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Abstract

This paper studies automated machine learning (AutoML) for causal discovery, the process
of uncovering cause-and-effect relationships within data. Causal discovery is an unsupervised
learning problem, as the target (the underlying ground truth causal model) is typically
unknown. Therefore, the loss functions commonly used as an optimisation objective in
AutoML systems developed for supervised learning problems are not applicable. We propose
AutoCD, the first AutoML system utilising Bayesian optimisation based on a search space of
causal discovery algorithms. In designing AutoCD, we study and compare the applicability
of two different loss functions and post-hoc corrections. Additionally, based on the analysis
of the performance of AutoCD, we propose an improved version called AutoCDPC by
warm-starting the search from the PC algorithm. Results from our experiments on datasets
simulated from 45 graphical models demonstrate that AutoCDPC performs better than
the baselines by ranking the highest (avg. rank 3.69) compared to the best causal tuning
baseline (avg. rank 5.21) and the best fine-tuned individual algorithm (avg. rank 4.36).

Keywords: Causal discovery; Automated Machine Learning; Causal tuning.

1. Introduction

Causal discovery is the process of identifying causal relationships in the data. A deeper
understanding of causal relationships can assist in developing effective interventions or
policies. Research in the field of causal discovery has resulted in various algorithms with
different underlying assumptions, showing varying performance across datasets. To achieve
high performance on a given dataset, it is essential that users perform both algorithm
selection and hyperparameter optimisation.

The field of automated machine learning (AutoML) has previously addressed the combined
algorithm selection and hyperparameters optimisation (CASH) problem for supervised
learning problems by defining a search space based on existing algorithms and an efficient
search strategy (Thornton et al., 2013). This search strategy evaluates the performance of
models using a clearly defined loss function (e.g., classification or regression error). Applying
these strategies to causal discovery poses a challenge, due to the typically unknown ground
truth graph and evaluation metrics that do not use this target graph. Consequently, the
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conventional cross-validation approach and loss functions used in automated supervised
learning become inapplicable.

This work focuses on developing the first AutoML system for causal discovery by
reformulating the CASH problem. Specifically, we study loss functions from two previously
proposed causal tuning methods, namely the stability approach to regularisation selection
(StARS) (Liu et al., 2010) and out-of-sample causal tuning (OCT) (Biza et al., 2022). Up
to now, these methods have only been tested in conjunction with grid search, which is
unsuitable for exploring a larger space comprising many algorithms and hyperparameters.
Prior work shows that optimising these two loss functions on a search space of causal discovery
algorithms may lead to suboptimal performance requiring a post-hoc correction based on
evaluated configurations in the search space to identify a higher-performing configuration
(Biza et al., 2022). To extend the search space, a more efficient search strategy is needed,
such as the Bayesian optimisation (BO) (Baratchi et al., 2024). In addition, the effectiveness
of the post-hoc correction needs to be verified, as BO targets a smaller set of configurations.
To address these challenges, the main contributions of our research include:

1. Development of AutoCD, the first AutoML approach and system comprising algorithm
selection and hyperparameter optimisation for causal discovery.

2. Variants of AutoCD incorporating post-hoc correction and warm-starting the search
from the PC algorithm (Spirtes et al., 2001), which uses conditional independence
tests to uncover the causal structure.

3. Evaluation of AutoCD on synthetic datasets from 45 graphical models and a real-
world dataset that addresses the progression of mild cognitive impairment and early
Alzheimer’s disease.

2. Related work

Model selection. Causal discovery algorithms can be tuned using statistical model selection
techniques such as the Akaike information criterion (AIC) and Bayes information criterion
(BIC) (Ding et al., 2018). Maathuis et al. (2009) defined an objective function based on
a modified BIC criterion to tune the hyperparameter alpha (the cutoff for p-values in
conditional independence tests) of PC (Spirtes et al., 2001) by trying out 7 alpha values.
Biza et al. (2022) extended this method to tune a set of hyperparameter configurations.
They demonstrated that the computation of the likelihood is difficult for causal models, as
real-world data may have arbitrary functional dependencies and noise distributions.

Causal tuning. Liu et al. (2010) proposed another causal tuning approach by introducing
the stability approach to regularisation selection (StARS) algorithm, which employs a
stability-based approach (Meinshausen and Bühlmann, 2010) founded on subsampling
(Politis et al., 1999) for model selection. This method iteratively refines the hyperparameters
of interest until the network instability reaches a user-specified significance threshold,
resulting in an optimised model. StARS was further adapted for causal discovery algorithms.
Raghu et al. (2018) primarily focused on refining two key hyperparameters (alpha for
constraint-based algorithms and penalty discount for score-based algorithms). Biza et al.
(2022) pointed out limitations of StARS in assessing how well the causal model fits the data.
This introduces bias and leads to favouring a configuration that consistently makes the
same systematic errors on the sub-samples, as this minimises network instability. Building
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upon their adaptation of StARS, Biza et al. (2022) further introduced out-of-sample causal
tuning (OCT), the first method employing k-fold cross-validation. OCT transforms the
unsupervised learning problem into supervised learning by treating a causal model as a
collection of predictive models.

AutoML. Existing tuning methods for causal discovery use grid search to explore the
search space (Maathuis et al., 2009; Biza et al., 2022). Expanding this search space would
significantly increase time complexity. Bayesian optimisation (BO) is a more efficient search
strategy widely employed method in AutoML for supervised learning tasks (Hutter et al.,
2019; Baratchi et al., 2024). Examples of BO hyperparameter optimisation approaches include
sequential model-based algorithm configuration (SMAC) (Hutter et al., 2011), Gaussian
processes (Rasmussen, 2003) and tree Parzen estimators (TPE) (Bergstra et al., 2011) (for
details we refer to the survey paper by Wang et al. (2023)). As causal discovery algorithms
continue to evolve, the complexity of the respective AutoML search spaces may increase
drastically with additional algorithms and hyperparameters. To address this challenge,
we aim to develop an AutoML system utilising SMAC due to its proven performance in
AutoML systems such as auto-weka (Thornton et al., 2013), auto-sklearn (Feurer et al.,
2015), and auto-pytorch (Zimmer et al., 2021). This approach aims to focus on higher-quality
configurations compared to those explored by grid search.

AutoML for unsupervised learning. The literature for automated unsupervised
learning is much more limited compared to supervised learning. de Souto et al. (2008) address
the algorithm selection problem for clustering by using a meta-learning approach where
knowledge is extracted from datasets with similar dataset meta-features. AutoClust proposed
by Poulakis et al. (2020), is an AutoML framework that automates the clustering task based
on cluster validity indices and meta-learning. For algorithm selection, the k-nearest neighbour
approach is adopted with majority voting. Furthermore, an optimisation goal is proposed for
hyperparameter tuning that uses a predictive model to learn the mapping between different
internal cluster validity indices that do not need ground truth for validation. Automating
causal discovery exhibits extra challenges compared to other unsupervised learning tasks, as
one cannot rely on the existence of ground truth for any form of internal validation.

3. Methods

In this section, we present automated machine learning for causal discovery algorithms
(AutoCD), an AutoML system for tuning causal discovery algorithms. We first introduce the
formal problem, followed by details of the loss functions and post-hoc correction strategies.

3.1. Automated Causal Discovery

We propose AutoCD, an AutoML system to address the CASH problem (Thornton et al.,
2013) for causal discovery. Two differences exist between the CASH problem defined based
on supervised learning and causal discovery: (i) the utilisation of k-fold cross-validation and
(ii) the loss function. In the context of unsupervised learning, cross-validation is typically
not applicable due to the unknown ground truth graph. Moreover, as causal discovery is
a descriptive unsupervised learning task, the objective is to understand and describe the
dataset rather than making predictions for unseen instances (Flach, 2012). In absence of
ground truth on the target, loss functions are unable to accurately measure the performance
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of uncovering the underlying causal structure. This is a common problem in automating
unsupervised learning tasks where no universally applicable metric exists. Consequently,
there is no straightforward way to define a loss function, in contrast to supervised learning
where conventional evaluation metrics are optimised. As a result, the reformulated CASH
problem for AutoCD is defined as

A∗,λ∗ ∈ arg min
A(i)∈A,λ∈Λ(i)

L(A
(i)
λ ,D) . (1)

Here, given an algorithm A(i) from the set of algorithms A = {A(1), ..., A(i), ..., A(n)} with

corresponding configuration space Λ(i), a hyperparameter configuration is denoted A
(i)
λ for

λ ∈ Λ(i). The optimal algorithm A∗ and optimal hyperparameter settings λ∗ are determined

by optimising the loss function L(A
(i)
λ ,D) for a given dataset D. The CASH problem can be

reformulated as hyperparameter optimisation (HPO), by treating algorithm selection as a
top-level hyperparameter denoted λalg, responsible for selecting an algorithm from the set A.
The configuration space changes to Λ = Λ(1) ∪ · · · ∪Λ(n) ∪ {λalg}, where hyperparameter
λalg selects algorithm A(i).

3.2. Loss function

To assess the performance of a configuration Aλ in causal discovery, it is necessary to define
a loss function L that can be assessed without ground truth knowledge. In this work, we
study two distinct approaches from the literature: StARS and OCT.

StARS (see Algorithm 1 in Appendix A), originally proposed by Liu et al. (2010) and
modified for causal discovery by Biza et al. (2022), utilises data subsampling to quantify
the network instability of a model, which reflects the sensitivity of the graph structure to
changes in the data. Given a configuration Aλ, each sub-sample D(i) is used to estimate a
causal graph, compute the number of edges, and compute the probability pXY denoting the
presence of an edge (X,Y ) between variables X and Y in the graph. The density of the causal
graph is obtained by averaging the number of edges over S sub-samples. Additionally, the
instability of each edge (X,Y ) in the causal graph is computed as ξXY ≡ 2 · pXY · (1− pXY ).
The network instability of a configuration N(Aλ) is defined as the average edge instability
across all edges in the causal graph.

