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Abstract

Causal discovery aims to recover a causal graph from data generated by it; constraint-based
methods do so by searching for d-separating conditioning sets of nodes. In this paper, we
provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even
when guaranteed to exist. Our analysis implies poor average-case performance of existing
constraint-based methods, except on a vanishingly small class of extremely sparse graphs.
We consider a set V = {v1,...,v,} of nodes, and generate a random DAG G = (V, E)
where v; = v; € E with i.i.d probability p; if ¢ < j and probability 0 if ¢ > j. For any
d-separable pair of nodes v; and v;, we provide upper bounds on the probability that a
subset of V\{v;,v;} d-separates the pair, under different subset selection scenarios; our
upper bounds decay exponentially fast to 0 as |V| — oo for any fixed expected density. We
then analyze the average-case performance of constraint-based methods, including the PC
Algorithm, a variant of the SGS Algorithm called UniformSGS, and also any constraint-
based method limited to small conditioning sets (a limitation which holds in most of existing
literature). We show that these algorithms usually suffer from low precision or exponential
running time on all but extremely sparse graphs.

Keywords: d-separation, causal discovery

1. Introduction

Causal discovery aims to reverse engineer a causal graph from the data it generates. The
nonexistence of an edge between two nodes can be shown to be equivalent to the existence of
a d-separating (Definition 4) conditioning set of the other nodes. Constraint-based methods
assume access to a d-separation oracle, which deduces d-separation from the data, and
discover the graph via a series of oracle calls (Glymour et al., 2019). Perhaps the most well-
known constraint-based method is the PC Algorithm, which is a specialization of the SGS
Algorithm (Spirtes and Glymour, 1991). Under some assumptions, for sufficiently sparse
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ON THE UNLIKELIHOOD OF D-SEPARATION

graphs, the PC Algorithm recovers the undirected skeleton of the causal graph correctly and
makes at most a polynomial number of oracle calls. These worst-case guarantees fail on non-
sparse graphs, but that still leaves open the possibility of similar average-case guarantees
on non-sparse graphs—a possibility we rule out in this paper. Informally speaking, we
show that on almost all large graphs (except for a small class of extremely sparse
graphs), for any d-separable node pair, almost all conditioning sets are not d-
separating. This implies poor average-case performance of existing constraint-
based methods on almost all large graphs, including the PC Algorithm and any
algorithm using only small conditioning sets.

Since searching for d-separation is the core of all constraint-based methods, in this paper
we set out to explore the search space. We consider a randomly generated directed acyclic
graph (DAG) with |V| nodes and any expected density p;. For any two d-separable nodes,
we provide upper bounds on the probability that a conditioning set d-separates the two
nodes, in different scenarios. First, we bound the probability of d-separation when each
node is included in the conditioning set with any fixed i.i.d. probability ps (Theorem 12);
second, we bound the probability that there exists a d-separating set of size at most some
linear fraction of |V| (Theorem 14); and third, we bound the probability that a randomly
chosen conditioning set of any fixed size is d-separating (Theorem 15). All of our bounds
are O(e_|v|) for any fixed p;. In Figure 1, we give an empirical sense of the first scenario.
The informal conclusion from our bounds is that for large |V|, d-separation is a very rare
phenomenon even when guaranteed to occur, unless the graph is extremely sparse; this gives
some indication of the difficulty in finding d-separation.

After establishing our bounds, we analyze their implications for the average-case perfor-
mance of constraint-based methods. We begin by showing that the extremely sparse case
where limyy/| ;oo p1 = 0 includes only a vanishingly small portion of all possible graphs. In
addition to this theoretical argument, we note that sparsity is considered an unrealistic as-
sumption in some fields such as epidemiology (Petersen et al., 2023). For all but extremely
sparse graphs, we show that with high probability:

(1) Any constraint-based method which is restricted to considering only small condition-
ing sets (sublinear in |V|) suffers from low precision (Corollary 19). This restriction
holds in most of literature: in practice the d-separation oracle is replaced with a sta-
tistical conditional independence test, and such tests usually perform badly when the
conditioning set is not small (Runge et al., 2019; Li and Fan, 2020).

