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Abstract

A LimitedMemory InfluenceDiagram (LIMID) model for quality control that incorporates
variable data on sample means from the output of a production process is introduced. The
process operates over a finite production horizon and is out-of-control when the process
mean for the output shifts. The probability such a shift occurs in the next time period is
dependent on the elapsed time since the most recent process repair. A set of control limits
that are adapted to the length the process has run without repair is selected to minimize
quality control costs, and the sampling interval and sample size can be adjusted to further
reduce costs if these modifications are operationally feasible. This is the first application
of LIMIDs in a quality control model with an increasing rate of failure over time, and that
implements variable data.

Keywords: Limited memory influence diagram; control chart; quality; statistical process
control; variable data; Weibull distribution.

1. Introduction

Shewhart (1931) introduced control charts as a tool for monitoring business and production
processes to ensure that output meets customer expectations for quality. These methods are
designed to incorporate sample output from the process, then utilize statistics calculated
from the output to identify possible assignable causes of variation that might negatively
affect quality. For instance, a machine could become miscalibrated or worn out so that
the average weight of the units produced is lower than desired. Assignable causes must be
differentiated from common causes of variation that occur even when the process is working
as intended.

Control charts and related statistical process control (SPC) methods can be classified
according to whether they require attribute or variable data. Attribute data measure a
qualitative aspect of the process output; for example, a sample unit may be categorized as
defective or not defective, or the number of blemishes on a sample unit can be counted.
Variable data is quantitative and measured on a continuous scale, such as weight or volume;
for example, the mean and/or range of the weights of sample units. This paper introduces
a Limited Memory Influence Diagram (LIMID) model for SPC using variable data where
the likelihood that an assignable cause of variation increases as the time since the last
maintenance or repair lengthens.

Duncan (1956) introduced economic design of control charts where the user-defined
parameters – the sample size, sampling interval, and control limits – are chosen to minimize
relevant costs. The model suggests a decision on whether or not to stop a process and search
for an assignable cause of variation that causes the mean of the process output to shift. As
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with many subsequent SPC methods employing economic design, the model assumes that
the time between occurrences of the assignable cause follows an exponential distribution.
This effectively means that the probability the assignable cause occurs in the next time
interval of a given length is the same regardless of when the last maintenance or repair
occurred.

Certain processes may be subject to assignable causes where the rate of failure increases
as the time since the last maintenance or repair event becomes longer. This could be due
to the deterioration or wear of a mechanical component, for example, and these types of
processes are addressed in this paper. Prior work that considers “increasing hazard rate”
processes includes models with both uniform and nonuniform sampling intervals where the
time between failures follows a Weibull distribution (Banarjee and Rahim, 1988; Rahim,
1993). This idea was extended by Rahim and Costa (2000) when the process is subject to
assignable causes that affect both the mean and variability of the output. Saniga (1979)
studies models with discrete time between arrivals that have both constant and non-constant
deterioration rates where the assignable cause affects both the mean and variance.

The previous studies primarily rely on analytical formulas for average hourly costs per
time period over an infinite production horizon. Determining sample sizes, sampling in-
tervals, and control limit policies that minimize these costs typically involves searching
numerous potential solutions. The control limit policies are static over time. This paper
considers a scenario where the production horizon is finite (although not necessarily short)
and terminates at a scheduled maintenance interval or when a certain number of units are
produced. Thus, the static control limit policies developed for the infinite horizon situation
may not be the best rules to apply in this setting. The LIMID model of Lauritzen and
Nilsson (2001) is implemented to determine these policies. LIMIDs have previously been
used for SPC, but only for attribute data with a constant failure rate (Cobb, 2021, 2022,
2024a). Cobb (2024b) addresses nonconstant process deterioration, but only for attribute
data.

The paper proceeds as follows. The next section defines the production process and the
LIMID model used for SPC. This is followed by a description of the results of a baseline
example problem, an interpretation of the control limits for the problem, and a sensitivity
analysis of the parameters and assumptions in the model. A discussion of potential future
research concludes the paper.

2. Model Description

This section describes the production process and LIMID model. The problem will be
described in the context of a specific example implemented by Banarjee and Rahim (1988).
The only modification of that example is the assumption of a finite production horizon.

