)

P (X6|X2, X3, X5, X8) = P (X6, X8|X2, X3, X5)/P (X8|X2, X3, X5), (4)

and then reverse arc (X6, X9):

P (X6, X9|X2, X3, X5, X8) = P (X6|X2, X3, X5, X8)P (X9|X6),

P (X9|X2, X3, X5, X8) =
∑
X6

P (X6, X9|X2, X3, X5, X8). (5)
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Algorithm 1: EliminateAR

Input: a variable Xi, a set of probability potentials Φ, a topological order ≺
Output: the updated set of probability potentials Φ∗ ∪ Φ∗

Xi

1 ΦXi ← {ϕ ∈ Φ ||| Xi ∈ dom(ϕ)}
2 Φ∗ ← Φ \ ΦXi

44 foreach Xj ∈ ch(Xi) following ≺ do
66 Compute P ∗(Xj ||| pa(Xj)) in Equation (1)
88 Compute P ∗(Xi ||| pa(Xi)) in Equation (2)

1010 Φ∗
Xi
← Φ∗

Xi
\ {P (Xi ||| pa(Xi)), P (Xj ||| pa(Xj))} ∪ {P ∗(Xi ||| pa(Xi)), P

∗(Xj |||
pa(Xj))}

11 end
12 Φ∗

Xi
← Φ∗

Xi
\ {P ∗(Xi ||| pa(Xi))}

13 return Φ∗ ∪ Φ∗
Xi

Figure 2 depicts how AR maintains structure during the elimination of variable X6 in
Example 1. Note that when reversing the last arc (X6, X9), there is no need to build the
new CPT for X6, since X6 will be immediately removed as barren in Figure 2(c).
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Figure 2: AR’s Equations (3), (4) and (5) are shown in (a), (b) and (c), respectively.

Variable elimination (VE) (Zhang and Poole, 1994; Dechter, 1996) is a method for
eliminating a variable Xi from a set of probability potentials. It multiplies together all
potentials with Xi in the domain and then sums out Xi from the product. Algorithm 2
eliminates a single variable Xi from a set Φ of potentials and returns the resulting set
of potentials. Every multiplication and summation taken by VE yields a CPT, say of X
given Y , although its probabilities may agree or disagree with the joint distribution P (X ),
respectively called P-semantics, denoted P (X|Y ), and ϕ-semantics, denoted ϕ(X|Y ) (Koller
and Friedman, 2009; Butz and Yan, 2010).

Example 2 VE eliminates variable X6 from the BN in Figure 1 in a direct fashion:

P (X8, X9|X2, X3, X5) =
∑
X6

P (X6|X2, X3)P (X8|X5, X6)P (X9|X6).
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Algorithm 2: EliminateVE

Input: a variable Xi, a set of probability potentials Φ
Output: the updated set of probability potentials Φ \ ΦXi ∪ {ϕXi}

1 ΦXi ← {ϕ ∈ Φ ||| Xi ∈ dom(ϕ)}
2 ϕXi ←

∑
Xi

∏
ϕ∈ΦXi

ϕ

3 return Φ \ ΦXi ∪ {ϕXi}

3. Fast Arc-Reversal

We introduce Fast arc-reversal (FAR) as a new hybrid inference algorithm for exact infer-
ence in discrete BNs.

Algorithm 3 specifies pseudo-code for how FAR eliminates one variable Xi from a set
of probability potentials Φ. VE is used first to eliminate Xi. Next, if VE created a non-
singleton CPT, it is factorized into singleton CPTs with Algorithm 4, called ChainRule,
which follows a fixed topological order ≺ to avoid introducing directed cycles.