OCT (see Algorithm 2 in Appendix A), proposed by Biza et al. (2022) employs k-
fold cross-validation to produce a collection of predictive models, each treating a specific
variable in the dataset as a target, computing and averaging the performance of the
models with mutual information. Given a configuration Aλ, a causal graph is estimated
from the training set, and a Markov boundary is computed for each variable X. The
Markov boundary is utilised to construct a random forest (RF) model MX to predict the
variable X using the validation set. The predictive performance of the model predicting
the target variable is measured using mutual information, comparing true values of X with
the aggregated predictions X̂. If X is continuous, the mutual information is defined as
I(X, X̂) =

∫
x̂

∫
x p(x, x̂) · log p(x,x̂)

p(x)·p(x̂)dxdx̂, where p(x), p(x̂), and p(x, x̂) denote the marginal

densities of X, X̂ and the joint density, respectively. On the other hand, if X is discrete, the
mutual information is I(X, X̂) =

∑
cx∈C

∑
cx̂∈C P (cx, cx̂) · log P (cx,cx̂)

P (cx)·P (cx̂)
, where cx, cx̂ ∈ C

denote the categories of X and X̂. The aggregated mutual information IAλ
is computed as
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the average mutual information across all variables. HPO methods can optimise these loss
functions favouring lower network instability values and higher mutual information values.

3.3. Post-hoc correction

The original StARS and OCT methods utilise penalties. We aim to use these penalties as
a post-hoc correction after obtaining a set of evaluated configurations from a BO trial. It
should be noted that originally, these penalties apply to all possible configurations in the
space. However, only a subset of sequentially evaluated configurations are available when
using BO. Therefore, the effectiveness of these penalties in AutoCD still needs to be verified.

The StARS penalty is shown in Appendix A, Algorithm 3. After obtaining the evaluated
configurations A with corresponding density estimation values Q and network instability
values N , the network instability values are sorted based on the density estimation values
and subsequently reordered as a monotonically increasing sequence. This ordering results in
configurations with sparse but stable graphs appearing before those with dense and unstable
graphs. Next, a configuration is selected that is not too sparse but also not unstable, using
the threshold β. Originally, StARS as implemented by Biza et al. (2022) does not optimise
for network stability. Instead, the post-hoc correction determines the best-performing
configuration among all evaluated configurations. From this penalty, we can gather that the
stability of graphs is an important objective. Therefore, in AutoCD we optimise network
instability which points to configurations with stable graphs. The effectiveness of the loss
function in combination with this penalty needs to be verified.

The OCT penalty is shown in Appendix A, Algorithm 4. After obtaining the evaluated
configurations A and the best-performing configuration A∗λ with corresponding mutual

information values I, predictions X̂ and Markov boundary sizes |MB|, the null hypothesis
of no difference between the optimal configuration and an arbitrary configuration with
threshold β is tested by permutation testing. Eventually, a configuration is selected that
has the same mutual information value as the optimal configuration, but a smaller Markov
boundary and is, therefore, less complex. Biza et al. (2022) introduced this penalty to avoid
false positive variables in Markov boundaries and showed that this penalty either improves
the performance or maintains the current performance.

3.4. Search space

The AutoCD search space encompasses 11 causal discovery algorithms. These algorithms
were sourced from Tetrad (Ramsey et al., 2018), a widely used software package, and gCastle
(Zhang et al., 2021), which includes recent implementations of causal discovery algorithms.
The search space is tree-structured, comprising 74 hyperparameters and including the
algorithm selection hyperparameter with a mix of continuous, categorical and conditional
hyperparameters. The search space is flexible for future expansion to allow for easy integration
of emerging causal discovery algorithms. Table 7 in Appendix B presents an overview of the
causal discovery algorithms embedded within AutoCD.

4. Experimental setup

For our experiments we used SMAC (Hutter et al., 2011), a general-purpose algorithm
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configurator based on BO. SMAC is suitable for searching within tree-structured search
spaces with a mixture of different hyperparameter types. We initially want to investigate
the impact of data sample size and the time budget available to SMAC, to ensure enough
data and time budget is available to achieve the best practically possible results.Next, we
study the performance of AutoCD on discrete, continuous, and mixed simulated datasets.
In our experiments, the performance of AutoCD is compared against the performance of
the baselines and enhanced AutoCD variants. The experiments are run on three compute
clusters with Intel Xeon E5-2630 processors @ 2.40GHz. For reproducibility, the source code
for AutoCD is available 1.

4.1. Baselines

We consider two groups of baselines: (i) causal tuning methods (StARS and OCT) and (ii)
hyperparameter-tuned causal discovery algorithms. The first group originally utilises grid
search for a much smaller search space. However, to allocate the same time budget and the
same search space as AutoCD, we employed random search for this group. For the second
group, we use BO to tune the hyperparameters (hyperparameters are shown in Table 9). For
a fair comparison, all methods adhere to a wall-clock time of 1 hour and terminate a trial
exceeding 15 minutes to search for a configuration. This termination strategy was chosen,
because we observed a considerable amount of configurations taking a long time without
producing better results.

� StARS (Biza et al., 2022): This method has 2 untunable hyperparameters, the number
of data sub-samples set to 20 and the threshold set to 0.05, as suggested by the authors.

� OCT (Biza et al., 2022): This method has 3 hyperparameters, the number of folds
(cross-validation) set to 10, the number of permutations set to 1000, and the threshold
set to 0.05, as suggested by the authors.

� PC (Spirtes et al., 2001): This algorithm is included as a baseline due to its popularity
and versatile applicability.

� FGES (Ramsey et al., 2017): This algorithm shares similarities with PC in terms of
broad applicability, making it a suitable baseline for comparative analysis.

� LiNGAM (Shimizu et al., 2006): This algorithm is specifically tailored for continuous
datasets; it has various extensions to address complexities such as latent confounders.

� GOLEM (Ng et al., 2020): This algorithm employs a gradient-based approach to
learn the underlying causal structure without imposing structural assumptions using a
data-driven approach.

These baselines are compared against AutoCD and its variants: AutoCD+, AutoCDPC and
AutoCDPC+. AutoCD is determined by the best performing version, either AutoCDStARS

utilising StARS or AutoCDOCT utilising OCT as loss function. AutoCD+, additionally,
applies the penalty as a post-hoc correction to the results of AutoCD. AutoCDPC is an
improved AutoCD variant that will be introduced in Section 5.4. AutoCDPC+ combines
AutoCD+ and AutoCDPC .

1. https://github.com/Gerlise/AutoCD
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4.2. Evaluation metrics

We evaluate the causal graphs using two groups of commonly used evaluation metrics:
classification-based (false positives, false negatives, causal accuracy) and graph distance-
based (structural Hamming distance). False positives (FP) and false negatives (FN) refer to
over- and underpredicted edges, respectively. Causal accuracy (CA) measures the accuracy in
discovering the underlying causal structure. It examines the proportion of correctly identified
causal relationships relative to the total number of causal connections . Structural Hamming
distance (SHD) computes the number of edge insertions, deletions and reversals required to
transform the estimated graph into the target graph. For a meaningful comparison across
datasets with varying nodes and node degrees, all metrics are normalised by the total number
of causal connections (TP + FP + FN), like in CA.

4.3. Datasets

The experiments are conducted using both synthetic and real-world data. While real-world
data offers practical insights of AutoCD, the synthetic datasets provide control over the
causal structure with a known target graph to validate against. This is a common approach
in causal discovery, as the target graph in real-world datasets is unknown or not agreed
upon by experts (Cheng et al., 2022).

Synthetic datasets. We employed Py-tetrad (Ramsey and Andrews, 2023) to generate
random directed acyclic graphs (DAGs), to simulate synthetic datasets with discrete, contin-
uous, and mixed variables. Each graphical model thus generated simulates 25 target graphs
and datasets; in total, there are 45 graphical models resulting in 1125 target graphs and
datasets. The parameters for the graphical model, such as the data type and the number of
nodes, are provided in Appendix C, Table 10.

Real-world dataset. The real-world dataset is obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD.
Its primary goal has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD) (Weiner et al., 2015). The “gold standard” graph
discussed in Shen et al. (2020) is displayed in Appendix D, Table 11 and will be used as
the target graph in our experiments. The causal connections in the graph are constructed
and established from extensively evaluated literature. This dataset contains 9 variables with
records of 1008 patients, details about the dataset are shown in Appendix D, Table 11.

Evaluation protocol. To account for variability in our results, 25 independent runs of
SMAC are conducted. The budget and trial budget are reported in Appendix E, Table 12.
The configurations are evaluated utilising the metrics described in Section 4.2. The eval-
uation protocol of AutoCD (designed by Hutter et al. (2011) and Thornton et al. (2013))
incorporates bootstrapping, where 5 configurations are sampled uniformly at random from
the 25 configurations. The best configuration is then reported based on the loss, and the
process is repeated 1000 times to create a bootstrap distribution. These parameters are also
shown in Appendix E, Table 12.
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5. Results

This section presents the findings and results from our experiments. We begin with small-
scale exploratory experiments on datasets from one DAG. Following this, various comparative
evaluations are conducted using the same synthetic datasets and the ADNI dataset.

5.1. Exploratory experiments

Data sample size. We initially experimented (see Figure 1 here and Figure 6 in Appendix F)
with selecting the number of instances in the dataset to ensure the feasibility of finding the
causal structure based on the synthetic dataset. Assuming that the best possible configuration
is found, with nearly infinite data, the estimated causal graph should mirror the target graph.
Any decrease in performance can be ascribed to complex graph structures, insufficient data
or a suboptimal configuration. AutoCD is applied to the continuous synthetic datasets with
1000 instances to identify the optimal configuration. The results are evaluated utilising the
evaluation protocol with 200, 1000 and 10 000 data samples. We observed a notable change
in SHD and CA when comparing the results obtained for 200 and 10 000 data samples. The
mean achieved for 10 000 data samples is lower (SHD) or higher (CA) and the spread is
smaller, indicating better performance with less variability. In our subsequent experiments,
we utilise 1000 data samples as a comprise between performance and computation time.