2.1. Process Overview

The production process operates over a finite horizon H = 80 hours that is divided into T =
40 intervals of length h = H/T = 2 hours. Sampling intervals are indexed as t = 1, . . . , T−1
and a sample of size n = 10 units is randomly selected at each. The process begins operating
in-control producing output with mean µ0 = 41 and variance σ2

0 = 1. The assignable cause
of variation shifts (with factor δ = 0.5) the process mean to µ1 = µ0 + δ · σ0 = 41.5.
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The time until the assignable cause occurs can follow any distribution as long as the
probability the process shifts in the next time interval conditional on the time elapsed
since the last maintenance event (or the beginning of the horizon) can be calculated. The
Weibull distribution has been of interest in past SPC applications, and its probability
density function (PDF) is

fX(x) =
θ

λ

(x
λ

)θ−1
e−(x/λ)θ (1)

for x ≥ 0 where λ and θ are the scale and shape parameters of the distribution, respec-
tively. For this example, λ = 17.1 and θ = 3, and the mean time until failure (occurrence
of the assignable cause) is 15.27 hours. The Weibull PDF is shown in Figure 1(a) along
with an exponential distribution with the same mean (a special case of the Weibull dis-
tribution with λ = 15.27 and θ = 1). The exponential PDF is commonly used for SPC
applications, partially due to its memoryless property that dictates that the conditional
probability the process fails in the next sampling period is independent of the time elapsed
since maintenance.
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Figure 1: Distributions for time between occurrences of an assignable cause of variation.

2.2. Graphical Representation

Figure 2 shows a LIMID for the SPC problem with T = 5. The ovals in the diagram
represent random variables. The variable Dt represents the current number of periods since
the previous repair. This deterministic variable takes on potential values dt = 1, . . . , t. The
variable St represents the probability that the state is out-of-control by the end of period
t and assumes either s0t if the process is in-control or s1t if the process is out-of-control.
The nodes Rt represent the sample results with value rt representing the bin of a discrete
approximation to the sampling distribution for the mean of the sample of n units.

The rectangles At represent the decisions made at each sampling interval. A value of a0t
denotes the choice to continue without investigating the process for the assignable cause,
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Figure 2: LIMID for the SPC model.

while a1t stops the process to search for the assignable cause and perform repair when
necessary. The utility nodes represent the quality control costs in the problem, including
sampling costs, investigation and repair costs, stopping the process for a false alarm, and
operating the process in both the in-control and out-of-control states.

The assumption of a finite time horizon is required to implement the LIMID model;
however, an “infinite” production process could be interpreted as one that runs continuously
until it fails and needs to be repaired. Once repair occurs, the decision rule from the model
can be re-started at the first sampling period. This means that an infinite production process
can be modeled with a LIMID where the time horizon H is long enough that the probability
the process runs that long without failure is essentially zero. For the example in this section,
H = 80 is sufficient even if this process is considered infinite, as P (X > 45) = 1.39× 10−11

(see Figure 1(a)).

2.3. Conditional Probabilities

Conditional probabilities assigned to the deterministic variables D2, . . . , DT are as follows:

P (Dt = dt−1 + 1|{Dt−1 = dt−1, St−1 = s0, At−1 = aℓ}) = 1

for ℓ = 0, 1. When the process operated in state s0 in the prior period, the action does not
affect the number of time periods since repair. If an investigation occurred and revealed no
assignable cause, the repair would not be initiated.