Algorithm 3: Fast arc-reversal

Input: a variable Xi, a set of probability potentials Φ, a topological order ≺
Output: the updated set of probability potentials Φ∗ ∪ Φ∗

Xi

1 ΦXi ← {ϕ ∈ Φ ||| Xi ∈ dom(ϕ)}
2 Φ∗ ← Φ \ ΦXi

3 ϕ←
∑

Xi

∏
ϕ∈ΦXi

ϕ

4 Φ∗
Xi
← ϕ

5 if ϕ is a non-singleton CPT then
6 Φ∗

Xi
← ChainRule(ϕ,≺)

7 end
8 return Φ∗ ∪ Φ∗

Xi

For pedagogical purposes, structure recovery should be considered after each variable
elimination. That is, variable elimination and structure recovery should be used alternat-
ingly.

Example 3 Let us recursively call FAR three times with Z = {X6}, Z = {X7}, and
Z = {X3}, to eliminate {X6, X7, X3}, starting from the BN in Figure 1. To eliminate
X6, FAR computes the non-singleton CPT P (X8, X9|X2, X3, X5) by eliminating X6 using
VE as discussed in Example 2. Second, Algorithm 4 is called with non-singleton CPT
P (X8, X9|X2, X3, X5) and ≺. Since X8 ≺ X9, ChainRule computes

P (X8|X2, X3, X5) =
∑
X9

P (X8, X9|X2, X3, X5), (6)

P (X9|X2, X3, X5, X8) = P (X8, X9|X2, X3, X5)/P (X8|X2, X3, X5). (7)
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Algorithm 4: ChainRule

Input: a non-singleton CPT P (X1, X2, . . . , Xk ||| Y ), a topological order ≺
Output: singleton CPTs {P (X1 ||| Y ), P (X2 ||| X1, Y ), . . . , P (Xk ||| X1, . . . , Xk−1, Y )}

1 Let X1 ≺ X2 ≺ · · · ≺ Xk

2 for i← k to 2 do
3 P (X1, . . . , Xi−1|Y )←

∑
Xi

P (X1, . . . , Xi|Y )

4 P (Xi|X1, . . . , Xi−1, Y )← P (X1, . . . , Xi|Y )/P (X1, . . . , Xi−1|Y )

5 end
6 return {P (X1 ||| Y ), P (X2 ||| X1, Y ), . . . , P (Xk ||| X1, . . . , Xk−1, Y )}

Figure 3( a) depicts the sub-BN defined by these CPTs. The subsequent call to FAR with
Z = {X7} to eliminate variable X7 with VE yields the non-singleton CPT:

P (X10, X11|X3, X4) =
∑
X7

P (X7|X3, X4)P (X10|X7)P (X11|X7).

FAR calls ChainRule to equivalently factorize P (X10, X11|X3, X4). Since X10 ≺ X11,

P (X10|X3, X4) =
∑
X11

P (X10, X11|X3, X4),

P (X11|X3, X4, X10) = P (X10, X11|X3, X4)/P (X10|X3, X4).

The resulting sub-BN is depicted in Figure 3(b). Calling FAR to eliminate Z = {X3} from
Figure 3(b) yields the non-singleton CPT P (X8, X9, X10, X11|X1, X2, X4, X5) by:∑

X3

P (X3|X1)P (X8|X2, X3, X5)P (X9|X2, X3, X5, X8)P (X10|X3, X4)P (X11|X3, X4, X10),

which ChainRule factories with ≺ as: P (X8|X1, X2, X4, X5), P (X9|X1, X2, X4, X5, X8),
P (X10|X1, X2, X4, X5, X8, X9), P (X11|X1, X2, X4, X5, X8, X9, X10). This yields the sub-
BN depicted in Figure 3( c).

Example 3 shows that FAR can build a sub-BN structure by alternating between vari-
able elimination and structure recovery. In fact, the reader can confirm that Figure 3(a)
is the same sub-BN built by AR in Example 1. FAR’s computation in Equation (6) and
Equation (7) corresponds to AR’s computation in Equation (3) and Equation (5), respec-
tively.

More importantly, and more generally, FAR can recover a sub-BN structure after using
VE for consecutive variable eliminations.