(2) Even without externally imposing a conditioning set size restriction, the PC Algo-
rithm suffers either from low precision or exponential running time (Theorem 20 and
Corollary 21). While PC’s poor performance on non-sparse graphs has been empir-
ically observed (Petersen et al., 2023), theoretical justification in literature has been
limited to worst-case analysis: our average-case results provide a more comprehensive
and convincing theoretical justification for this phenomenon.

(3) We consider a variant of the SGS Algorithm we call UniformSGS that samples con-
ditioning sets uniformly at random without replacement. We show that even when
there exists a d-separating conditioning set, UniformSGS takes an expected exponen-
tial time to find one (Theorem 22).
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Figure 1: d-separation probability. Given a random DAG with |V| nodes and expected
density p; = 0.05, we sample 100 d-separable variable pairs uniformly w/o replacement
from all d-separable pairs. For each pair, we sample 1000 conditioning sets, including each
variable (except the pair) in the conditioning set with i.i.d. probability ps, and calculate the
ratio of the number of d-separating sets over all 1000. The y-axis is the maximum ratio over
all 100 pairs. Consistently with Theorem 12, d-separation becomes rare fast as |V| — oc.

The remainder of the paper is organized as follows. In Section 1.1, we discuss related
literature. In Section 2, we define our model and the relevant terminology. In Section
3, we provide three bounds on the probability that a conditioning set d-separates two
nodes, in different scenarios. In Section 4, we show that the extremely sparse case is
rare, and analyze the implications of our bounds for constraint-based methods on non
extremely sparse graphs. In Section 5 we summarize our results. The appendix contains
experiments supporting our results and omitted proofs.

1.1. Related Work

The early causal discovery approaches can be broadly categorized into two classes, including
constrained-based ones such as PC (Spirtes and Glymour, 1991) and FCI (Spirtes et al.,
2013), etc. and scored-based ones such as GES (Chickering, 2002). It was observed that
under faithfulness and causal Markov assumptions (Spirtes et al., 1993), a Markov equiva-
lence class of causal graphs could be recovered by exploiting the conditional independence
relationships among the observed variables. The causal Markov condition and the faith-
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fulness assumption ensure that there is a correspondence between d-separation properties
(Verma and Pearl, 1988) in the underlying causal structure and statistical independence
properties in the data. This led to the development of the constraint-based approach to
causal discovery, which produces an equivalence class that may contain multiple DAGs or
other graphical objects that encode the same conditional independence relationships. Since
then, the field of causal discovery has grown significantly. D-Separation and different vari-
ations of the PC (and more generally, SGS) Algorithm (Spirtes et al., 1989; Spirtes and
Glymour, 1991) are at the heart of constraint-based methods of causal discovery, and are
the focus of this paper. Kalisch and Biithlman (2007) simulate PC on large graphs denser
than in most of literature, but are still quite sparse: using our terminology, the density
of their graphs decays superexponentially with the number of nodes, and their graphs are
within the vanishingly small class of extremely sparse graphs defined in this paper.

In contrast, score-based algorithms (Glymour et al., 2019; Spirtes and Zhang, 2016;
Heinze-Deml et al., 2018; Vowels et al., 2022) search for the equivalence class yielding
the highest score for certain criteria (Chickering, 2002), such as the Bayesian Information
Criterion (BIC), the posterior of the graph given the data (Heckerman et al., 2006), or
the generalized score functions (Huang et al., 2018). Another set of methods is based
on functional causal models (FCMs), which represent the effect as a function of direct
causes together with an independent noise term. The causal direction implied by the FCM
is recovered by exploiting the model assumptions, such as the independence between the
noise and cause, which holds only for the true causal direction and is violated for the wrong
direction, or minimal change principles (Ghassami et al., 2018; Scholkopf et al., 2021),
which states that with correct causal factorization, only a few factors may change under
different contexts. Examples of FCM-based causal discovery algorithms include the linear
non-Gaussian acyclic model LINGAM (Shimizu et al., 2006), the additive noise model ANM
(Hoyer et al., 2008), and the post-nonlinear causal model PNL (Zhang and Hyvarinen, 2012).