When the system previously operated in St−1 = s1,

P (Dt = dt−1 + 1|{Dt−1 = dt−1, St−1 = s1, At−1 = a0}) = 1 and

P (Dt = 1|{Dt−1 = dt−1, St−1 = s1, At−1 = a1}) = 1

with probability 0 assigned to conditional probabilities for all other values Dt, dt = 1, . . . , t.
The last scenario resets the counter for Dt after an investigation and repair. D1 always
takes on the value 1, P (D1 = 1) = 1.
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Next, consider the distribution for the system state variable St. The period since the
last repair is Dt = dt with possible values dt = 1, . . . , t. Conditional probabilities for St = s1
are determined as

γdt = P (St = s1|{St−1 = s0, Dt = dt, At−1 = aℓ}) =

∫ dt·h

(dt−1)·h
fX(w) dw∫ ∞

(dt−1)·h
fX(w) dw

for dt = 1, . . . , T and ℓ = 0, 1 where fX is the PDF in Equation (1) for this example. These
conditional probabilities are shown for the example in Figure 1(b), where it is apparent that
the failure rate increases as the time since the last repair lengthens. After repair is pursued
for an out-of-control process,

P (St = s1|{St−1 = s1, Dt = dt, At−1 = a1}) = γ1

for all dt = 1, . . . , t. The process is not self-correcting, so

P (St = s1|{St−1 = s1, Dt = dt, At−1 = a0}) = 1

for all dt = 1, . . . , t.

The conditional probability distributions fRt for the nodes Rt are determined using
discrete approximations to the normal PDF developed using the Gaussian Quadrature (GQ)
method outlined by Miller and Rice (1983). Suppose that the measurement of the test
statistic (for example, weight) per unit while in-control is N(41, 1) and the sample size is
n = 10. The sample mean is then distributed as Rt|{St = s0} ∼ N(41, 1/10) with the
discrete approximation to this PDF denoted by fRt|{St=s0}. Assume that δ = 0.5 so that
Rt|{St = s1} ∼ N(41.5, 1/10) with approximation fRt|{St=s1}. The number of pieces used
in the GQ approximation will be denoted by K, and the approximations are defined on the
interval [µ0 − 3 · σ/

√
n, µ0 + δσ0 + 3 · σ/

√
n] as shown for K = 3 in Figure 3.
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Figure 3: Three-piece approximations to the sampling distributions.

The conditional distributions for Rt given the two states of St are defined as
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fRt|{St=s0}(rt) =

0.131 if 40.051 ≤ Rt < 40.694

0.285 if 40.694 ≤ Rt < 40.952

0.303 if 40.952 ≤ Rt < 41.194

0.108 if 41.194 ≤ Rt < 41.306

0.131 if 41.306 ≤ Rt < 41.548

0.038 if 41.548 ≤ Rt < 41.806

0.005 if 41.806 ≤ Rt ≤ 42.449

and

fRt|{St=s1}(rt) =

0.005 if 40.051 ≤ Rt < 40.694

0.038 if 40.694 ≤ Rt < 40.952

0.131 if 40.952 ≤ Rt < 41.194

0.108 if 41.194 ≤ Rt < 41.306

0.303 if 41.306 ≤ Rt < 41.548

0.285 if 41.548 ≤ Rt < 41.806

0.131 if 41.806 ≤ Rt ≤ 42.449 .

(2)
Note that while the approximations in Figure 3 have K = 3 pieces or bins, the distributions
in Equation 2 are defined over the combined set of endpoints—sorted in ascending order—in
the domains of the two approximations, denoted by Re, e = 1, . . . , ξ. In this case

R = [R1,R2,R3,R4,R5,R6,R7,R8]

R = [40.051, 40.694, 40.952, 41.194, 41.306, 41.548, 41.806, 42.449]

This will facilitate the interpretation of the decision policies in the LIMID solution. The
conditional distributions are shown in Figure 4.
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Figure 4: Three-piece approximations to the sampling distributions.

2.4. Utility Functions

Assigning functions to the utility nodes in the LIMID first requires calculating the expected
time to occurrence of the assignable cause when the process begins a time interval in state
s0. These values are a function of the number of periods since repair dt and are calculated
as follows:

