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Abstract

The existence of latent variables in practical problems is common, for example when some
variables are difficult or expensive to measure, or simply unknown. When latent variables
are unaccounted for, structure learning for Gaussian graphical models can be blurred by
additional correlation between the observed variables that is incurred by the latent variables.
A standard approach for this problem is a latent version of the graphical lasso that splits the
inverse covariance matrix into a sparse and a low-rank part that are penalized separately.
In this paper we propose a generalization of this via the flexible Golazo penalty. This
allows us to introduce latent versions of for example the adaptive lasso, positive dependence
constraints or predetermined sparsity patterns, and combinations of those. We develop an
algorithm for the latent Gaussian graphical model with the Golazo penalty and demonstrate
it on simulated and real data.
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1. Introduction

In many inference problems it is common to implicitly assume that all variables of interest
are being observed and measured. This is however often not the case, for various reasons. For
example, it is possible that there exist unknown factors that influence the observed variables.
Alternatively, there may be variables which are too expensive or difficult to measure. When
our interest is in structure learning for Gaussian graphical models, in particular in high-
dimensional settings, a common approach is covariance estimation with the graphical lasso
(Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007) which can recover the zero pattern
of the inverse covariance matrix K = Σ−1. In the presence of latent variables however, a
potentially sparse structure might be inaccessible. Let O denote the indices of the observed
and H the indices of the latent (or hidden) variables of some Gaussian random vector X.
The inverse covariance matrix of XO is the Schur complement

(ΣOO)
−1 = KOO −KOH(KHH)−1KHO.

Here, even when the complete model is sparse, the subtrahend can blur the sparsity pattern
in KOO. In other words, the latent variables incur correlations in the observed system which
can render attempts to estimate directly the dependence structure of the system unsuccessful.

For this setting Chandrasekaran et al. (2012) proposed to model the inverse observed
covariance matrix as the difference of a sparse matrix A = KOO and a low-rank matrix B =
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KOH(KHH)−1KHO. They penalize sparsity in A (ℓ1 norm) and rank in B (the nuclear norm
is the trace for symmetric PSD matrices), resulting in the following optimization problem(

Â, B̂
)
= argmin

A,B
− ℓ(A−B;SOO) + λ(γ∥A∥1 + tr(B)),

where ℓ is the Gaussian log-likelihood, SOO is the observed sample covariance, A is required
to be positive definite and B to be positive semidefinite, and λ and γ are non-negative scalars.

In structure learning for multivariate Gaussians some alternatives to the ℓ1-penalty as
in the graphical lasso have been proposed in the literature, for example the adaptive lasso
(Fan et al., 2009) or positive dependence (Lauritzen et al., 2019). Recently, Lauritzen and
Zwiernik (2022) introduced the Golazo penalty as a flexible generalization of many penalties.
The Golazo penalty includes not only the adaptive lasso and positive dependence, but also
allows for graphical model constraints or asymmetric penalties, and combinations of those.

In this paper we propose to modify the approach of Chandrasekaran et al. (2012) using
the Golazo penalty to allow more flexible structure learning in latent Gaussian graphical
models. This yields a convex optimization problem, which we tackle with an alternating
direction method of multipliers (ADMM) algorithm (Chang et al., 2020). We demonstrate
the application of our method on simulated and real data, obtained from Chang et al. (2020)
but with the original source being Hughes et al. (2000). The code for this paper is publicly
available on Github at https://github.com/iechave-tue/golazo-latent-gaussian.

1.1. Notation

Let Sd> be the collection of all symmetric positive definite d × d-matrices and Sd≥ the cone
of symmetric positive semidefinite d × d-matrices. We abbreviate MI,J to MIJ for some
matrix M and index sets I,J .