2. Setup and Definitions

We denote a directed edge from node a to node b as a — b, and the underlying undirected
edge with a — b: for a set of directed edges X, the statement a — b € X means “either
a—be X orb—aec X”. By path we mean an undirected simple path, and by length of a
path we mean the number of edges in it. Let V' = {v1,...,v,}. Let G = (V, E) be a random
DAG generated as follows: if ¢ < j then v; — v; € E with probability 0 < p; < 1, and if
i > j then v; — v; ¢ E deterministically. The generation of each edge is independent of the
others. Let G* be the set of all possible DAGs with nodes V which respect the topological
order vy, ...,v,. Note that G is a discrete random variable with support in G* (every DAG
in G* is generated with nonzero probability); the special case of p; = 0.5 corresponds to G
being uniform over G*. For any v;,v; € V, define V; j = V\{v;,v;}.

Next, we define colliders, noncolliders, blocking and d-separation, as well as pseudoblock-
ing and pseudoseparation. Our definitions of the first four are consistent with those of Pearl
(2009), while the last two are new simple concepts we are introducing here.

Definition 1 (Collider /Noncollider Path) Let P be a length 2 path: specifically, P is
a digraph with three nodes v;, vk, vj and undirected edges v; — vy, vy — vj, which we also
denote with v; — vy —vj. P is called a collider path (Figure 2(a)) if the directions of the
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edges are v; — vi, v; — v and a noncollider path (Figures 2(b)-2(d)) otherwise. The
node v s called the middle node of the path.

O—O—O G—EO—O

(a) Collider (b) Noncollider
) () ) @ () ()
(¢) Noncollider (d) Noncollider

Figure 2: Visualization of colliders and noncolliders.

Definition 2 (Collider /Noncollider Node) Let P be an arbitrary length path between
nodes a,b € V. FEvery node c in the path s.t. ¢ ¢ {a,b} is the middle node of a unique
length 2 sub-path in P, P', which includes ¢ and the two edges adjacent to ¢ in P. We call
¢ a collider (resp. noncollider) node in P iff P' is a collider (resp. noncollider).

Definition 3 (Blocking and Pseudoblocking) Let Z C V. A path is blocked by Z iff
at least one of the following holds:

e The path contains a collider node s.t. the collider and all of the collider’s descendants
in G are not in Z.

e The path contains a non-collider node in Z.
A path is pseudoblocked by Z iff at least one of the following holds:
e The path contains a collider node not in Z.

e The path contains a non-collider node in Z.

Blocking differs from pseudoblocking only in the requirement that the collider’s descendants
are not in Z. Pseudoblocking is weaker than blocking: every blocked path is pseudoblocked,
but not every pseudoblocked path is blocked. Similarly, in the following definition, pseu-
doseparation is weaker than d-separation. We will only apply the notion of pseudoblocking
to length 2 paths, although it is defined for any length.

Definition 4 (D-separation and pseudoseparation) Let v;,v; € V s.t. @ # j, and
assume Z C V; ;. v; and v; are d-separated by Z iff every path between v; and v; is blocked
by Z. wv; and v; are pseudoseparated by Z iff every length 2 path between v; and v; is
pseudoblocked. We denote v; and v; being d-separated by Z in a graph G' by v; =z vj,
and pseudoseparated by v; l_sz,G/ vj.

Note that d-separation requires blocking every path between v; and v;, and pseudosepara-
tion only requires pseudoblocking the length 2 paths. Pseudoseparation is useful because
length 2 paths between v; and v; are edge disjoint and also middle node disjoint; combined
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with the fact that pseudoblocking—unlike blocking—ignores colliders’ descendants, it al-
lows for a decoupled analysis of the paths. As we will see, despite pseudoseparation being a
weaker requirement than d-separation, it allows us to derive fairly strong bounds. Lemma 5
formally establishes the relationship between pseudoseparation and d-separation (the proof
is immediate from definitions):

Lemma 5 For any v;,v; €V and Z CV;;, vi Fzgv; = v; l—?G ;.