τdt =

(∫ dt·h

(dt−1)·h
(w − (dt − 1) · h) · fX(w) dw

)/(∫ dt·h

(dt−1)·h
fX(w) dw

)
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for dt = 1, . . . , T . The cost parameters in the problem are as shown in Table 1 along with
their values for the baseline example problem. The utility function values for u2, · · · , uT−1

are then assigned as:

ut(st, at, dt) =

γdt+1(τdt+1D0 + (h− τdt+1)D1) + (1− γdt+1)D0h+ cs

if St = s0 ∧At = a0 ∧Dt = dt

γdt+1(τdt+1D0 + (h− τdt+1)D1) + (1− γdt+1)D0h+W + cs

if St = s0 ∧At = a1 ∧Dt = dt

D1h+ cs

if St = s1 ∧At = a0 ∧Dt = dt

γ1(τ1D0 + (h− τ1)D1) + (1− γ1)D0h+ Y + cs

if St = s1 ∧At = a1 ∧Dt = dt

for dt = 1, . . . , t. If the assignable cause occurs during interval t, the cost D0 occurs for the
first part of the time period (τdt+1) with the hourly cost D1 expended for the remainder
of the time period. This occurs with probability γdt+1; otherwise, the hourly cost D0 is
relevant for the entire interval. Note that ut actually captures the expected cost for time
interval t + 1, which is entirely determined by the action and state of the system at time
period t. The utility function for the first period is

u1(s1, a1, d1) =

γ1(τ1D0 + (h− τ1)D1) + (1− γ1)D0h

+γ2(τ2D0 + (h− τ2)D1) + (1− γ2)D0h+ cs if S1 = s0 ∧A1 = a0 ∧D1 = 1

γ1(τ1D0 + (h− τ1)D1) + (1− γ1)D0h+ cs

+γ2(τ2D0 + (h− τ2)D1) + (1− γ2)D0h+W + cs if S1 = s0 ∧A1 = a1 ∧D1 = 1

γ1(τ1D0 + (h− τ1)D1) + (1− γ1)D0h+D1h+ cs if S1 = s1 ∧A1 = a0 ∧D1 = 1

2 · (γ1(τ1D0 + (h− τ1)D1) + (1− γ1)D0h) + Y + cs if S1 = s1 ∧A1 = a1 ∧D1 = 1 .

The same expected cost is incurred in period 1 regardless of the action A1, then the cost
in the second period is affected by both S1 and A1. These costs and the parameters
for the Weibull distribution in Figure 1 are consistent with those considered in examples
from (Duncan, 1956; Banarjee and Rahim, 1988).

2.5. Solution

LIMIDs are solved with the Single Policy Updating (SPU) algorithm as outlined by Lau-
ritzen and Nilsson (2001) via message passing in a junction tree (Cowell et al., 1999).
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Table 1: Cost parameters in the SPC problem.

D0 quality cost per hour while producing in-control in state s0 50
D1 quality cost per hour while producing out-of-control in state s1 950
W cost to investigate the process when assignable cause is not present 500
Y cost to investigate and repair the out-of-control process 1100
c1 fixed cost of obtaining a sample 20
c2 per unit sampling cost 4.22
γdt probability the process ends the period out-of-control

when process is in period dt since last repair, dt = 1, . . . , T − 1
τdt expected time to occurrence of assignable cause of variation

when process is in period dt since last repair, dt = 1, . . . , T − 1
n sample size randomly drawn at each sampling interval 10
cs total cost of sampling at each interval, cs = c1 + c2 · n 62.2

Initially, the strategies at each decision node are randomly selected, and the expected util-
ity obtained from applying these strategies is calculated. The algorithm then visits each
decision node to update the strategy to be optimal given the current policies at all other de-
cision nodes. On one sequential pass through all decision nodes, the best current strategies
for other decision nodes are considered, so the expected utility improves from the initial
calculation.

Subsequently, each strategy is sequentially revisited again, and for a second time the
strategy at each node is updated to be optimal given the current strategies at all other
decision nodes. This continues until a pass through all decision nodes is made where the total
expected utility is not improved. In most cases, this takes 3-4 iterations of the algorithm
for this particular SPC problem.

The policies at the decision nodes resulting from the SPU procedure specify the action
At based on the number of periods since repair Dt and the bin of the approximation Rt = rt
containing the observed sample mean. These policies define a set of upper control limits
UCLdt for dt = 1, . . . , t. Values of UCLdt are defined for intervals t = dt, . . . , T − 1. The
notation UCLdt(t) represents the value of UCLdt in time interval t. The control limits are
applied according to the following:

1. The current time interval t which is t·h hours from the start of the production horizon.

2. The current periods Dt = dt the process has operated without repair determines the
control limit UCLdt to apply.

3. The current sample result Rt = rt, where Re ≤ rt ≤ Re+1. If e > UCLdt(t), the
process is stopped for investigation and repair. Thus, the UCL values will coincide
with the lower endpoint of one of the bins of fRt so if the sample mean is in the next
highest bin, the action At = a1 is pursued.