2. Preliminaries

2.1. Gaussian Graphical Model

Let X ∼ N(µ,Σ) be a multivariate Gaussian with mean µ ∈ Rd and covariance Σ ∈ Sd>. We
call K = Σ−1 the concentration matrix. Let G = (V,E) be a simple undirected graph with
vertices V = {1, . . . , d} and edge set E ⊂ V × V . A gaussian graphical model with respect
to G is the collection of all multivariate Gaussian distributions that satisfy

∀ ij ̸∈ E =⇒ Kij = 0. (1)

As Kij = 0 is equivalent to the conditional independence Xi ⊥⊥ Xj | XV \{i,j}, the graph G
implies conditional independence constraints on X. As a slight abuse of notation, we will
refer to any multivariate Gaussian X that satisfies (1) with respect to some graph G as a
Gaussian graphical model.

Example 1 Let d = 4 and let G be the graph in Figure 1. The graph G implies zeros in K
as follows:
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Figure 1: Example of a Gaussian graphical model.

K =


K11 K12 0 K14

K12 K22 K23 0
0 K23 K33 K34

K14 0 K34 K44

 .

This is equivalent to conditional independence statements X1 ⊥⊥ X3 | X{2,4} and X2 ⊥⊥ X4 |
X{1,3}.

2.2. Multivariate Gaussians with Hidden Variables

Let X be a multivariate Gaussian. We assume to observe only the subvector of variables
XO with O ⊂ [d] := {1, . . . , d}, and consider the remaining variables H as hidden, where
[d] = O ∪ H and O ∩ H = ∅. Given i.i.d. (centered) observations {x1

O, . . . ,x
n
O} of XO ∼

N(0,ΣOO), we define the sample covariance matrix SOO = 1
n

∑n
i=1 x

i
O(x

i
O)

T . The inverse
covariance (concentration) matrix of XO can be expressed in terms of the full concentration
matrix K, such that

(ΣOO)
−1 = KOO −KOH(KHH)−1KHO. (2)

Here, the right hand side is the Schur complement K/KH,H .
If the complete vector X satisfies certain constraints, e.g. a sparsity pattern in K as

imposed by a Gaussian graphical model, the subset of observed variables XO would by
default not show the same constraints. For example, the inverse covariance matrix (ΣOO)

−1

of the observed variables would typically be a dense matrix even when K is sparse. We
illustrate this behavior with an example:

Example 2 Let X be a 5-variate Gaussian vector that is Markov to the graph in Figure 2.
Therefore its concentration matrix K satisfies

K =


K11 0 0 0 K15

0 K22 0 0 K25

0 0 K33 0 K35

0 0 0 K44 K45

K15 K25 K35 K45 K55

 ,
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Figure 2: Graph with four observed variables and one hidden (left), and completely connected
graph with four observed variables (right).

Here, we can see that the hidden variable is connected with all of the observed variables, while
there are no edges between observed variables. The observed subset of variables XO has a
dense concentration matrix

(ΣOO)
−1 =


K11 −

K2
15

K55
−K15K25

K55
−K15K35

K55
−K15K45

K55

−K15K25
K55

K22 −
K2

25
K55

−K25K35
K55

−K25K45
K55

−K15K35
K55

−K25K35
K55

K33 −
K2

35
K55

−K35K45
K55

−K15K45
K55

−K25K45
K55

−K35K45
K55

K44 −
K2

45
K55

 ,

such that the corresponding graphical model is completely connected.

In this setting, we would be interested in being able to estimate KOO, since it gives us
information about the sparsity of the full model, and also to estimate KOH(KHH)−1KHO,
since this matrix tells us information about the hidden variables. For instance, if |H| is small,
then it will have low rank, since its rank is bounded above by |H|. In particular, we can use
an estimate of this matrix to estimate the number of hidden variables via the rank.