Data types. Our next experiment (see Figure 2) aims to investigate the performance of
AutoCD on discrete, continuous, and mixed synthetic datasets. This distinction is needed,
because not all causal discovery algorithms are designed for all data types, with fewer
algorithms tailored for mixed datasets. Our findings show that AutoCD utilising either
of the loss functions can successfully identify an optimal configuration for the continuous
synthetic dataset. However, the high SHD scores and low CA values observed for the discrete
and mixed synthetic datasets were unexpected. Biza et al. (2022) showed similar results,
suggesting that applying post-hoc correction improves the performance on the discrete
dataset, which will be addressed in Section 5.4.

Budget size. To determine the optimal time budget for AutoCD (set in SMAC), the
experiment is conducted by varying the budgets in minutes (m) and hours (h) within the
range [15m, 30m, 45m, 1h, 1.5h, 2h, 2.5h]. At a certain budget, the results plateau, indicating
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Figure 1: Increasing data sample size
on the continuous synthetic dataset
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diminishing returns. AutoCD is applied to continuous and mixed synthetic datasets, and the
results are evaluated according to the evaluation protocol yielding bootstrap distributions
(see Figure 3 and Figure 4). Based on the anytime performance graph (see Figure 3),
AutoCD can perform well within a time budget of 1 hour for both loss functions. Based on
the results in Figure 4, we can conclude that optimising the loss functions AutoCDStARS

and AutoCDOCT leads to better performance in terms of the loss. Considering the trade-off
between performance and computation time, in subsequent experiments, all methods and
algorithms will adhere to a wall-clock time of 1 hour.

5.2. StARS vs OCT

To determine the most suitable loss function for implementing AutoCD, we perform two
experiments to compare the effectiveness of these two loss functions. We use AutoCDStARS

and AutoCDOCT , to refer to the implementations of AutoCD using the StARS and OCT
loss functions, respectively. The experiment uses the synthetic and real-world datasets,
comparing the performance of AutoCDStARSand AutoCDOCT in terms of SHD, CA, FP and
FN. The results are presented in Table 1 (based on aggregating the bootstrap results). These
results reveal that, overall, AutoCDOCT achieves better performance than AutoCDStARS ,
except for the continuous case and the ADNI dataset based on SHD. The weaker performance
of AutoCDStARS can be explained by the substantial proportion of underpredicted edges,
edges that are present in the target but not the predicted graph.

Table 1: Performance of AutoCDStARS and AutoCDOCT on synthetic datasets with 10 nodes
and node degree 3 and the ADNI dataset. The results in bold indicate better performance
tested with the Wilcoxon signed rank test with a significance level of 0.05. The entries show
the mean and standard deviation.

AutoCDStARS AutoCDOCT

Dis Con Mix ADNI Dis Con Mix ADNI

SHD .85±.15 .09±.2 .76±.11 .83±.09 .47±.09 .21±.25 .58±.13 .85±.04
CA .15±.15 .92±.18 .25±.11 .33±.03 .53±.09 .84±.19 .46±.1 .34±.05

FP 0 .01±.02 0±.01 .49±.03 .01±.03 .14±.18 .22±.23 .6±.06
FN .85±.15 .07±.16 .75±.11 .18±.04 .45±.09 .02±.03 .32±.22 .05±.02

114



AutoCD

We further compare the average ranking of the methods on all DAGs. Table 2 shows
that AutoCDOCT outperforms AutoCDStARS on discrete and mixed synthetic datasets,
while AutoCDStARS shows better performance on the continuous synthetic datasets. These
ranking results are consistent with the results in Table 1. Therefore, in the next experiments,
AutoCD refers to AutoCDOCT when applied to discrete and mixed synthetic datasets, and
AutoCDStARS when applied to continuous synthetic datasets.

5.3. AutoCD vs Baselines

The previous analysis helped us determine the loss function for AutoCD based on the data
type. Next, we present the results from the experiments outlined in Section 4.

Causal tuning methods. The causal tuning methods compared here are StARS, OCT
and AutoCD. Table 3 shows the aggregated bootstrap results on synthetic datasets and the
real-world dataset. Both StARS and OCT show inferior performance compared to AutoCD
across all datasets in terms of SHD and CA, except for the ADNI dataset, where StARS
achieves a higher CA value. The FP and FN rates in Appendix F, Tables 15 and 16 show
that AutoCD compared to StARS and OCT obtains the lowest FN rates (44 out of 46) and
the lowest FP rate on continuous datasets (14 out of 15). The FN rates are consistently
higher than the FP rates, indicating that the estimated causal graphs are missing edges
present in the target graph. The relative performance can be seen in Table 5. These results
show that AutoCD’s overall performance is better than the StARS and OCT baselines.

Individual algorithms. We extended our comparative analysis to include individual
algorithms, namely PC, FGES, LiNGAM and GOLEM. The hyperparameters of these
algorithms are optimised using AutoCD with a search space including only the respective
algorithm. The results shown in Table 4 indicate that AutoCD outperforms individual
algorithms on the continuous synthetic dataset and is better on the ADNI dataset in terms
of CA. For the discrete synthetic datasets, FGES yields superior performance, while PC
achieves better results on the mixed synthetic dataset and the ADNI dataset in terms of
SHD. To illustrate the relative performance between the methods, we studied their ranking
based on SHD and CA. The results of this analysis are presented in Table 5 (comparing the
third, seventh and eighth columns) and demonstrate that AutoCD achieves a better average
ranking compared to these two constituting algorithms (i.e., PC and FGES). These results
are unexpected, and after inspecting the adequacy of the time budget available to AutoCD,
we used these results to propose variants of AutoCD.

5.4. AutoCD vs Variants

Building upon the previous results, we propose several variants of AutoCD. The first of these
is called AutoCD+ and includes the post-hoc correction strategies presented in Section 3.3.
The second variant, AutoCDPC , makes PC, the best-performing method from the previous
experiment (see Table 4), the starting point for hyperparameter optimisation. We expect this
choice to allow finding a better configuration much faster. The last variant, AutoCDPC+,
combines the two approaches. The findings in Table 13 show that AutoCDPC performs the
best on continuous synthetic datasets (12 out of 15), AutoCDPC+ performs the best on
discrete synthetic datasets (9 out of 15), and PC performs best on mixed synthetic dataset
(13 out of 15). All variants of AutoCD have the same performance on the ADNI dataset,
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Table 2: Average ranking of
loss functions AutoCDStARS vs
AutoCDOCT in terms of SHD or
CA. Comparisons are made over
1000 bootstrap samples and all
DAGs. The results in bold indi-
cate better performance.

AutoCDStARS AutoCDOCT

Dis Con Mix Dis Con Mix

SHD 1.99 1.30 1.58 1.01 1.70 1.42
CA 1.99 1.31 1.65 1.01 1.69 1.35

Table 3: Comparing causal tuning methods on synthetic
datasets (10 nodes and node degree 3) and the ADNI
dataset in terms of SHD and CA. The results in bold
indicate better performance according to the Wilcoxon
signed rank test (significance level of 0.05).

StARS OCT AutoCD

SHD CA SHD CA SHD CA

Dis .85±.13 .15±.13 .65±.15 .39±.14 .47±.09 .53±.09
Con .31±.34 .72±.3 .68±.2 .45±.19 .09±.2 .92±.18
Mix .71±.12 .33±.15 .59±.11 .45±.11 .58±.13 .46±.1
ADNI .86±.08 .36±.02 .89±.06 .34±.04 .85±.04 .34±.05

Table 4: Comparing causal tuning methods and individual algorithms on synthetic datasets
with 10 nodes and node degree 3, and the ADNI dataset in terms of SHD and CA. The
results in bold indicate better performance using the Wilcoxon signed rank test (significance
level of 0.05). The entries show the mean and standard deviation. LiNGAM and GOLEM
are only designed for continuous datasets (denoted with n/a).

AutoCD PC FGES LiNGAM GOLEM

SHD CA SHD CA SHD CA SHD CA SHD CA

Dis .47±.09 .53±.09 .5±.14 .54±.12 .39±.17 .62±.17 n/a n/a n/a n/a
Con .09±.2 .92±.18 .21±.09 .79±.08 .47±.23 .68±.15 .85±.08 .22±.06 .75±.09 .43±.06
Mix .58±.13 .46±.1 .54±.1 .51±.13 .67±.15 .42±.11 n/a n/a n/a n/a
ADNI .85±.04 .34±.05 .77±.03 .32±.02 .84±.03 .29±.03 n/a n/a n/a n/a

Table 5: Average ranking over all methods. The results are based on SHD and CA, and the
comparisons are made over 1000 bootstrap samples and all simulated DAGs. Results shown
in bold indicate the best results.

StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES

SHD 5.33 5.21 3.78 4.12 3.69 4.25 4.36 5.25
CA 5.38 5.21 3.80 4.13 3.72 4.27 4.33 5.17

Table 6: Performance of AutoCD variants on synthetic datasets (10 nodes and node degree
3), and the ADNI dataset in terms of SHD and CA. The results in bold indicate best
performance, according to the Wilcoxon signed rank test with a significance level of 0.05.
The entries show the mean and standard deviation.

AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC

SHD CA SHD CA SHD CA SHD CA SHD CA

Dis .47±.09 .53±.09 .47±.1 .53±.1 .44±.11 .56±.11 .44±.11 .56±.11 .5±.14 .54±.12
Con .09±.2 .92±.18 .2±.3 .82±.26 .12±.22 .89±.19 .32±.27 .69±.26 .21±.09 .79±.08
Mix .58±.13 .46±.1 .57±.12 .46±.11 .61±.13 .46±.12 .61±.13 .47±.12 .54±.1 .51±.13

ADNI .85±.04 .34±.05 .85±.04 .34±.05 .85±.03 .34±.05 .85±.03 .34±.05 .77±.03 .32±.02
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which is better than PC in terms of CA. The relative performance in Table 5 shows that
applying the penalty as a post-hoc correction does not improve the performance, but
warm-starting the search from PC does, resulting in the best-performing method.