The reason d-separation is useful for causal discovery is due to the fact that—under some
assumptions—it can be detected via conditional independence testing on the data, as well
as the following known result (Pearl, 2009):

Theorem 6 z,y € V are d-separable in G iff t —y ¢ E.

Throughout this paper, the basic idea is to use Lemma 5 to establish upper bounds on
the probability of d-separation by establishing upper bounds on the probability
of pseudoseparation.

3. Bounds on the Probability of D-Separation

First, some informal intuition: all of our bounds (Theorems 12, 14 and 15) rely on identifying
a subset S of length 2 paths s.t. all paths in .S must be pseudoblocked for pseudoseparation
(and hence, by Lemma 5, for d-separation) to hold. Furthermore, we choose S so that |S]
grows linearly with |V|. This is useful because the middle node of each path in S either
must be included in or must be excluded of the conditioning set for pseudoseparation to
hold. Due to the established linear growth of | S|, the number of inclusion/exclusion decision
combinations for the middle nodes grows exponentially with |V'|, however only at most one
of those combinations can yield pseudoseparation.

3.1. Preliminaries

For this section, let v;,v; € V and assume w.l.o.g. that ¢ < j. For every v, € V;;, let
Py, be the undirected path v; — vy — vj, and let P;; = {P, : vi, € V;;} be the set of all
potential length 2 paths between v; and v; (regardless of whether they actually exist in the
graph). We say that a path Py exists in a graph g = (V, E,) € G* if both v; — v, € E,
and v; — vy € Ey; when we discuss existence/inexistence of a path without referring to a
particular graph, the underlying graph in question is assumed to be G. We prove upper
bounds on the probability that a set of nodes Z satisfies v; Fz g v;. More precisely, we
prove our upper bounds conditional on v; and v; being d-separable in G; the implied upper
bound on the unconditional probability of d-separation is even tighter (see appendix). We
begin with a few lemmas:

Lemma 7 For each vy, € V;j, let Ay be the event that Py exists in G. Then P(Ay) = p%
for all v, € V; ;. Furthermore, denoting the event that v; —v; € E as A;j, the events
{Ay c v, € Vi U{A;;} are mutually independent.

Proof Ay, is the event where v; — v, v, —v; € E: each of these edges exists with probability
p1 and therefore P(Ay) = p%. All paths in P; ; are edge disjoint, and therefore the existence
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of edges in each of these paths is independent of the existence of edges in the others; in
addition, the edge v; — v; is not in any of the paths in P, ;, so its existence is independent
of the existence of those paths. |

Lemma 8 Py is a collider path iff k > j.

Proof P; is a collider iff both edges go into v, which occurs iff £ > max {7, j} = j. [ |

Next, we introduce a few additional useful definitions.

Definition 9 Define Vi, = {vp € Vij 1k <j}, Ve={vp € Vij : k> j}, Qne ={Ps : v, €
Voe} and Q. = { Py : vi € V.}. Note that by Lemma 8, vy, € Vy. iff Py is a noncollider path,
and vy € Ve iff Py is a collider path; thus, Qne and Q. is the set of all potential noncollider
and collider paths respectively. Therefore |Vye| = |Qne| = j — 2 (corresponding to k < j and
k#1i) and |V| = |Qc| = |V| —j (corresponding to k > j).

Definition 10 For g € G*, denote the number of existing noncollider paths as Bj. and the
number of existing collider paths as BY. When g = G, we write By and B, instead of BS,
and BS.

Lemma 11 B, is a binomial random variable with parameters pf and j — 2, while B, is
a binomial random variable with parameters p2 and |V| — j. Furthermore, B,. and B. are
independent of each other and of the event v; —v; € E.

Proof By Lemma 8, there are j — 2 potential noncolliders @, and |V| — j potential collid-
ers 0., and by Lemma 7 each exists with probability p? independently of the others and of
vy — U € FE. |

3.2. Bounds

Next, we establish bounds on d-separation probability. Our first bound is for a random
conditioning set which includes each node with a fixed i.i.d. probability. In this proof, S
(discussed in the beginning of Section 3) includes all length 2 paths between v; and v; in G.