To tackle this problem, Chandrasekaran et al. (2012) proposed to penalize the two com-
ponents KOO and KOH(KHH)−1KHO that form (ΣOO)

−1 separately. To facilitate notation,
we define A := KOO and B := KOH(KHH)−1KHO. Let ℓ(K;S) = log det(K) − tr(KS) be
the Gaussian log-likelihood for some concentration matrix K and sample covariance S as
seen in Chandrasekaran et al. (2012). They introduce the following optimization problem:(

Â, B̂
)
= argmin

A∈Sd
>,B∈Sd

≥

− ℓ(A−B;SOO) + λ(γ∥A∥1 + tr(B)). (3)

Here, the ℓ1-norm penalty ∥A∥1 promotes the assumed sparsity, and the trace penalty term
tr(B) the low-rank constraint for B, allowing us to try to estimate this hidden variable
component without prior knowledge about it.

Chandrasekaran et al. (2012, Theorem 4.1) provide a theoretical analysis of the conver-
gence of the estimation above. Under a number of assumptions related with the tangent
spaces of the sparse and low-rank matrices (please refer to Chandrasekaran et al. (2012) for
details), the signs in A and the rank of B are estimated accurately with high probability.
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Theorem 2.1 (Chandrasekaran et al., 2012, Theorem 4.1) Let A and B denote the ground-
truth sparse and low-rank components. Let

gγ(A,B) := max{∥A∥∞
γ

, ∥B∥2}

and given a matrix M and its tangent space T (M), let

ξ(T (M)) := max
N∈T (M),∥N∥2≤1

∥N∥∞.

Under the assumptions of Chandrasekaran et al. (2012, Proposition 3.3 and Theorem 4.1),
we have that the probability of having simultaneously

• sign(A∗) = sign(Â).

• rank(B∗) = rank(B̂).

• gγ(A
∗ − Â, B∗ − B̂) ≲ 1

ξ(T (B∗))

√
|O|
n

is at least 1− 2 exp(−|O|).

This result does not give us exactly consistency, since although we have error bounds
depending on the sample size n, this does not happen with probability 1 as n goes to infinity.
Instead this only happens with probability at least 1 − 2 exp(−|O|), which is however close
to one with large enough |O|.

2.3. Golazo Constraints

Lauritzen and Zwiernik (2022) introduce the Golazo penalty function:

∥K∥LU =
∑
i ̸=j

max{LijKij , UijKij}.

Here, L,U are matrices with entries in R ∪ {∞,−∞} such that Lij ≤ 0 ≤ Uij for all
i, j ∈ [d] and diag(L) = diag(U) = 0. Adding the Golazo penalty to the negative Gaussian
log-likelihood gives rise to a flexible penalized estimation procedure

K̂ = argmin
K⪰0

−ℓ(K;S) + ∥K∥LU ,

that generalizes the standard ℓ1-penalty as in the graphical lasso. Among the possible con-
straints that can be enforced with the Golazo penalty are the following:

• Asymmetric adaptive graphical lasso: Let Lij = lij < 0 and Uij = uij > 0 for
all i ̸= j. With this, it is possible to penalize differently positive and negative entries.
When Lij = −Uij for all i ̸= j we are in the adaptive graphical lasso framework, see
Fan et al. (2009) for details. If −lij = uij = λ for all i ̸= j for some scalar λ, we have
the usual symmetric graphical lasso.
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• Positive lasso: If we only want to penalize positive entries, we set Lij = 0 and
Uij = λ > 0.

• MTP2 distributions: A multivariate Gaussian is multivariate totally positive of order
two (MTP2) if and only if Kij ≤ 0 for all i ̸= j (Lauritzen et al., 2019). Setting Lij = 0
and Uij =∞ for all i ̸= j yields the Gaussian MLE under MTP2 when ∥K∥LU penalizes
the log-likelihood.

• Positivity and sparsity: It is possible to constrain for MTP2 and additionally enforce
sparsity by setting Lij = −λ < 0 and Uij =∞ for all i ̸= j.