To better understand the reason for this observation, we investigated the trajectory of
hyperparameters evaluated during the search. Table 17 in Appendix F shows the losses
observed during the optimisation process carried out by SMAC. Comparing the losses of
AutoCDPC against PC on the ADNI dataset, equal losses are obtained, which should indicate
equal performance. However, according to the evaluation metrics, achieving lower loss values
does not necessarily guarantee better performance in uncovering the underlying causal graph.
This can be explained by the imperfect loss functions in the unsupervised setting that assess
a configuration without the target graph. Furthermore, the target graph may contain errors,
even with nearly infinite data, the estimated graph may not allow identifying all causal
connections. This points to additional challenges and opportunities for future research in
designing new loss functions for AutoCD.

6. Conclusion

In this work, we introduced AutoCD, an AutoML system for causal discovery that encom-
passes automated algorithm selection and hyperparameter optimisation. To address the
reformulated CASH problem for causal discovery, we compared the applicability of two
existing loss functions that assess the performance of a given configuration without utilising
the ground truth causal graph that is unknown. Moreover, we presented three variants of
AutoCD to try to enhance the performance of the basic approach. The first enhancement
applies post-hoc correction to the results of AutoCD. This has been proven to increase the
performance in combination with grid search (Biza et al., 2022). The second enhancement
uses PC (Spirtes et al., 2001) to warm-start the search of AutoCD. As BO targets a smaller
set of configurations, this will guide to higher-performing configurations faster.

We conducted extensive empirical performance analyses to assess our proposed method on
synthetically generated datasets and a real-world dataset. The results of these experiments
show that (i) AutoCD with an effective search strategy identifies configurations with better
performance compared to earlier causal tuning approaches; (ii) AutoCD’s overall performance
is better than optimised individual causal discovery algorithms; (iii) AutoCD+, a variant of
AutoCD that applies a penalty as a post-hoc correction, does not seem effective when used
in combination with BO; and (iv) AutoCDPC , the improved variant of AutoCD that warm-
starts the search from PC, performs overall best in casual tuning. Specifically, AutoCDPC

achieves a better average performance rank than the best causal tuning method and the
best individual algorithm (3.69 vs 5.21 and 4.36, respectively).

Our results show that the best performance in causal discovery cannot be guaranteed.
According to the evaluation metrics, lower loss values do not necessarily indicate better
performance. This is due to the imperfect loss functions, calling for future work on designing
new loss functions that can more accurately evaluate configurations of AutoCD. Moreover,
potential errors or noise in the target graph may lead to a more complex problem which we
leave for future work. Future research could focus on post-hoc ensembling. AutoCD has
evaluated many causal discovery models, which can be used to build an ensemble of models
to improve performance.
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Appendix A. Algorithms

This appendix provides the algorithms for the loss functions and penalties.

Algorithm 1: Loss function extracted from StARS Biza et al. (2022).

Input: Dataset D, number of subsamples S, configuration Aλ
1 for i ∈ S do

2 G(i)Aλ
← fit(Aλ,D(i))

3 Q
(i)
Aλ
← number of edges in G(i)Aλ

4 end

5 Q(Aλ)← average Q
(i)
Aλ

over S

6 for each pair of variables X, Y do

7 pAλ,X,Y ← frequency of edge (X,Y ) in {G(i)Aλ
}i∈S

8 ξAλ,X,Y = 2 · pAλ,X,Y · (1− pAλ,X,Y )

9 end
10 N(Aλ)← average ξAλ,X,Y over all edges
11 return N(Aλ)

Algorithm 2: Loss function extracted from OCT Biza et al. (2022)

Input: Dataset D over variables V, number of folds K, configuration Aλ
1 for i ∈ K do

2 G(i)Aλ
← fit(Aλ,D(i)

train)

3 for X ∈ V do

4 MB
(i)
Aλ,X ← markovBoundary(X,G(i)Aλ

)

5 M(i)
Aλ,X ← randomForest(X,MB

(i)
Aλ,X)

6 X̂
(i)
Aλ
← predict(M(i)

Aλ,X ,D
(i)
valid)

7 end

8 end
9 for X ∈ V do

10 |MB(Aλ)| ← average |MB
(i)
Aλ,X | over V

11 X̂(Aλ)← average X̂
(i)
Aλ

over K

12 IAλ,X ← mutualInformation(X, X̂(Aλ))

13 end
14 I(Aλ)← average IAλ,X over V
15 return I(Aλ)

Algorithm 3: Penalty from the StARS method Biza et al. (2022).

Input: Configurations A, density estimation Q, network instability N , threshold β
1 Rank N(Aλ) by increasing Q(Aλ) ∀Aλ ∈ A
2 N ′ ← monotonise(N)
3 A∗λ ← argmax

Aλ∈A
{N ′(Aλ)|N ′(Aλ) ≤ β}

4 return A∗λ
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Algorithm 4: Penalty from the OCT method Biza et al. (2022).

Input: Optimal configuration A∗λ, configurations A, mutual information I, true variables V,

predictions X̂, Markov boundary sizes —MB—, threshold β, number of
permutations P

1 for Aλ ∈ A\A∗λ do
2 TAλ

← (I(A∗λ)− I(Aλ))
3 for p = 1, ..., P do
4 for X ∈ V do

5 X̂ ′(A∗λ) , X̂ ′(Aλ)← swap(X̂(A∗λ), X̂(Aλ))

6 I ′A∗
λ,p,X , I ′Aλ,p,X ← mutualInformation of X̂ ′(A∗λ) and X̂ ′(Aλ)

7 end
8 I ′(A∗λ, p) , I

′(Aλ, p)← average I ′A∗
λ,p,X and I ′Aλ,p,X over V

9 T ′Aλ
(p)← (I ′(A∗λ, p)− I ′(Aλ, p))

10 end
11 pval(Aλ)← |T ′Aλ

≥ TAλ
|/P

12 end
13 A∗λ ← pval(Aλ) > β and Aλ = arg min

Aλ

|MB|

14 return A∗λ

Appendix B. The search space of AutoCD

This appendix provides the search space of AutoCD, showing the causal discovery algorithms
and the hyperparameters. The hyperparameters can be ‘int’ (integer), ‘cat’ (categorical),
‘real’ (real), ‘bin’ (binary), and ‘cond’ (conditional).

Table 7: The AutoCD search space includes 11 causal discovery algorithms sourced from
Tetrad and gCastle. The hyperparameters, type, and a short description are given (1/2).

Algorithm Hyperparameter Type Description

AutoCD algorithm cat Algorithm selection

BOSS (Ramsey, 2021) score cat Scoring function
penalty real Penalty discount
structure real Structure prior coefficient
data order bin Use data order or random permutation
n start thread int Number of random starts and threads

CPC (Ramsey et al., 2006) alpha real Cutoff for p-values
test cat Conditional independence test
rule cat Conflict rule
b type cond Basis type (1 = Polynomial, 2 = Cosine)
b num func cond Number of functions to use in the basis
k type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)
k multiplier cond Capture more or less than the optimal signal
k sample size cond Minimum sample size for kernel regression

CPCstable (Ramsey et al., 2006) alpha real Cutoff for p-values
test cat Conditional independence test
rule cat Conflict rule
b type cond Basis type (1 = Polynomial, 2 = Cosine)
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Table 8: The AutoCD search space includes 11 causal discovery algorithms sourced from
Tetrad and gCastle. The hyperparameters, type, and a short description are given (2/2).

Algorithm Hyperparameter Type Description

CPCstable (Ramsey et al., 2006) b num func cond Number of functions to use in the basis
k type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)
k multiplier cond Capture more or less than the optimal signal
k sample size cond Minimum sample size for kernel regression

Dagma (Bello et al., 2022) lambda real L1 penalty coefficient
w thresh real Threshold for entries in W matrix

Direct LiNGAM score cat Scoring function
(Shimizu et al., 2011) penalty real Penalty discount

structure real Structure prior coefficient

FGES (Ramsey et al., 2017) score cat Scoring function
penalty real Penalty discount
structure real Structure prior

GOLEM (Ng et al., 2020) lambda 1 real L1 penalty coefficient
lambda 2 real DAG penalty coefficient
learning rate real Learning rate of Adam optimiser
num iter int Number of iterations for training
graph thres real Threshold for weighted matrix

GrASP (Lam et al., 2022) test cat Conditional independence test
score cat Scoring function
alpha real Cutoff for p-value
penalty real Penalty discount
structure real Structure prior coefficient
b type cond Basis type (1 = Polynomial, 2 = Cosine)
b num func cond Number of functions to use in the basis
k type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)
k multiplier cond Capture more or less than the optimal signal
k sample size cond Minimum sample size for kernel regression
n starts int Number of restarts

ICA-LiNGAM alpha ica real Threshold for entries in B matrix
(Shimizu et al., 2006) max iter real Maximum iterations for orienting edges

tolerance real Fast ICA tolerance parameter
b thresh real Threshold for entries in B matrix

PC (Spirtes et al., 2001) alpha real Cutoff for p-values
test cat Conditional independence test
rule cat Conflict rule
b type cond Basis type (1 = Polynomial, 2 = Cosine)
b num func cond Number of functions to use in the basis
k type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)
k multiplier cond Capture more or less than the optimal signal
k sample size cond Minimum sample size for kernel regression

PCstable (Spirtes et al., 2001) alpha real Cutoff for p-values
test cat Conditional independence test
rule cat Conflict rule
b type cond Basis type (1 = Polynomial, 2 = Cosine)
b num func cond Number of functions to use in the basis
k type cond Kernel type (1 = Gaussian, 2 = Epinechnikov)
k multiplier cond Capture more or less than the optimal signal
k sample size cond Minimum sample size for kernel regression
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Table 9: The hyperparameters and values considered in AutoCD sourced from Tetrad and
gCastle are given.