Example 4 Consider how FAR eliminates Z = {X3, X6, X7} from the BN in Figure 1,
where the elimination order is σ = (X6, X7, X3). The first phase of FAR involves the
elimination of these variables using VE, yielding the following non-singleton CPTs:

P (X8, X9|X2, X3, X5) =
∑
X6

P (X6|X2, X3)P (X8|X5, X6)P (X9|X6),

P (X10, X11|X3, X4) =
∑
X7

P (X7|X3, X4)P (X10|X7)P (X11|X7),
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Figure 3: Alternating variable elimination and structure recovery.

and P (X8, X9, X10, X11|X1, X2, X4, X5) by∑
X3

P (X3|X1)P (X8, X9|X2, X3, X5)P (X10, X11|X3, X4).

Now that VE has eliminated all variables in Z, the second phase of FAR begins. Chain-
Rule is called with the non-singleton CPT P (X8, X9, X10, X11|X1, X2, X4, X5) and ≺, yield-
ing the following four singleton CPTs: P (X8|X1, X2, X4, X5), P (X9|X1, X2, X4, X5, X8),
P (X10|X1, X2, X4, X5, X8, X9), and P (X11|X1, X2, X4, X5, X8, X9, X10).

The reader can verify that AR’s elimination of X6, X7, X3 from the BN in Figure 1
yields the sub-BN in Figure 3(c). The key point of Example 4 is that FAR built the same
sub-BN, but by applying VE three times consecutively, and then utilizing ChainRule.

4. Theoretical Foundation

In this section, we establish the theoretical foundation of FAR, including its soundness and
uniqueness, after discussing similarities and differences between AR and FAR.

The next example shows that sometimes FAR and AR can differ.

Example 5 FAR’s and AR’s elimination of X2 from the BN N in Figure 4( a) are depicted
in Figure 4(b) and Figure 4( c), respectively.

Example 5 illustrates that while FAR may recover AR’s sub-BN structure, there is no
guarantee that it will always do so.

Both AR and FAR must detect all directed paths between the children of the variable
being eliminated, which we call “second paths.” These paths can be partitioned as a
dichotomy and have different lasting effects on probabilistic inference semantics (Butz and
Yan, 2010). Let us first consider directed paths between children of the variable being
eliminated involving only children of said variable. If such a path exists, AR must reverse
the arcs between children in a certain order so as to not create a directed cycle and a ϕ-CPT.
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Figure 4: When eliminating X2 from the BN in (a), FAR’s sub-DAG in (b) can be different
from AR’s sub-DAG in (c). AR restricts the arc reversal order when eliminating X2 in (d)
and (e). FAR eliminates X2 in (d) without restriction but cannot eliminate only {X2} in
(e). FAR and AR both build (f) from (e) when using P-elimination order σ = (X4, X2).

Example 6 Consider the elimination of X2 from the BN N in Figure 4(d), recognizing the
directed path (X3, X5) between children of X2. AR imposes the restriction that arc (X2, X3)
be reversed first; otherwise, AR would generate a ϕ-CPT with its first multiplication:

ϕ(X2, X5 ||| X3, X4) = P (X2)P (X5 ||| X2, X3, X4).

FAR can take this product since P-semantics are recovered with the next multiplication:

P (X2, X3, X5 ||| X1, X4) = P (X3 ||| X1, X2)ϕ(X2, X5 ||| X3, X4).

Example 6 shows that when the “second path” only involves children of the variable
being eliminated, then AR takes care to reverse arcs in a certain order, while FAR can
eliminate the variable without special consideration.

Now consider the second type of directed path between children of the variable Xi being
eliminated. Here, the directed path involves a node that is not a child of Xi. If such a path
exists, FAR’s elimination of Xi in isolation yields a ϕ-CPT.

Example 7 Consider the elimination of X2 from the BN N in Figure 4( e), noting the
directed path from child X3 to child X5 involving non-child X4. As discussed in (Koller and
Friedman, 2009; Butz and Yan, 2010), the elimination of X2 in isolation by VE yields,

ϕ(X3, X5 ||| X1, X4) =
∑
X2

P (X2)P (X3 ||| X1, X2)P (X5 ||| X2, X4).