• Gaussian graphical models: If by assumption / practical knowledge we wish to set
the entry Kij to 0, it is possible to enforce this by setting −Lij = Uij =∞, under the
convention that 0 · ±∞ = 0. This recovers maximum likelihood estimation in Gaussian
graphical models when ∥K∥LU penalizes the log-likelihood.

3. Learning Gaussian Latent Variable Models under Golazo Constraints

The main idea of this paper is to introduce more flexible latent variable modeling for multi-
variate Gaussians. For this we propose to substitute the ℓ1-penalty in the latent optimization
problem (3) with the Golazo penalty. This allows to incorporate custom constraints for the
dependence structure of A = KOO, see Section 2.3 for a list of examples. We thus propose
the following optimization problem:(

Â, B̂
)
= argmin

A∈Sd
>,B∈Sd

≥

− ℓ(A−B;SOO) + ∥A∥LU + λ tr(B). (4)

Note that here the regularization constants can be absorbed into the L,U parameters of the
Golazo penalty, so we don’t include them explicitly. The log-likelihood ℓ(K;S) is a strictly
concave function in K. The Golazo penalty is convex (Lauritzen and Zwiernik, 2022). Thus
the optimization problem (4) is convex.

Chandrasekaran et al. (2012) provide an asymptotic result (see Theorem 2.1) for the
latent Gaussian graphical lasso. The following corollary of Theorem 2.1 extends their result
to certain asymmetric Golazo constraints. We believe that a similar result should hold for
arbitrary Golazo constraints.

Corollary 3.1 Let K be the true inverse covariance matrix and define A,B as before. Let
all the assumptions of Theorem 2.1 be satisfied, including the choice of λ and γ. Then, define
the Golazo parameters L,U such that

• if A∗
ij > 0, choose Lij ∈ [−∞,−λγ] and let Uij = λγ,

• if A∗
ij < 0, let Lij = −λγ and choose Uij ∈ [λγ,∞].

• if A∗
ij = 0, choose Lij ∈ [−∞,−λγ] and Uij ∈ [λγ,∞].
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In this case we recover the correct sign pattern of A∗ and rank of B∗ with probability greater
than 1− 2 exp(−|O|).

Proof The original statement (when Uij = −Lij = λγ) tells us that with probability larger

than 1 − 2 exp(−|O|), the sign of the estimate Â is equal to that of A∗, and the rank of B̂
is the same as that of B∗. This means that with that probability, the optimal point of the
problem in Equation (4) has the correct signs and rank.

In general, if we add a larger positive penalty to any non-optimal points, the optimal
point will stay the same. Here, if A∗

ij > 0 is positive, we can increase the penalty on the
negative values by making Lij smaller. Similarly, if A∗

ij < 0, we can increase the penalty on
positive points by increasing Uij . Finally, if A∗

ij = 0, then we can increase both penalties
simultaneously while maintaining the same optimal point. This proves that the statement
about sign and rank is still satisfied.

Corollary 3.1 implies that any sign constraints (such as enforcing positivity in an entry, or
enforcing sparsity) can be added without losing guarantees if such an assumption is accurate
in the specific practical setting. A positive entry in the matrix is enforced by fixing the
corresponding entry of L to −∞, a negative entry is enforced by fixing the corresponding
entry of U to ∞, and a zero is enforced by doing both simultaneously. Thus, Corollary 3.1
extends the result of Chandrasekaran et al. (2012) to any setting where the ground truth
satisfies such constraints.