Hyperparameter Values

algorithm {boss, cpc, cpcstable, dagma, direct lingam, fges, golem,
grasp, ica lingam, pc, pcstable}

score {bdeu-score, disc-bic-score, sem-bic-score, cg-bic-score,
dg-bic-score}

penalty [0.0, 2.0]
structure [0.0, 2.0]
data order {True, False}
n start thread [1, 10]
alpha [0.01, 0.05]
test {chi-square-test, g-square-test, cg-lr-test, dg-lr-test,

fisher-z-test, cci-test}
rule {1, 2, 3}
b type {2}
b num func {30}
k type {1}
k multiplier {1}
k sample size {100}
lambda [0.01, 0.05]
w thresh [0.1, 0.6]
lambda 1 [0.01, 0.05]
lambda 2 [1.0, 5.0]
learning rate [0.001, 0.005]
num iter [500, 2000]
graph thres [0.1, 0.5]
n starts [1, 10]
alpha ica [1.0, 2.0]
max iter [2000.0, 5000.0]
tolerance [1e-08, 1e-6]
b thresh [0.1, 0.6]

Appendix C. Data generation

This appendix provides the parameters for the graphical models to simulate datasets.

Table 10: Fixed parameters for synthetic data generation.

Parameter Values

Data type {Discrete, Continuous, Mixed}
Nodes {5, 10, 20, 30, 40}
Average node degree {2, 3, 4}
Instances 1000
Categories [2, 20]
Discrete % 50
Seed [0, 24]
Repetitions 25
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Appendix D. ADNI

This appendix provides the exploratory analysis of the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset. The ADNI dataset is divided into three trials: ADNI1, ADNI2/GO,
and ADNI3. In our experiments, we used the first two and extracted variables fludeoxyglu-
cose PET (FDG), amyloid beta (ABETA), phosphorylated tau (PTAU), apolipoprotein
E ε4 allele (APOE4), AGE, SEX, education (EDU), and diagnosis on Alzheimer’s disease
(DX). Table 11 shows the statistics of the dataset. Like in Shen et al. (2020), records with
missing values are removed resulting in 1008 remaining participants. The variable APOE4
is categorical with 0, 1, 2 which indicates the number of APOE4. The variable DX is
also categorical with cognitively normal (CN), mild cognitive impairment (MCI), and early
Alzheimer’s disease (AD). The target graph from Shen et al. (2020) is displayed in Figure 5.

Table 11: Statistics of the ADNI datasets.

Demographics
AGE 72.98±7.25
SEX 0.56±0.50
EDU 16.13±2.73

Biomarkers
FDG 1.21±0.16

ABETA 1000.53±456.32
PTAU 27.40±14.61

Genetics APOE4
0 (54%)
1 (36%)
2 (10%)

Diagnosis DX
CN (31%)
MCI (51%)
AD (18%)

APOE41

APOE42
AGE

EDU

SEX

ABETA

FDG

PTAU

DX

Figure 5: Target graph of the ADNI dataset by Shen et al. (2020).
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Appendix E. Evaluation protocol

This appendix provides the fixed parameters for SMAC and the evaluation protocol.

Table 12: Fixed parameters for the SMAC procedure and the evaluation protocol.

SMAC procedure Evaluation protocol

Parameter Budget Trial budget Runs Seed Sample size Samples

Value 60 min. 15 min. 25 [0, 24] 5 1000

Appendix F. Additional results

This appendix provides additional figures and tables from the results section.
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Figure 6: Increasing the data sample size on the continuous simulated dataset with 10 nodes
and node degree 3. Increasing the data sample size reveals better performance.
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Table 13: Performance of all methods on all synthetic datasets and the ADNI dataset based
on SHD. The best values are marked and in bold. Empty entries indicate no configuration
found. LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES LiNGAM GOLEM

con 5 2 .28±.33 .61±.2 .07±.12 .15±.2 .06±.11 .45±.24 .13±.11 .37±.26 .62±.17 .49±.28
con 5 3 .29±.24 .46±.25 .25±.22 .44±.2 .28±.26 .46±.17 .32±.18 .36±.29 .64±.18 .63±.1
con 5 4 .46±.14 .4±.17 .53±.17 .57±.12 .52±.21 .58±.17 .19±.07 .15±.07 .34±.17 .43±.15
con 10 2 .39±.31 .44±.33 .04±.14 .21±.28 .02±.04 .22±.25 .12±.06 .4±.2 .79±.09 .6±.09
con 10 3 .31±.34 .68±.2 .09±.2 .2±.3 .12±.22 .32±.27 .21±.09 .47±.23 .85±.08 .75±.09
con 10 4 .57±.3 .6±.24 .06±.14 .61±.37 .06±.14 .58±.33 .41±.07 .48±.25 .76±.14 .79±.04
con 20 2 .06±.15 .14±.19 0 .04±.11 0 .25±.18 .09±.07 .61±.26 .88±.05 .66±.08
con 20 3 .14±.22 .3±.29 .03±.06 .06±.13 .03±.05 .03±.05 .23±.1 .25±.17 .9±.04 .78±.07
con 20 4 .11±.22 .55±.31 0±.01 .06±.17 0±.01 .09±.24 .37±.1 .53±.13 .88±.03 .78±.06
con 30 2 .03±.14 .28±.29 0±.01 .07±.13 0±.01 .14±.16 .19±.07 .56±.16 .88±.03 .7±.05
con 30 3 .11±.24 .27±.24 .02±.04 .06±.12 .01±.02 .05±.11 .13±.04 .19±.16 .91±.03
con 30 4 .06±.16 .22±.22 .02±.08 .07±.19 .02±.08 .05±.17 .27±.05 .35±.2 .91±.04 .85±.04
con 40 2 .01±.03 .11±.15 0±.01 .03±.07 0±.01 .08±.1 .21±.09 .36±.23
con 40 3 .05±.06 .34±.29 .01±.05 .03±.06 .01±.04 .02±.06 .08±.04 .12±.07
con 40 4 .07±.14 .3±.31 .02±.11 .08±.2 .01±.06 .04±.1 .23±.03 .29±.19
dis 5 2 .68±.3 .35±.21 .13±.2 .12±.2 .09±.19 .1±.19 .1±.19 .08±.14 n/a n/a
dis 5 3 .84±.18 .42±.23 .27±.19 .28±.2 .29±.17 .27±.18 .33±.18 .36±.14 n/a n/a
dis 5 4 .89±.06 .7±.16 .36±.2 .39±.21 .27±.19 .3±.2 .22±.21 .17±.2 n/a n/a
dis 10 2 .58±.19 .66±.12 .26±.12 .26±.13 .23±.14 .23±.14 .31±.18 .26±.21 n/a n/a
dis 10 3 .85±.13 .65±.15 .47±.09 .47±.1 .44±.11 .44±.11 .5±.14 .39±.17 n/a n/a
dis 10 4 .83±.16 .75±.14 .62±.11 .62±.12 .61±.11 .6±.11 .64±.15 .64±.12 n/a n/a
dis 20 2 .38±.12 .43±.16 .29±.12 .3±.13 .26±.13 .25±.12 .37±.07 .29±.16 n/a n/a
dis 20 3 .75±.13 .67±.08 .55±.06 .56±.06 .55±.05 .55±.06 .55±.08 .54±.08 n/a n/a
dis 20 4 .82±.09 .74±.06 .66±.08 .66±.07 .62±.07 .62±.07 .71±.05 .68±.08 n/a n/a
dis 30 2 .52±.16 .55±.1 .35±.06 .35±.07 .35±.06 .35±.06 .37±.05 .39±.08 n/a n/a
dis 30 3 .71±.09 .66±.09 .55±.08 .54±.09 .56±.09 .57±.1 .56±.07 .57±.08 n/a n/a
dis 30 4 .77±.06 .76±.04 .69±.06 .69±.06 .69±.06 .69±.06 .74±.03 .7±.07 n/a n/a
dis 40 2 .61±.13 .45±.13 .37±.07 .37±.07 .38±.08 .38±.07 .39±.06 .36±.11 n/a n/a
dis 40 3 .76±.07 .58±.08 .57±.09 .57±.09 .58±.09 .58±.1 .6±.08 .53±.07 n/a n/a
dis 40 4 .85±.08 .73±.06 .68±.06 .68±.06 .69±.07 .69±.07 .74±.04 .72±.06 n/a n/a
mix 5 2 .78±.22 .57±.18 .54±.13 .54±.13 .5±.2 .54±.24 .54±.14 .54±.16 n/a n/a
mix 5 3 .8±.08 .62±.11 .54±.09 .57±.07 .52±.08 .55±.1 .6±.09 .53±.12 n/a n/a
mix 5 4 .72±.1 .56±.17 .5±.1 .49±.11 .45±.15 .51±.09 .5±.1 .42±.11 n/a n/a
mix 10 2 .63±.14 .57±.1 .59±.17 .63±.15 .62±.16 .64±.11 .53±.12 .71±.1 n/a n/a
mix 10 3 .71±.12 .59±.11 .58±.13 .57±.12 .61±.13 .61±.13 .54±.1 .67±.15 n/a n/a
mix 10 4 .68±.12 .59±.1 .55±.09 .55±.09 .57±.07 .56±.07 .5±.08 .62±.09 n/a n/a
mix 20 2 .61±.09 .53±.07 .74±.14 .74±.14 .74±.14 .75±.14 .62±.06 .81±.12 n/a n/a
mix 20 3 .64±.06 .64±.07 .75±.1 .74±.09 .78±.1 .75±.1 .62±.06 .83±.08 n/a n/a
mix 20 4 .6±.09 .61±.11 .66±.12 .66±.12 .67±.12 .66±.12 .61±.1 .78±.09 n/a n/a
mix 30 2 .61±.09 .62±.05 .78±.1 .77±.11 .73±.12 .74±.13 .66±.05 .84±.12 n/a n/a
mix 30 3 .66±.06 .66±.09 .7±.11 .69±.11 .7±.1 .71±.11 .63±.03 .84±.08 n/a n/a
mix 30 4 .65±.06 .61±.04 .67±.1 .66±.1 .66±.1 .66±.09 .59±.06 .82±.06 n/a n/a
mix 40 2 .6±.07 .63±.06 .76±.12 .75±.12 .76±.12 .76±.12 .71±.05 .91±.05 n/a n/a
mix 40 3 .64±.06 .6±.03 .7±.14 .7±.14 .69±.12 .69±.13 .63±.06 .83±.12 n/a n/a
mix 40 4 .67±.05 .66±.05 .66±.09 .66±.09 .65±.07 .66±.07 .63±.04 .76±.1 n/a n/a
ADNI .86±.08 .89±.06 .85±.04 .85±.04 .85±.03 .85±.03 .77±.03 .84±.03 n/a n/a
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Table 14: Performance of all methods on all synthetic datasets and the ADNI dataset based
on CA. The best values are marked and in bold. Empty entries indicate no configuration
found. LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a)