Examples of these control limits are shown in the next section.
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3. Results

This section interprets results to the example problem and discusses additional results when
parameters under the control of managers are adjusted.

3.1. Example Problem

The minimum total cost for the example problem with T = 40, n = 10, and K = 3 is
19340.70. To compare solutions to problems with different sets of parameters it is often
convenient to use the average hourly cost (AHC) which in this case is AHC = 19340.70/80
= 241.76.

Solving the LIMID for the example problem using the SPU procedure yields a set of
control limits UCLdt , t = 1, . . . , 39 because T = 40. Typically, the UCL policies for the
first portion of the dt values are the most relevant, but the limits are defined for all possible
values for the number of periods in which the process operates since the last repair. Several
of the UCL values for the example are shown in Figure 5.

5 10 15 20 25 30 35 40

2

3

4

5

6

Time Period (t)

R
e

UCL1, UCL2

UCL3, UCL4

UCL5, UCL6

UCL7

Figure 5: Control limits for the SPC model in the example problem.

Consider the control limits UCL1 and UCL2, which represent the policies for a process
that is in either the first or second period after the most recent repair. Since UCL1 =
UCL2 = 6 for all t, the process is only stopped for investigation if the sample mean rt is in
the last bin (rt ≥ 41.806) of the distribution in (2). The limits UCL3 and UCL4 coincide
and provide a tighter decision threshold when the process is in the 3rd or 4th period since
repair. Note that the decision rule relaxes in the last two periods prior to the end of the
production horizon since there would be limited value in expending the cost to investigate
and repair the process at that point; thus, the LIMID can adjust the policy throughout the
production horizon when advantageous. This is also evident in UCL7. In most periods,
a value rt in the 4th bin of the distribution or above leads to action a1, but in t = 30
and t = 31, the decision rule is relaxed slightly. In this case, stopping the process in those
periods likely leads to one more repair before t = 40, so waiting to investigate for ambiguous
sample results reduces cost.
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3.2. Choosing Sample Size and Interval

In some situations, operational considerations may determine or at least limit the values
of T and n implemented in the SPC model; however, a manager with flexibility can adjust
these parameters and also the number of bins K in the discrete approximations to the
sampling distribution to reduce quality control costs.

For this problem, the LIMID was solved for values T ∈ [20, 80], n ∈ [5, 30], and K ∈
[3, 12] reveals that the lowest AHC of 238.96 occurs where {T, n,K} = {37, 13, 8}. The
conditional distributions fRt|St=s0 and fRt|St=s1 each have 8 bins and the merged set of
endpoints has ξ = 17 elements. The first four control limits for the problem are shown in
Figure 6.
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Figure 6: Control limits for the SPC model with improved parameters T = 37, n = 13, and
K = 8.

When the process is operating in the first period after repair Dt = 1, UCL1 suggests
stopping the process only in bins 14 and above of fRt , which represents rt ≥ 42.02. The
decision threshold is tightened as the process continues to operate without repair. In the
fourth period after repair, UCL4 requires the process to be stopped (a1) when rt ≥ 41.31.
Each of the upper control limit values relaxes somewhat in the last two sampling periods
of the production horizon.

3.3. Sensitivity Analysis

To determine how the process and cost parameters affect the choices of T , n, and K se-
lected by the manager (if operationally feasible), changes of one parameter at a time from
the baseline example are considered as shown in Table 2. Potential values for the three
adjustable design parameters are considered as follows:

T ∈ {TL, TM , TH} = {20, 30, 40}, n ∈ {nL, nM , nH} = {5, 15, 25},

K ∈ {KL,KM ,KH} = {3, 8, 12}
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The choice of the number of discrete bins K in the approximation does not change the
sampling plan operationally but could potentially change the effectiveness of the decision
rule.