4. ADMM Algorithm

To tackle the convex optimization problem (4) it is possible to use a general convex solver.
For this paper we will employ a multi-block ADMM algorithm that is often used for solving
similar problems in the machine learning context, given that this methods can give better
time performance than a general convex solver by taking advantage of separable problems
in terms of the blocks of variables. Here, we are adapting the algorithm studied in Chang
et al. (2020), which is a good reference for the details on the general idea of the algorithm. A
further reference is Li et al. (2023), where a similar setting under graph Laplacian constraints
was studied. We rewrite (4) in terms of three blocks of variables as follows:

(M̂, Â, B̂) = argmin
M,A∈Sd

>,B∈Sd
≥

− ℓ(M ;SOO) + ∥A∥LU + λ tr(B) s.t. M = A−B. (5)

We define the augmented Lagrangian of the optimization problem

Lσ(M,A,B,Λ) := −ℓ(M ;SOO) + ∥A∥LU + λ tr(B)− ⟨Λ,M −A+B⟩+ σ

2
∥M −A+B∥2,

where Λ ∈ Rd×d are the Lagrange multipliers. This algorithm used this augmented La-
grangian since the additional penalty helps enforce the constraints between the blocks of
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variables. Here, σ denotes the hyperparameter that tunes how strongly the constraints be-
tween the blocks of variables are enforced. The k + 1 iteration of the algorithm will be as
follows: 

Mk+1 := argmin
M∈Rd×d

Lσ(M,Ak, Bk,Λk) + ρσ
2 ∥M −Mk∥2,

Λk+ 1
2 := Λk − ασ(Mk+1 −Ak +Bk),

Ak+1 := argmin
A∈Rd×d

∥A∥LU + τr1
2

∥∥∥A−Ak + Λk+1
2

τr1

∥∥∥2,
Bk+1 := argmin

B∈Bd×d B⪰0

λn tr(B) + τr2
2

∥∥∥B −Bk + Λk+1
2

τr2

∥∥∥2,
Λk+1 := Λk+ 1

2 + σ(Ak+1 −Ak)− σ(Bk+1 −Bk).

The Lagrange multiplier is updated two times in each iteration given the multi-block nature of
the problem. For details about the procedure see Bai et al. (2017). As shown in Chang et al.
(2020), the conditions τ ∈ (2+α

2 ,+∞), ρ ∈ [0,+∞), r1 > σ, r2 > σ are sufficient conditions
for convergence. Here α is the step size of the half-update of the Lagrange multiplier. It is
suggested by them to fix for practical reasons ρ = 0, τ = ς 2+α

2 and r1 = r2 = ςσ, where
ς > 1. Here, ρ is a parameter than can help speed up convergence of the method but we do
not worry about this in our paper.

The three subproblems that we have after the considerations about the parameters have
simple closed form solutions, which we briefly summarize here. Firstly, the subproblem for
Mk+1 has a first order condition

SOO −M−1 + σ
(
M −Ak +Bk − Λk

σ

)
+ ρσ(M −Mk) = 0.

By multiplying by M , this is converted into a quadratic equation on M :

(ρ+ 1)σM2 +
(
SOO + σ(Bk −Ak)− Λk − ρσMk

)
M − I = 0.

If we consider the eigendecomposition Cdiag(v)CT = SOO + σ(Bk − Ak)− Λk − ρσMk and
define a new vector of eigenvalues x such that

xi :=
−vi +

√
v2i + 4(ρ+ 1)σ

2(ρ+ 1)σ
,

then the closed form solution to the problem is Mk+1 = Cdiag(x)CT .
For the second subproblem, let 0 denote the zero matrix and let max denote here the

entry-wise maximum. Then, the solution is

Ak+1 = min

{
Ak − Λk+ 1

2 + L

τr1
,0

}
+max

{
Ak − Λk+ 1

2 − U

τr1
,0

}
.

Finally, the third subproblem also has a simple closed form solution. Consider the eigen-

decomposition Ddiag(β)DT = Bk + Λk+1
2−λI

τr2
. Then, the closed form solution is given by

Bk+1 = Ddiag(max(β,0))DT , where again the max is taken entry-wise.
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Therefore, it is straightforward to solve this problem iteratively. Let N denote the max-
imum number of iterations that we allow in a practical setting, and let ϵ1, ϵ2 ∈ R≥0 be
parameters such that the algorithm stops if we have that both of the following conditions are
satisfied:

RelChg : = max

{
∥Mk+1 −Mk∥F

1 + ∥Mk∥F
,
∥Ak+1 −Ak∥F
1 + ∥Ak∥F

,
∥Bk+1 −Bk∥F
1 + ∥Bk∥F

}
< ϵ1

IER : = ∥Mk −Ak +Bk∥F < ϵ2.