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES LiNGAM GOLEM

con 5 2 .8±.22 .46±.17 .93±.12 .86±.18 .94±.11 .6±.19 .87±.11 .72±.19 .45±.16 .57±.24
con 5 3 .74±.22 .64±.18 .76±.22 .58±.2 .72±.26 .55±.17 .77±.1 .79±.16 .51±.17 .52±.12
con 5 4 .54±.14 .6±.17 .47±.17 .43±.12 .48±.21 .42±.17 .81±.07 .85±.07 .66±.17 .57±.15
con 10 2 .74±.23 .64±.3 .96±.13 .82±.26 .98±.04 .79±.25 .89±.06 .62±.2 .29±.05 .52±.16
con 10 3 .72±.3 .45±.19 .92±.18 .82±.26 .89±.19 .69±.26 .79±.08 .68±.15 .22±.06 .43±.06
con 10 4 .5±.26 .58±.16 .95±.11 .47±.33 .96±.1 .47±.32 .61±.05 .69±.16 .35±.12 .42±.09
con 20 2 .95±.09 .91±.12 1.0±0 .97±.07 1.0±0 .83±.1 .91±.07 .4±.26 .18±.06 .47±.08
con 20 3 .91±.15 .75±.24 .97±.05 .96±.09 .98±.04 .98±.04 .79±.09 .84±.1 .16±.02 .37±.04
con 20 4 .9±.18 .54±.27 1.0±.01 .95±.15 1.0±.01 .92±.2 .65±.1 .6±.11 .21±.04 .37±.06
con 30 2 .98±.08 .82±.19 1.0±.01 .95±.1 1.0±.01 .89±.12 .82±.07 .45±.16 .17±.04 .4±.07
con 30 3 .91±.19 .8±.15 .98±.04 .95±.11 .99±.02 .96±.1 .88±.04 .85±.13 .15±.03
con 30 4 .95±.13 .83±.17 .98±.07 .94±.16 .98±.07 .96±.14 .73±.05 .74±.16 .15±.04 .33±.01
con 40 2 .99±.02 .91±.12 1.0±.01 .97±.06 1.0±.01 .93±.08 .79±.09 .66±.23
con 40 3 .96±.05 .74±.22 .99±.04 .98±.04 .99±.03 .98±.04 .92±.04 .9±.05
con 40 4 .95±.11 .79±.21 .98±.09 .94±.16 .99±.05 .97±.08 .78±.04 .78±.15
dis 5 2 .32±.3 .65±.21 .87±.2 .88±.2 .91±.19 .9±.19 .9±.19 .92±.14 n/a n/a
dis 5 3 .16±.18 .59±.22 .76±.18 .75±.19 .73±.16 .76±.16 .74±.15 .7±.14 n/a n/a
dis 5 4 .11±.06 .3±.16 .64±.2 .61±.21 .73±.19 .7±.2 .78±.21 .83±.2 n/a n/a
dis 10 2 .42±.19 .35±.12 .75±.12 .75±.13 .77±.14 .77±.14 .74±.14 .75±.2 n/a n/a
dis 10 3 .15±.13 .39±.14 .53±.09 .53±.1 .56±.11 .56±.11 .54±.12 .62±.17 n/a n/a
dis 10 4 .17±.16 .26±.14 .39±.13 .4±.14 .4±.12 .41±.13 .41±.15 .37±.13 n/a n/a
dis 20 2 .63±.12 .58±.16 .71±.12 .7±.13 .75±.12 .75±.12 .69±.09 .72±.15 n/a n/a
dis 20 3 .26±.14 .34±.09 .45±.06 .45±.06 .46±.05 .46±.06 .49±.08 .47±.09 n/a n/a
dis 20 4 .18±.09 .27±.06 .34±.08 .34±.07 .38±.07 .38±.07 .31±.05 .32±.08 n/a n/a
dis 30 2 .49±.16 .46±.11 .66±.05 .66±.05 .66±.04 .66±.04 .66±.04 .61±.09 n/a n/a
dis 30 3 .3±.09 .36±.1 .46±.08 .47±.1 .46±.08 .45±.1 .47±.08 .44±.08 n/a n/a
dis 30 4 .25±.05 .25±.05 .31±.06 .31±.06 .31±.06 .31±.06 .3±.03 .31±.07 n/a n/a
dis 40 2 .39±.14 .59±.1 .64±.07 .63±.07 .63±.08 .63±.07 .65±.05 .65±.1 n/a n/a
dis 40 3 .24±.08 .44±.09 .44±.09 .44±.09 .42±.09 .43±.09 .45±.07 .48±.07 n/a n/a
dis 40 4 .15±.08 .28±.07 .33±.07 .33±.07 .32±.07 .32±.07 .29±.04 .28±.06 n/a n/a
mix 5 2 .24±.23 .55±.26 .54±.13 .54±.13 .53±.19 .51±.24 .56±.19 .52±.14 n/a n/a
mix 5 3 .25±.08 .4±.1 .53±.1 .51±.1 .53±.1 .51±.13 .48±.1 .61±.17 n/a n/a
mix 5 4 .28±.1 .44±.17 .5±.1 .51±.11 .55±.15 .49±.09 .5±.1 .58±.11 n/a n/a
mix 10 2 .41±.15 .44±.1 .43±.15 .4±.14 .41±.15 .41±.12 .48±.12 .34±.1 n/a n/a
mix 10 3 .33±.15 .45±.11 .46±.1 .46±.11 .46±.12 .47±.12 .51±.13 .42±.11 n/a n/a
mix 10 4 .35±.1 .43±.09 .52±.07 .51±.07 .51±.06 .51±.06 .53±.08 .48±.06 n/a n/a
mix 20 2 .41±.09 .48±.06 .3±.14 .3±.14 .3±.14 .29±.14 .4±.05 .22±.11 n/a n/a
mix 20 3 .38±.05 .37±.09 .3±.09 .32±.07 .27±.09 .3±.09 .39±.06 .23±.09 n/a n/a
mix 20 4 .43±.08 .44±.1 .4±.1 .4±.09 .4±.1 .4±.1 .42±.08 .3±.09 n/a n/a
mix 30 2 .4±.09 .39±.05 .25±.09 .25±.1 .28±.11 .28±.11 .34±.05 .18±.13 n/a n/a
mix 30 3 .35±.07 .37±.07 .35±.1 .35±.1 .34±.09 .33±.09 .38±.03 .21±.08 n/a n/a
mix 30 4 .37±.06 .42±.04 .37±.09 .38±.09 .38±.09 .38±.08 .42±.06 .23±.07 n/a n/a
mix 40 2 .41±.07 .4±.07 .27±.12 .28±.12 .27±.12 .27±.12 .31±.06 .11±.05 n/a n/a
mix 40 3 .38±.08 .42±.03 .33±.13 .34±.13 .35±.1 .35±.11 .38±.05 .21±.12 n/a n/a
mix 40 4 .34±.06 .37±.05 .39±.07 .39±.07 .39±.06 .39±.06 .39±.05 .3±.12 n/a n/a
ADNI .36±.02 .34±.04 .34±.05 .34±.05 .34±.05 .34±.05 .32±.02 .29±.03 n/a n/a
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Table 15: Performance of all methods on all synthetic datasets and the ADNI dataset based
on FP. The best values are marked and in bold. Empty entries indicate no configuration
found. LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a)