Theorem 12 Let Z be chosen randomly from 2Vii as follows: for every v € Vi, we
include v € Z with i.i.d. probability 0 < pa < 1. Then, P(v; bz vjlvi —v; ¢ E) is upper
bounded by (1 —pi + (1= p2)p})"1 = (1 = p} + pop?) 2.

Proof Let G}, = {g = (V,E,;) € G* : v; —v; & Eg} be the set of all graphs in which the
edge v; —v; is excluded. Let g = (V, E,) € Gy ; be any particular such graph. Consider some
k s.t. the path Py exists in g. Z pseudoblocking Py is equivalent to vy € Z < v € Vi, that
is vy should be included in Z iff Py is a noncollider path. We know that P(v; € Z) = po,
and therefore Py is pseudoblocked with probability po if P € Qe and with probability
(1 — po) if Py € Q.. As the inclusion/exclusion decision for each node in/from Z is done
independently, it follows that:

g g
P(v; F ¢ vi|G = g) < (1 — po) 5 pyne.
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Our goal, however, is not to bound P(v; 7 g vj|G = g), but rather P(v; bz g vjlvi—v; ¢ E):

P(v; 2,6 vjlvi —v; ¢ E)

<P(v; F ¢ vjlvi — v; ¢ E)

= Y P g vi|G = g)P(G = g|G € G}))
gEGjyj

<> a — p2) BpPieP(G = g|G € GY)
g€G; ;

=E[(1 — p2)Pep5|G € G} 1.

By Lemma 11, B, and By, are independent of v; —v; ¢ E, which is equivalent to G € GZ IH

thus, our bound is equal to E[(1 — pg)BCpé3 m¢]. Also by Lemma 11, B, is a binomial random
variable with parameters |V| — j and p? while B, is a binomial random variable with
parameters j —2 and p?; furthermore, B, and By, are independent of each other. Therefore,
our bound becomes E[(1 — pg)Pepy™c] = E[(1 — p2)P<|E[py"*]. We can now use the moment
generating function of the binomial to get:
[(1 - p)P] = Efe(" 0205
= (1 = pi + pie (17p2)VIm
= (1—pi+ (1= p2)p})",
E[p] = Ele"™)
= (1 —pf +pier2) =2
= (1—p} +pap})’ 2

Taking the product gives

E[(1 — p2) 5| E[p5m]
=1 —pi+ 1 —p2)p)VIT (1~ p? + pap?) 2.
n

Replacing (1—p2) and py with max {p2, (1 — p2)} in the r.h.s., we get the weaker but simpler
bound:

Corollary 13 Let Z be chosen randomly from 2Vii as follows: for every v € Vij, we
include v € Z with i.3.d. probability 0 < pa < 1. Then, P(v; Fz ¢ vj|lv; —v; ¢ E) is upper
bounded by (1 — (1 — max {ps, (1 — p2)})pP)IVI=2.

Since 0 < p2 < 1,0 < 1 —max{ps, (1 —p2)} <1, and since 0 < p; < 1,0 < 1—(1—
max {pa, (1 — p2)})p? < 1. Thus, for fixed p; and po, the bound in Corollary 13 decays
exponentially fast to 0 as |V| — oo, and therefore so does the bound in Theorem 12—as it
is tighter. Therefore, the probability that a random Z d-separates v; and v; quickly becomes
very low as |V| — oo. In fact, the decay to 0 is guaranteed not just for fixed p;, but rather
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as long as p1 = Q(4/ 10|§7VI|V|) (although, of course, the decay will no longer necessarily be

exponential).!
Our second bound considers all conditioning sets up to a certain size. .S in this proof
includes all length 2 noncollider paths between v; and v;.