Table 2: Average hourly costs, design parameters, and computation time for sensitivity
analysis scenarios.

Comp
Time

Case H λ θ δ D0 D1 W Y c1 c2 T n K AHC (sec)

1 80 17.1 3 0.5 50 950 500 1100 20 4.22 40 15 8 239.7 122.3
2 160 17.1 3 0.5 50 950 500 1100 20 4.22 40 15 8 260.0 92.8
3 80 30 3 0.5 50 950 500 1100 20 4.22 30 15 8 178.6 56.0
4 80 17.1 1 0.5 50 950 500 1100 20 4.22 30 25 8 249.6 35.6
5 80 17.1 3 1 50 950 500 1100 20 4.22 40 15 8 239.7 72.8
6 80 17.1 3 0.5 100 950 500 1100 20 4.22 40 15 8 285.7 123.1
7 80 17.1 3 0.5 50 500 500 1100 20 4.22 20 15 12 194.7 26.5
8 80 17.1 3 0.5 50 950 1000 1100 20 4.22 30 25 12 253.1 65.2
9 80 17.1 3 0.5 50 950 500 500 20 4.22 40 15 8 207.7 119.3
10 80 17.1 3 0.5 50 950 500 1100 5 4.22 40 15 8 232.2 146.5
11 80 17.1 3 0.5 50 950 500 1100 20 1 40 25 12 207.2 137.3

The right panel of Table 2 shows the values (of the three considered) for T , n, and K
that minimize expected total costs, as well as the computational time (in seconds) required
to solve the model. The examples were solved using Wolfram Mathematica 13 software on
a computer with a 2.80GHz processor and 16 MB of RAM.

The most common selections for T , n, and K that minimize expected total cost are
larger (H) value for sampling intervals (TH = 40) and the medium (M) values for n and K.
There are four scenarios where a reduction in the number of sampling intervals leads to a
lower total cost, and three each where costs decrease with a larger sample size and number
of discrete bins in the approximations to the sampling distributions. This implies that
adjustments in the design parameters may be required for changes in the model parameters
as follows:

T λ− θ+ D+
1 W− n θ− W+ c−2 K D−

1 W+ c−2

The signs on the model parameters denote that the design parameter (T , n, or K) changes
either directly (+) or inversely (−) with the model parameter. Smaller changes in manager-
controlled parameters might also be beneficial in some scenarios. For example, when a
search of additional values for {T, n,K} is pursued for the scenario where the investigation
cost increases from W = 500 to W = 1000, values of {T, n,K} = {33, 20, 12} provide a
slightly lower AHC of 251.79 (versus 253.10).

The number of sampling intervals T is the primary factor affecting computation times.
When T increases, the time to find a solution can increase substantially because the num-
ber of elements in the state spaces of the variables Dt grows. This limitation and some
possibilities for addressing the issue are mentioned in Section 4. Changing the values for
n and K significantly might be expected to change the computation time directly, but the
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number of iterations before the SPU algorithm settles on a minimum expected utility could
change as well, so this relationship is not apparent in all the cases in Table 2.

3.4. Comparison

The baseline example utilized above was also solved by Banarjee and Rahim (1988) using
their control chart model with both uniform and non-uniform sampling intervals. The non-
uniform control chart allows the first sampling interval h1 to be selected by the manager,
then assigns the remaining sampling intervals until the next repair as

ht = h1 ·
(
t1/θ − (t− 1)1/θ

)
.

The sampling intervals reset to h1 when a repair occurs. Thus, to implement the model
the manager has to monitor the sampling intervals carefully. Their non-uniform sampling
scheme with control limits and sample size selected to minimize costs gives an AHC of
231.30 versus a cost for the LIMID model of 238.96. Their uniform sampling scheme is more
directly comparable to the LIMID model and gives a much higher cost of AHC = 259.85.
Thus, when static sampling intervals are employed, the ability of the LIMID to adjust
control limits to the current time elapsed since repair reduces cost significantly.