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES LiNGAM GOLEM

con 5 2 .06±.1 .23±.15 .01±.04 .03±.07 .01±.04 .11±.13 .11±.08 .25±.15 .31±.12 .23±.16
con 5 3 .02±.04 .1±.1 .03±.06 .05±.06 .02±.05 .05±.06 .09±.06 .12±.08 .14±.11 .13±.06
con 5 4 0 0 0 0 0 0 0 0 0 0
con 10 2 .16±.09 .21±.19 .01±.03 .07±.12 0 .13±.16 .09±.07 .38±.2 .46±.07 .27±.15
con 10 3 .05±.05 .23±.12 .01±.02 .03±.05 .02±.04 .03±.04 .04±.06 .27±.15 .28±.1 .17±.07
con 10 4 .05±.05 .21±.14 .01±.03 .07±.06 .01±.04 .08±.06 .09±.03 .25±.13 .25±.07 .16±.08
con 20 2 .04±.05 .05±.08 0 .02±.06 0 .15±.09 .08±.06 .6±.26 .51±.07 .25±.07
con 20 3 .03±.05 .19±.21 .01±.01 .02±.04 .01±.01 0±.01 .07±.04 .14±.1 .4±.07 .25±.06
con 20 4 .01±.02 .37±.28 0 .01±.04 0 .02±.05 .07±.04 .37±.12 .33±.05 .21±.05
con 30 2 .01±.03 .13±.16 0±.01 .04±.07 0±.01 .08±.09 .16±.07 .54±.16 .52±.05 .17±.07
con 30 3 .02±.03 .13±.13 .0±.01 .02±.04 0 .02±.04 .04±.02 .13±.13 .44±.08
con 30 4 .02±.04 .13±.14 .01±.02 .02±.06 .01±.02 .01±.04 .06±.02 .23±.14 .34±.05 .16±.13
con 40 2 .01±.02 .09±.12 0 .02±.06 0 .07±.08 .21±.1 .33±.23
con 40 3 .02±.03 .2±.22 0±.03 .01±.03 0±.01 .01±.03 .02±.02 .09±.05
con 40 4 .03±.06 .18±.19 .01±.04 .04±.08 0±.04 .03±.07 .04±.01 .2±.14
dis 5 2 .02±.1 .17±.18 .02±.05 .02±.05 0 0 0 .01±.03 n/a n/a
dis 5 3 0 .05±.08 .0±.02 0 .0±.03 0 .02±.07 .13±.12 n/a n/a
dis 5 4 0 0 0 0 0 0 0 0 n/a n/a
dis 10 2 .01±.03 .01±.08 .01±.03 .01±.03 0±.02 0±.02 .01±.02 .02±.04 n/a n/a
dis 10 3 0 .07±.13 .01±.03 .01±.03 .01±.03 .01±.03 .01±.02 .0±.01 n/a n/a
dis 10 4 0 .04±.11 .01±.02 .01±.02 .01±.02 .01±.02 .02±.02 .03±.04 n/a n/a
dis 20 2 .01±.02 .01±.03 .01±.02 .01±.02 .01±.02 .01±.02 .01±.02 .07±.1 n/a n/a
dis 20 3 .01±.03 .01±.02 .01±.02 .01±.02 0±.01 .0±.02 .01±.02 .02±.05 n/a n/a
dis 20 4 0±.01 .01±.01 .02±.01 .02±.01 .02±.01 .02±.01 .02±.01 0±.01 n/a n/a
dis 30 2 .02±.03 .01±.04 .03±.03 .03±.03 .03±.03 .03±.03 .03±.02 .02±.05 n/a n/a
dis 30 3 .01±.02 .05±.13 .01±.02 .01±.03 .02±.04 .03±.04 .01±.02 .05±.07 n/a n/a
dis 30 4 .01±.01 .02±.04 .04±.06 .04±.06 .02±.04 .02±.04 .02±.01 .03±.05 n/a n/a
dis 40 2 0±.01 .04±.04 .05±.05 .05±.06 .06±.06 .06±.06 .04±.03 .01±.04 n/a n/a
dis 40 3 0±.01 .05±.08 .02±.02 .02±.03 .01±.02 .01±.02 .03±.02 .03±.04 n/a n/a
dis 40 4 0±.01 .03±.02 .03±.02 .03±.02 .02±.01 .02±.01 .04±.02 .01±.03 n/a n/a
mix 5 2 0 .05±.08 .16±.19 .15±.19 .22±.17 .16±.14 .06±.11 .21±.2 n/a n/a
mix 5 3 0 .01±.03 .03±.05 .02±.05 .04±.06 .04±.06 .02±.05 .05±.07 n/a n/a
mix 5 4 0 0 0 0 0 0 0 0 n/a n/a
mix 10 2 .02±.05 .02±.05 .34±.29 .37±.27 .35±.24 .32±.15 .1±.07 .48±.16 n/a n/a
mix 10 3 .01±.02 .04±.1 .22±.23 .19±.23 .21±.2 .2±.2 .06±.04 .42±.17 n/a n/a
mix 10 4 0±.01 0±.01 .09±.11 .09±.11 .11±.11 .1±.11 .05±.04 .3±.16 n/a n/a
mix 20 2 .03±.05 .1±.11 .53±.28 .53±.27 .53±.26 .54±.26 .34±.07 .71±.19 n/a n/a
mix 20 3 .01±.03 .02±.03 .45±.29 .41±.25 .54±.23 .43±.28 .22±.09 .67±.19 n/a n/a
mix 20 4 .03±.02 .1±.16 .29±.17 .28±.16 .29±.17 .28±.16 .13±.06 .57±.18 n/a n/a
mix 30 2 .06±.06 .05±.05 .53±.23 .51±.26 .47±.24 .47±.25 .38±.16 .7±.3 n/a n/a
mix 30 3 .02±.03 .22±.18 .39±.23 .38±.23 .4±.22 .43±.22 .3±.08 .69±.19 n/a n/a
mix 30 4 .01±.01 .07±.05 .31±.2 .29±.2 .29±.2 .28±.19 .18±.08 .66±.14 n/a n/a
mix 40 2 .03±.06 .09±.15 .48±.26 .45±.25 .47±.25 .47±.26 .35±.14 .85±.09 n/a n/a
mix 40 3 .03±.03 .03±.02 .38±.27 .37±.27 .34±.21 .34±.21 .27±.08 .67±.25 n/a n/a
mix 40 4 .01±.02 .12±.16 .22±.13 .22±.12 .2±.1 .2±.1 .15±.05 .45±.26 n/a n/a
ADNI .49±.04 .55±.05 .6±.06 .6±.06 .61±.06 .61±.06 .56±.04 .67±.03 n/a n/a
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Table 16: Performance of all methods on all synthetic datasets and the ADNI dataset based
on FN. The best values are marked and in bold. Empty entries indicate no configuration
found. LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES LiNGAM GOLEM

con 5 2 .14±.16 .31±.12 .06±.12 .11±.14 .06±.11 .29±.19 .02±.05 .04±.06 .23±.13 .21±.13
con 5 3 .24±.2 .25±.16 .21±.19 .37±.2 .26±.26 .4±.14 .13±.09 .09±.09 .35±.2 .34±.1
con 5 4 .46±.14 .4±.17 .53±.17 .57±.12 .52±.21 .58±.17 .19±.07 .15±.07 .34±.17 .43±.15
con 10 2 .1±.16 .16±.14 .03±.1 .11±.17 .02±.04 .08±.1 .02±.04 0 .25±.09 .21±.11
con 10 3 .23±.26 .32±.22 .07±.16 .15±.23 .09±.17 .28±.26 .16±.05 .06±.05 .51±.12 .4±.1
con 10 4 .46±.23 .21±.19 .03±.09 .46±.3 .03±.07 .45±.29 .3±.04 .06±.05 .4±.12 .42±.09
con 20 2 .01±.05 .04±.06 0 .0±.01 0 .02±.04 .02±.02 .0±.01 .31±.1 .27±.1
con 20 3 .07±.12 .06±.12 .02±.04 .03±.06 .02±.03 .02±.04 .15±.06 .02±.02 .45±.07 .39±.09
con 20 4 .09±.17 .09±.16 0±.01 .04±.11 0±.01 .06±.16 .28±.07 .02±.01 .46±.07 .42±.03
con 30 2 .01±.07 .05±.09 0 .01±.04 0 .02±.04 .02±.02 .01±.01 .31±.07 .43±.08
con 30 3 .07±.17 .07±.06 .02±.03 .03±.09 .01±.02 .03±.08 .09±.03 .02±.03 .41±.08
con 30 4 .03±.11 .04±.09 .01±.05 .04±.11 .01±.06 .03±.12 .21±.04 .03±.02 .51±.07 .51±.13
con 40 2 .0±.01 .0±.01 0 .0±.01 0 0 .0±.01 .01±.01
con 40 3 .02±.04 .06±.08 .0±.02 .01±.01 .0±.02 0±.01 .06±.03 .01±.01
con 40 4 .03±.07 .03±.06 .01±.06 .03±.12 .01±.03 .01±.01 .18±.03 .02±.02
dis 5 2 .65±.34 .18±.25 .11±.2 .11±.2 .09±.19 .1±.19 .1±.19 .07±.14 n/a n/a
dis 5 3 .84±.18 .36±.27 .24±.18 .25±.19 .27±.16 .24±.16 .24±.17 .18±.18 n/a n/a
dis 5 4 .89±.06 .7±.16 .36±.2 .39±.21 .27±.19 .3±.2 .22±.21 .17±.2 n/a n/a
dis 10 2 .57±.19 .64±.14 .24±.12 .24±.13 .23±.13 .22±.14 .26±.14 .23±.2 n/a n/a
dis 10 3 .85±.13 .54±.22 .45±.09 .46±.1 .43±.11 .43±.11 .46±.11 .38±.17 n/a n/a
dis 10 4 .83±.16 .7±.22 .59±.14 .59±.16 .59±.14 .58±.15 .58±.17 .59±.15 n/a n/a
dis 20 2 .36±.13 .41±.16 .28±.11 .29±.12 .25±.11 .24±.11 .3±.07 .21±.15 n/a n/a
dis 20 3 .73±.15 .65±.1 .55±.06 .55±.06 .54±.05 .54±.05 .5±.09 .51±.11 n/a n/a
dis 20 4 .82±.09 .73±.06 .65±.08 .64±.08 .6±.07 .6±.07 .67±.05 .68±.08 n/a n/a
dis 30 2 .49±.17 .53±.12 .31±.05 .31±.05 .31±.05 .31±.05 .31±.04 .37±.1 n/a n/a
dis 30 3 .69±.1 .59±.16 .53±.1 .52±.12 .52±.1 .52±.11 .52±.07 .51±.12 n/a n/a
dis 30 4 .73±.06 .73±.07 .65±.07 .65±.07 .66±.05 .67±.05 .68±.04 .66±.09 n/a n/a
dis 40 2 .61±.14 .37±.12 .31±.06 .31±.06 .31±.06 .31±.05 .31±.04 .35±.1 n/a n/a
dis 40 3 .75±.08 .51±.15 .54±.1 .54±.1 .56±.1 .56±.1 .52±.07 .49±.09 n/a n/a
dis 40 4 .85±.08 .68±.08 .65±.06 .65±.06 .66±.06 .66±.06 .67±.04 .71±.06 n/a n/a
mix 5 2 .76±.23 .4±.28 .3±.16 .32±.17 .25±.19 .33±.21 .38±.18 .27±.15 n/a n/a
mix 5 3 .75±.08 .59±.12 .45±.11 .47±.12 .44±.12 .45±.17 .49±.11 .33±.21 n/a n/a
mix 5 4 .72±.1 .56±.17 .5±.1 .49±.11 .45±.15 .51±.09 .5±.1 .42±.11 n/a n/a
mix 10 2 .57±.17 .54±.11 .23±.18 .23±.19 .24±.16 .28±.17 .42±.11 .18±.16 n/a n/a
mix 10 3 .66±.14 .51±.16 .32±.22 .35±.22 .32±.17 .33±.16 .43±.12 .15±.12 n/a n/a
mix 10 4 .65±.1 .57±.09 .39±.13 .39±.13 .38±.12 .38±.12 .42±.07 .22±.15 n/a n/a
mix 20 2 .56±.11 .43±.11 .17±.15 .17±.14 .17±.13 .16±.13 .26±.09 .08±.08 n/a n/a
mix 20 3 .61±.06 .61±.09 .25±.21 .28±.19 .19±.14 .27±.21 .39±.09 .1±.12 n/a n/a
mix 20 4 .54±.07 .46±.15 .31±.1 .32±.09 .31±.1 .31±.09 .45±.08 .14±.1 n/a n/a
mix 30 2 .54±.11 .56±.07 .22±.16 .24±.17 .25±.14 .24±.14 .28±.13 .11±.17 n/a n/a
mix 30 3 .63±.08 .42±.12 .27±.13 .27±.13 .26±.13 .24±.13 .32±.06 .1±.12 n/a n/a
mix 30 4 .62±.07 .51±.06 .32±.13 .33±.13 .33±.13 .34±.13 .4±.06 .1±.08 n/a n/a
mix 40 2 .56±.07 .51±.13 .26±.15 .27±.14 .26±.14 .25±.14 .33±.1 .05±.05 n/a n/a
mix 40 3 .6±.09 .55±.03 .29±.15 .29±.15 .31±.11 .31±.11 .35±.06 .12±.13 n/a n/a
mix 40 4 .64±.07 .51±.15 .39±.1 .39±.09 .41±.07 .41±.07 .46±.06 .25±.15 n/a n/a
ADNI .15±.04 .11±.02 .05±.02 .05±.02 .05±.01 .05±.01 .12±.06 .04±0 n/a n/a
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This table shows the loss values for all methods. We note that StARS on all datasets and
AutoCD variants on continuous datasets use a different loss function (marked in grey).
Therefore, the best values marked and in bold compare the loss values for only the discrete
and mixed datasets for AutoCD variants, PC, and FGES.