The algorithm stops only after the maximum number of iterations are performed or when
the previous criterion is satisfied. We show pseudocode for the algorithm in Algorithm 1.

Algorithm 1: Multi-block ADMM for GGM estimation

Input: SOO, L, U, P, {σ, α, r1, r2, τ, λn, ρ}, {ϵ1, ϵ2}, N , k = 0
Output: M̂n, Ân, B̂n

1 Starting point: M0 ← I, A0 ← I,B0 ← 0
2 while k < N and (RelChg ≥ ϵ1 or IER ≥ ϵ2) do
3 Compute eigendecomposition Cdiag(α)CT of SOO + σ(Bk −Ak)− Λk − ρσMk

4 xi ←
−αi+
√

α2
i+4(ρ+1)σ

2(ρ+1)σ

5 Mk+1 ← Cdiag(x)CT

6 Λk+ 1
2 = Λk − ασ(Mk+1 −Ak +Bk)

7 Ak+1 ← min

{
Ak − Λk+1

2+L
τr1

,0

}
+max

{
Ak − Λk+1

2−U
τr1

,0

}
8 Compute eigendecomposition Ddiag(β)DT of Bk + Λk+1

2−λnI
τr2

9 Bk+1 ← Ddiag(max(β,0))DT

10 Λk+1 ← Λk+ 1
2 + σ(Ak+1 −Ak)− σ(Bk+1 −Bk)

11 k = k + 1

12 end

13 return M̂n ←Mk, Ân ← Bk, B̂n ← Bk

5. Application

Note that during our experiments we will fix the values of the ADMM parameters following
the practical choices made in the paper of Chang et al. (2020), that is, we do not tune these
values for speed, we only pick values that guarantee convergence of the method.
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O1 O2

O4 O3

H

O5 O6

O8 O7

Figure 3: Two disconnected 4-cycles with one hidden variable.

5.1. Simulated Data

Taking inspiration from Engelke and Taeb (2024), we consider a graph G = (V,E) consisting
of two disconnected (except for edges going through the hidden variable) cycles with 25
observed nodes each, and one hidden variable. We set Kii = 5 for all i ∈ V = {1, . . . , 51} and
Kij = −2 for all 1 ≤ i, j ≤ p = 50 with ij ∈ E, and Kij = 0 otherwise. The hidden variable
is connected to all of the observed variables, with Kih = Khi = 5/p for all i ̸= h = 51.

In this study we compare the standard ℓ1-penalty with a positive dependence constraint.
To showcase the flexibility of the Golazo approach, we further include two modified versions
of these penalties that incorporate partial graphical model constraints (i.e. partial sparsity
in K). To simplify notation, let us call O1 = {1, . . . , 25}, O2 = {26, . . . 50}, H = {51}, where
O1 denotes the indices of the nodes of the first cycle, O2 the nodes of the second cycle and
H the hidden variable. The constraints that we are going to test are the following:

1. Lij = −λγ and Uij = λγ for all i ̸= j, that is, the standard ℓ1-penalty.

2. Lij = −λγ and Uij = λγ for all i ̸= j where i, j are both either in O1 or O2. For i, j
where each node is in a different subcycle, Lij = −∞ and Uij =∞, that is, we assume
that O1 or O2 are not connected by an edge.

3. Lij = 0 and Uij =∞ for all i ̸= j, that is, the MTP2 constraint.

4. Lij = 0 and Uij = ∞ for all i ̸= j where i, j are both either in O1 or O2. For i, j
where each node is in a different subcycle, Lij = −∞ and Uij =∞, that is, the MTP2

constraint with the additional assumption that O1 or O2 are not connected by an edge.