4. Future Research

A Limited Memory Influence Diagram was implemented for quality control in a process
where the failure rate increases as the time since the last repair lengthens. The control limits
are chosen to minimize costs and are adapted to the length of time since the last repair.
Sampling intervals and sample sizes can be further adjusted when operationally feasible to
further reduce costs. Costs are significantly reduced when uniform sampling intervals are
used as compared to a model (Banarjee and Rahim, 1988) where static control limits are
selected that remain the same in an infinite production horizon.

Now that the LIMID model has been implemented for increasing hazard rates in SPC
models, the next step can be to suggest modifications to the model that will further reduce
costs in situations where it is operationally feasible to adjust the sample size and/or sampling
intervals in the LIMID model. One possibility is to establish a warning limit below the
UCL that triggers a larger sample size in the subsequent sampling period. This has been
implemented for attribute data on the number of defectives (Cobb, 2022), but not for
variable data. It may also be possible to adjust the sampling interval in the LIMID, much
as Nenes (2013) suggests in a control chart model for variable data.

The tractability of the LIMID models also needs investigation. The dynamic LIMID
introduced by van Gerven et al. (2007) has been used to address infinite horizon decision
problems where approximating these solutions with LIMIDs containing a long time horizon
and number of sampling periods proved intractable. It’s also possible that some of the
UCLs generated by the LIMID solution are irrelevant because the process is almost certainly
stopped for investigation before being allowed to run without repair. It may be possible to
schedule maintenance at certain intervals in longer production horizons in advance to both
reduce costs and computation time for the solution.

68



LIMID Quality Control Models for Increasing Failure Rate Processes

References

P. K. Banarjee and M. A. Rahim. Economic design of x control charts under Weibull shock
models. Technometrics, 30(4):296–305, 1988.

B. R. Cobb. Statistical process control for the number of defectives with limited memory.
Decision Analysis, 18(3):203–217, 2021.

B. R. Cobb. Limited memory influence diagrams for attribute statistical process control
with variable sample sizes. In A. Salmerón and R. Rumı́, editors, Proceedings of the 11th
International Conference on Probabilistic Graphical Models, volume 186 of Proceedings
of Machine Learning Research, pages 1–12. Proceedings of Machine Learning Research
(PMLR), 2022.

B. R. Cobb. Intermittent sampling for statistical process control with the number of defec-
tives. Computers & Operations Research, 161:Article 106423, 2024a.

B. R. Cobb. Attribute statistical process control under nonconstant process deterioration.
Quality and Reliability Engineering International, 40(5):2638–2657, 2024b.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer, New York, 1999.

A. J. Duncan. The economic design of X charts used to maintain current control of a
process. Journal of the American Statistical Association, 51(274):228–242, 1956.

S. L. Lauritzen and D. Nilsson. Representing and solving decision problems with limited
information. Management Science, 47(9):1235–1251, 2001.

A. C. Miller and T. R. Rice. Discrete approximations of probability distributions. Manage-
ment Science, 29(3):352–362, 1983.

G. Nenes. Optimisation of fully adaptive Bayesian charts for infinite-horizon processes.
International Journal of Systems Science, 44(2):289–305, 2013.

M. A. Rahim. Economic design of X control charts assuming Weibull in-control times.
Journal of Quality Technology, 25(4):296–305, 1993.

M. A. Rahim and A. F. B. Costa. Joint economic design of x and R charts under Weibull
shock models. International Journal of Production Research, 38(13), 2000.

E. M. Saniga. Joint economic design of X and R control charts with alternate process
models. AIIE Transactions, 11(3):254–260, 1979.

W. A. Shewhart. Economic Control of a Quality Manufactured Product. D. Van Nostrand,
New York, NY, 1931.

M. A. J. van Gerven, F. J. Diez, B. G. Taal, and P. J. F. Lucas. Selecting treatment
strategies with dynamic limited-memory influence diagrams. Artificial Intelligence in
Medicine, 40(3):171–186, 2007.

69


	Introduction
	Model Description
	Process Overview
	Graphical Representation
	Conditional Probabilities
	Utility Functions
	Solution

	Results
	Example Problem
	Choosing Sample Size and Interval
	Sensitivity Analysis
	Comparison

	Future Research