Table 17: Performance of all methods on all synthetic datasets and the ADNI dataset based
on Loss. The best values are marked and in bold. Empty entries indicate no configuration
found and entries in grey are not compared. Empty entries indicate no configuration found.
LiNGAM and GOLEM are only designed for continuous datasets (denoted with n/a).

Causal tuning methods Individual algorithms

Dataset StARS OCT AutoCD AutoCD+ AutoCDPC AutoCDPC+ PC FGES LiNGAM GOLEM

con 5 2 .02±.02 .54±.13 0 .02±.02 0 .03±.01 .4±.12 .39±.11 .51±.11 .43±.1
con 5 3 .02±.02 .46±.11 0 .02±.02 0 .02±.02 .37±.1 .35±.09 .45±.08 .39±.09
con 5 4 .02±.02 .3±.11 0 .01±.01 0 .01±.02 .13±.12 .12±.12 .21±.11 .19±.12
con 10 2 .02±.01 .56±.07 0 0 0 0 .44±.06 .44±.06 .57±.07 .48±.09
con 10 3 .03±.01 .46±.19 0 .01±.01 0 .02±.01 .3±.11 .26±.11 .49±.07 .37±.11
con 10 4 .02±.01 .25±.07 0 .02±.02 0 .02±.02 .2±.12 .12±.11 .35±.13 .24±.09
con 20 2 .01±0 .56±.06 0 0 0 .01±0 .5±.05 .48±.05 .76±.03 .56±.07
con 20 3 .01±.01 .39±.1 0 .01±.01 0 0 .32±.08 .29±.07 .65±.04 .4±.08
con 20 4 .01±.01 .23±.08 0 0±.01 0 .01±.01 .28±.05 .16±.06 .54±.05 .29±.06
con 30 2 0 .56±.06 0 0 0 0 .53±.04 .53±.04 .8±.02 .73±.04
con 30 3 0 .4±.03 0 0 0 0 .37±.04 .36±.03 .75±.02
con 30 4 .01±.01 .29±.04 0 0±.01 0 0±.01 .31±.06 .25±.05 .68±.03 .56±.14
con 40 2 0 .54±.03 0 0 0 .01±.01 .54±.04 .54±.03
con 40 3 0 .4±.04 0±.01 0 0 0 .42±.03 .38±.03
con 40 4 .01±.01 .28±.04 0±.01 .01±.01 0±.01 0±.01 .32±.05 .27±.04
dis 5 2 .01±.01 .87±.04 .82±.03 .82±.03 .82±.03 .82±.03 .83±.03 .82±.03 n/a n/a
dis 5 3 .01±.01 .85±.06 .81±.05 .81±.05 .81±.04 .81±.05 .8±.05 .81±.05 n/a n/a
dis 5 4 0±.01 .87±.05 .8±.04 .8±.04 .78±.05 .78±.05 .78±.05 .78±.04 n/a n/a
dis 10 2 .01±.01 .88±.04 .85±.03 .84±.03 .84±.03 .84±.03 .85±.03 .85±.03 n/a n/a
dis 10 3 .01±.01 .89±.05 .84±.05 .84±.04 .84±.05 .84±.05 .85±.05 .84±.05 n/a n/a
dis 10 4 .01±.01 .9±.04 .86±.04 .86±.04 .86±.04 .86±.05 .87±.05 .86±.05 n/a n/a
dis 20 2 .02±.01 .9±.02 .87±.02 .88±.02 .87±.02 .87±.02 .88±.01 .88±.01 n/a n/a
dis 20 3 .01±.01 .9±.01 .88±.02 .88±.02 .88±.02 .88±.02 .89±.02 .88±.02 n/a n/a
dis 20 4 .01±.01 .91±.02 .89±.02 .89±.02 .89±.02 .89±.02 .9±.02 .89±.02 n/a n/a
dis 30 2 .01±.01 .91±.01 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01 .89±.01 n/a n/a
dis 30 3 .01±.01 .91±.02 .89±.02 .89±.01 .89±.01 .89±.02 .89±.01 .89±.01 n/a n/a
dis 30 4 .01±.01 .91±.01 .9±.01 .9±.01 .9±.01 .9±.01 .91±.01 .9±.01 n/a n/a
dis 40 2 0 .89±.01 .88±.01 .88±.01 .88±.01 .88±.01 .88±.01 .88±.01 n/a n/a
dis 40 3 0 .9±.02 .9±.01 .9±.01 .9±.01 .9±.01 .9±.02 .89±.01 n/a n/a
dis 40 4 0 .92±.01 .91±.01 .91±.01 .91±.01 .91±.01 .91±.01 .91±.01 n/a n/a
mix 5 2 .02±.01 .91±.03 .89±.03 .89±.03 .88±.03 .89±.02 .89±.03 .88±.03 n/a n/a
mix 5 3 .02±.01 .84±.05 .8±.03 .81±.03 .79±.03 .81±.04 .8±.03 .79±.04 n/a n/a
mix 5 4 .02±.02 .81±.05 .75±.05 .77±.05 .75±.05 .76±.06 .75±.05 .75±.05 n/a n/a
mix 10 2 .03±0 .88±.02 .85±.02 .85±.01 .84±.02 .84±.02 .85±.02 .83±.02 n/a n/a
mix 10 3 .03±.01 .82±.04 .79±.04 .79±.04 .79±.04 .79±.04 .79±.04 .79±.04 n/a n/a
mix 10 4 .02±.01 .8±.04 .77±.03 .77±.03 .77±.02 .77±.02 .77±.02 .76±.03 n/a n/a
mix 20 2 .01±.01 .86±.02 .84±.02 .84±.02 .84±.02 .84±.02 .84±.02 .83±.02 n/a n/a
mix 20 3 .01±.01 .83±.05 .79±.06 .79±.05 .79±.06 .79±.05 .8±.04 .78±.05 n/a n/a
mix 20 4 .02±0 .78±.03 .77±.04 .76±.04 .76±.04 .76±.04 .77±.03 .75±.03 n/a n/a
mix 30 2 .01±.01 .89±.02 .87±.01 .87±.01 .86±.01 .86±.01 .86±.01 .85±.01 n/a n/a
mix 30 3 .01±.01 .84±.02 .83±.01 .83±.01 .83±.01 .83±.01 .83±.01 .82±.01 n/a n/a
mix 30 4 .01±.01 .79±.03 .77±.02 .77±.02 .77±.02 .77±.02 .78±.02 .76±.02 n/a n/a
mix 40 2 .01±.01 .89±.02 .87±.01 .87±.01 .87±.01 .87±.01 .87±.02 .85±.02 n/a n/a
mix 40 3 .01±0 .83±.02 .81±.01 .8±.01 .81±.02 .8±.01 .8±.02 .79±.01 n/a n/a
mix 40 4 .01±.01 .8±.02 .78±.02 .78±.02 .78±.02 .78±.02 .78±.02 .77±.02 n/a n/a
ADNI .1±.02 .91±.0 .9±0 .9±0 .9±0 .9±0 .9±0 .9±0 n/a n/a
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