As Example 7 shows that FAR may construct ϕ-CPTs, FAR is not guaranteed to build a
sound sub-BN using arbitrary elimination orders. It is important to emphasize that multi-
plying together all remaining CPTs in the factorization always yields a correct marginal dis-
tribution within the FAR framework. This is because FAR employs VE for marginalization
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and equivalently replaces non-singleton CPTs with singleton CPTs. For example, in Ex-
ample 7, a correct marginal is maintained after applying ChainRule on ϕ(X3, X5 ||| X1, X4):

P (X1, X3, X4, X5) = P (X1)ϕ(X3 ||| X1, X4)P (X4 ||| X3)ϕ(X5 ||| X1, X3, X4).

In order to guarantee that FAR constructs sound sub-BNs, the elimination order must
be a P-elimination order. A P-elimination order (Butz et al., 2023) has the property that
before eliminating a variable Xi, all non-children of Xi appearing on directed paths between
children of Xi are eliminated first.

Example 8 When eliminating Z = {X2, X4} using P-elimination order σ = (X4, X2) from
the BN in Figure 4( e), FAR and AR build the same sound sub-BN in Figure 4( f).

Henceforth, we assume that a P-elimination order is always used when FAR is to build
a sound sub-BN. We now present our main result.

Theorem 1 Let N = (G,P) be a BN defining joint distribution P (X ), ≺ be a fixed topolog-
ical order of G, and Z ⊆ X be a subset of variables to be eliminated following P-elimination
order σ. Then FAR constructs a unique, sound sub-BN for the marginal distribution
P (X \ Z).

Proof Let Xl be the first variable eliminated. Let Xl have k children, X1, . . . , Xk. By
assumption, a directed path does not exist from any child of Xl to another child of Xl

involving a variable that is not a child of Xl. By (Butz and Yan, 2010), VE’s product
of these k + 1 CPTs is P (X1, . . . , Xk, Xl ||| pa(X1, . . . , Xk, Xl) \ {X1, . . . , Xk, Xl}). VE’s
marginalization of Xl yields P (X1, . . . , Xk ||| pa(X1, . . . , Xk, Xl) \ {X1, . . . , Xk, Xl}). By the
chain rule and the fixed topological order ≺, this non-singleton CPT is equal to the product
of the following k singleton CPTs:

P (X1 ||| pa(X1, . . . , Xk, Xl) \ {X1, . . . , Xk, Xl}),
P (X2 ||| {X1} ∪ pa(X1, . . . , Xk, Xl) \ {X1, . . . , Xk, Xl}),

...

P (Xk ||| {X1, . . . , Xk−1} ∪ pa(X1, . . . , Xk, Xl) \ {Xl}).

Note that no conditional independence relations are introduced in the chain rule factoriza-
tion. Now, every variable in X \Xl has a singleton CPT, and the directed graph defined by
these singleton CPTs is acyclic since all new edges are directed with respect to ≺. Thus,
FAR constructs a sound sub-BN for the marginal distribution P (X \Xl). A similar argu-
ment holds for the other variables in Z. Uniqueness immediately follows from ≺ and σ.

Theorem 1 states that FAR can always construct a unique and sound sub-BN.
By its construction, however, FAR added an extraneous arc (X3, X4) in Figure 4(b).

This arc destroys the unconditional independence of X3 and X4, denoted I(X3, ∅, X4), that
holds in the original BN in Figure 4(a). AR did not add this arc in Figure 4(c). It is
important to observe that VE sacrificed I(X3, ∅, X4) when eliminating X2:

P (X4, X5 ||| X1, X3) =
∑
X2

P (X2)P (X4 ||| X1, X2)P (X5 ||| X2, X3).
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FAR is unable to recover I(X3, ∅, X4) when applying the chain rule

P (X4, X5 ||| X1, X3) = P (X4 ||| X1, X3)P (X5 ||| X1, X3, X4).