We generate two samples of size n = 100 in N = 20 different trials. We train the model
using the first sample and then evaluate the Gaussian log-likelihood on the second one. This
could also be done using the ground truth covariance. We fix γ = 0.5 for the constraints
1 and 2, after testing various values and noticing that the overall behavior is stable for a
range of values of γ (compare also the discussions in Chandrasekaran et al. (2012, 2011);
Engelke and Taeb (2024)). Note that constraints 3 and 4 are independent of γ. We select
values for λ from 10−8 to 1, with 50 values evaluated in total. We perform the simulation,
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Figure 4: Results for the two cycles (red and black line become equal).

calculation and validation steps for each constraint and value of λ and compute an average of
the log-likelihoods over the different trials. Figure 4 visualizes the results of this study. We
observe that the MTP2 constraints provide a robust method that outperform the ℓ1-penalty.
Furthermore, there is a small improvement when the partial graphical model constraints are
added.

5.2. Real-world Data

For this real-world data application we will use gene data from the Rosetta dataset (see
Hughes et al. (2000) for the original source), which has 301 samples from 6316 variables. We
obtained the dataset from the code of Chang et al. (2020). The way to process this data to
obtain a sample covariance matrix (which is the data input to our algorithm) is described in
Ma et al. (2013). Here, the idea is to compute the sample variances of each variable, and then
pick the p variables with the largest sample variance, resulting in p = 25 observed variables
for the latent Gaussian graphical model.

During these experiments, we fix γ = 0.1, after testing various values and seeing that this
one gave near optimal result for the lasso-based methods. We select it in this way since the
positivity-based methods optimal performance is not affected by this parameter. Then we
explore how the behavior of the estimates depend on the value of λ and the type of Golazo
constraint selected. We select a large enough interval for λ so that the general behavior of
each constraint can be appreciated. Here λ takes values from 10−8 to 0.4, with 30 values
evaluated in total.

We use 5-fold cross-validation to evaluate how well each of the methods generalizes better,
and we will use as the score the log-likelihood with respect to the validation set. We show
the results for four different Golazo constraints:

1. Lij = −λγ and Uij = λγ for all i ̸= j, that is, the standard ℓ1-penalty.
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Figure 5: Results for the gene data (red and black line become equal).

2. Lij = −λγ and Uij =∞ for all i ̸= j, that is, a modified MTP2 constraint.

3. Lij = 0 and Uij =∞ for all i ̸= j, that is, the MTP2 constraint.

4. Lij = 0 and Uij = λγ for all i ̸= j, that is, the positive lasso constraint.

We can see in Figure 5 that the best overall validation log-likelihood occurs when using
constraint 2, which shows that combining MTP2 and an ℓ1-penalty can yield improved per-
formance over either of them. We see as in the simulation study that the MTP2 constraint
seems to be relatively robust with respect to the choice of λ and performs comparably well,
although not optimal in this case.

6. Discussion

In this paper we propose generalized latent Gaussian graphical model learning via the Golazo
penalty function. We provide an ADMM algorithm that we apply to simulated and real data,
and discuss various flexible penalization choices in comparison to the standard ℓ1-penalty.
In particular, the robustness of the MTP2 constraint with respect to the hyperparameters
provides an attractive alternative to settings when hyperparameter tuning is not possible (for
instance, when training is too expensive). For future research, a main question beyond the
scope of this paper is an extension of Corollary 3.1, as well as an application of other Golazo
penalties. Furthermore, one could explore whether some kind of ensemble of such estimators
can improve performance over one estimator alone. This would be an interesting practical
improvement, since if a model is trained over multiple hyperparameters to obtain an optimal
choice, then suboptimal models could still be used as part of such an ensemble. We would
also like to investigate sparsity, ground truths with more than 1 hidden variable and a larger
number of graph topologies in simulations in future work.
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