Future work will investigate improving FAR by not adding superfluous arcs.

5. Experimental Analysis

In this section, we describe the experimental analysis performed to compare AR and FAR.
The experiment involves 25 BNs of different complexity taken from the literature. The
objective of the experimental analysis is to investigate and compare the performance impact
of AR and FAR as the algorithm used for eliminating sets of variables during message passing
in Simple Propagation (Butz et al., 2016).

In each case, an optimal triangulation in terms of total clique state-space size (TSS) has
been generated for each network using the total-weight algorithm of the HUGIN Decision
Engine (Madsen et al., 2005). Information on the 25 BNs and the corresponding junction
trees can be found in Table 1 (columns two and three). Networks of different sizes and
complexity are considered in the experimental analysis.

The empirical evaluation is performed on a desktop computer running Red Hat Enter-
prise Linux 7.9 with a six-core Intel (TM) i7-5820K 3.3GHz processor and 64 GB RAM. The
computer has six physical cores and twelve logical cores. Computation time is measured as
the elapsed (wall-clock) time in seconds and covers both message passing and computation
of marginals. Note that the semantics of FAR’s CPTs are not considered in the experiments
as intermediate ϕ-CPTs do not disturb the computation of posterior probabilities.

Table 1 also shows the experimental results, where random evidence is propagated in
each BN. For each network, 100 sets of randomly generated evidence are propagated. The
same evidence is used for each algorithm. Each algorithm has a separate column, i.e., FAR
and AR. The lowest average run-time for each BN is highlighted in bold.

Table 1 empirically shows that FAR had the unique lowest cost in 21 cases compared to
AR, which had a unique lowest cost in 1 case. FAR and AR are tied in 3 networks.

6. d-Contraction

We introduce d-contraction to graphically understand FAR akin to visualizing AR as a
sequence of arc reversals.

Definition 2 (d-contraction)1 Let N be a BN on X and ≺ be the fixed topological order
of variables in N . Let Z ⊆ X be a subset of variables to be eliminated. Following a P-
elimination order σ, graphically eliminate variable Xl by adding a directed edge (Xi, Xj)
between the following pairs of variables, provided Xi ≺ Xj: (i) from every current parent of
Xl to every current child of Xl; (ii) from every current spouse (parent of a common child)
of Xl to every current child of Xl; and (iii) between every pair of current children of Xl.
Remove Xl and its incident edges from the current sub-DAG.

1. d-contraction is intended as a Bayesian variant of contraction in graph theory in the spirit of d-separation
and separation, and is not to be confused with the Contraction semi-graphoid inference axiom.
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Network X log(TSS) µ(FAR) σ2(FAR) µ(AR) σ2(AR)

3nt 58 3.45 0.01 0.00 0.02 0.00
ADAPT 1 133 1.98 0.04 0.00 0.05 0.03
Amirali network 681 6.92 0.38 0.20 0.55 0.41
andes 223 4.82 0.13 0.06 0.19 0.11
Barley 48 6.86 0.08 0.13 0.12 0.20
cc145 145 3.01 0.08 0.04 0.13 0.09
cc245 245 5.42 0.16 0.08 0.27 0.16
Diabetes 413 4.93 0.29 0.26 1.05 1.59
food 109 6.48 0.14 0.17 0.16 0.17
hailfinder 56 3.51 0.02 0.00 0.03 0.00
Heizung. 44 7.62 0.19 0.45 0.28 0.63
Hepar II 70 2.58 0.02 0.00 0.05 0.03
KK 50 6.76 0.08 0.10 0.09 0.10
medianus 56 5.73 0.03 0.03 0.04 0.04
Mildew 35 6.10 0.04 0.04 0.05 0.05
Munin1 189 7.58 0.48 1.12 1.41 4.23
oow bas 27 5.71 0.03 0.03 0.03 0.03
oow solo 40 6.22 0.07 0.09 0.08 0.10
oow 33 6.31 0.07 0.09 0.07 0.09
pathfinder 109 4.51 0.11 0.08 0.17 0.14
powerplant 46 1.91 0.01 0.00 0.01 0.00
ship 50 6.61 0.16 0.29 0.15 0.24
system v57 85 4.84 0.05 0.03 0.07 0.04
Water 32 5.77 0.05 0.06 0.07 0.07
win95pts 76 2.71 0.03 0.00 0.05 0.03

Table 1: Average time cost in seconds propagating random evidence in 25 real-world
Bayesian networks. Lowest costs are specified in bold
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Example 9 Consider applying d-contraction to eliminate Z = {X3, X6, X7} from the BN
in Figure 1 following the P-elimination order σ = (X6, X7, X3). For X6, in step (i),
when considering parents X2 and X3 and children X8 and X9, add directed edges (X2, X8),
(X2, X9), (X3, X8), and (X3, X9). In step (ii), add directed edge (X5, X9) from the spouse
X5 of X6 to the child X9 of X6. In step (iii), add directed edge (X8, X9) between children
X8 and X9, since X8 ≺ X9. Finally, delete vertex X6 and all incident edges (X2, X6),
(X3, X6), (X6, X8), and (X6, X9). The resulting sub-DAG is depicted in Figure 3( a).

The reader can verify that subsequently removing X7 with d-contraction gives the sub-
BN in Figure 3(b). Next, to remove X3, observe that X3’s children have changed from
the original BN. Thus, in step (i), when considering parent X1 and children ch(X3) =
{X8, X9, X10, X11}, add directed edges (X1, X8), (X1, X9), (X1, X10), and (X1, X11). In step
(ii), with X2, X4, and X5 each being a spouse, add directed edges (X2, X10), (X2, X11),
(X4, X8), (X4, X9), (X5, X10), and (X5, X11). In step (iii), add directed edges (X8, X10),
(X8, X11), (X9, X10), and (X9, X11). Finally, delete vertex X3 and all incident edges
(X1, X3), (X3, X8), (X3, X9), (X3, X10) and (X3, X11). The resulting sub-DAG is depicted
in Figure 3( c).

The next example highlights how d-contraction can differ graphically from a series of
arc reversals with AR.

Example 10 Let us graphically eliminate X2 in Figure 4( a) using d-contraction. In step
(ii), arc (X3, X4) is added from the spouse X3 to the child X4 of X2. In step (iii), arc
(X4, X5) is added from X4 to the other child X5 of X2, yielding the sub-BN in Figure 4(b).
As previously mentioned, the series of arc reversals done by AR to eliminate X2 in Fig-
ure 4( a) gives Figure 4( c), which does not involve adding an arc from the spouse X3 to the
child X4.

Example 10 highlights that d-contraction and a series of arc reversals are two alternative
ways of graphically visualizing sound sub-BN construction during variable elimination.

7. Conclusions

We introduced a novel BN exact inference algorithm, called Fast arc-reversal (FAR), that
falls between AR and VE while incorporating favourable features of each. Whereas its
predecessor, AR, constantly maintains a sub-BN structure as in Figure 2, FAR recovers a
sub-BN structure after running VE, as in Figure 3(a), for instance. To ensure clarity in
pedagogy, we presented in Example 3 how variable elimination and structure recovery can be
performed in an alternating sequence. More importantly, our main result, Theorem 1, states
that FAR can recover a unique and sound sub-BN after consecutive variable eliminations.
In our experimental results on 25 benchmark real-world BNs, FAR was faster than AR
in 21 cases, tied AR in 3 cases, and was slower than AR once, as shown in Table 1. As
well, FAR typically exhibits lower variance. Lastly, we put forth d-contraction to graphically
understand FAR, as FAR is not necessarily the same as a series of arc reversals. Future work
will investigate preventing FAR from adding superfluous arcs as mentioned in Section 4.
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