Theorem 14 Let Z051(=2) C 2Vii be the collection of all subsets of size up to at most
0.5p2(j — 2). Then, we can upper bound P(3Z € ZO%10-2) st v; bzq vjlv; —vj ¢ E) by

_0.25p%(j—2)
(&} 2

Proof To get pseudoseparation, it is necessary to block all paths from @), that exist in the
graph, which means include all of their middle nodes in Z. By Lemma 11, the minimum set
size needed to do so is at least a binomial random variable B,,. with parameters p% and j—2.
Hence every subset Z C Vj j s.t. |Z]| < By is not d-separating. Using the Chernoff bound

0.25p2 (j—2)
for a binomial random variable, we get the bound P(B,. < 0.5p?(j — 2)) < e~ =N
However, in the event that B,,. > 0.5p7(j—2), no conditioning set of size at most 0.5p3(j —2)
is d-separating. |

For any fixed 0 < p; < 1,0 <7 < 1, for all j > |V, 0.5p2(j — 2) > 0.5p3(y|V| — 2) = oo
) 70.25p%(j72) 70-2517%(7\V\*2> .
(linearly fast) and e~ 2 — < e 2 — 0 (exponentially fast) as |[V| — oc.

It follows that as |V| grows, for an arbitrarily large fraction of node pairs, the minimum
d-separating set size is likely to increase linearly with |V

Our third bound chooses the conditioning set uniformly at random among all sets of a
fixed size. We do not use it in Section 4, but it contributes to our understanding of the
search space for d-separation. In the proof (relegated to the appendix), our choice of S is
actually done in reverse: we fix the conditioning set, and consider S to be the set of all
length 2 paths which would cause the conditioning set to fail pseudoblocking.

Theorem 15 Let a € {0,1,2,...,|V| —2}. Let Z be chosen uniformly at random among
all subsets of size o of V; j. Then, the probability P(v; bz ¢ vj|lvi —v; ¢ E) is upper bounded
by (1= pi2 - pH) i)V (1 = pfy o2,

4. Analysis of Constraint-Based Methods

In this section, we discuss the implications of the bounds from Section 3 on the performance
of constraint-based methods. We begin by proving that extremely sparse graphs are rare.
After that, we define precision and introduce the PC and UniformSGS Algorithms. We
then analyze the average-case performance of constraint-based methods on large and non
extremely sparse graphs. We first show that constraint-based methods provide low precision
when restricted to small conditioning sets (which they usually are in practice). We also show
that even without that restriction, the PC algorithm must suffer from either low precision
or an exponential number of oracle calls. Finally we analyze UniformSGS, showing it makes
an exponential number of oracle calls even when the considered node pair is d-separable.

1. If p1 = Q(,/lolg%), then for large enough |V| we get that (1 — (1 — max {p2, (1 — p2)pH)IVI72 <

(1- clo‘givl‘v‘)‘v‘*2 for some constant ¢ > 0, and by LHospital’s rule this expression goes to 0 as |V| — cc.
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4.1. Extreme Sparsity

In some fields, sparsity is considered to be an unrealistic assumption (Petersen et al., 2023).
In this subsection, we show a theoretical sense in which sparsity restricts us to a very
small family of graphs. For simplicity of presentation, assume throughout Section 4 that
p1 is a weakly monotonic function of |V|. We show that the extremely sparse case where
lim|y/| o0 p1 = O is rare in a well-defined sense. Let G? be the set of graphs in G* with density
at most d. Denoting the density of G as d; (d; is a random variable with E[d;] = p1), we
show that the expected ratio E['%il"] — 0 as |V| — oo. We provide a deterministic lemma,
and convert it into a probabilistic theorem.

Lemma 16 If limy|_yoc d = 0. then limyy o |5 = 0.

Theorem 17 Let dy be the density of G. If limjy |0 p1 = 0, then limjy | E[w] =0.

[
d
Note that for any o > 0, this implies lim)y| 0 P(% >a)=0.

4.2. Precision and the Algorithms Considered

Before we discuss the performance of algorithms, we need to define precision. For any
causal discovery algorithm, we denote the algorithm’s prediction for E as E,..q. Since the
d-separation oracle is never wrong, E C E,..q for any constraint-based method, as the
algorithm would only remove an edge when it finds a d-separating set. Therefore, the only
relevant type of mistake is predicting v; —v; € Epreq while v; —v; ¢ E, which happens when
the algorithm fails to find a d-separating set despite the fact that one exists.

Definition 18 Let E,..q € V x V be the output of some causal discovery algorithm A
when the underlying causal graph is G. For any v;,v; € V, we define the precision of A on
v, 05 as P(v; — vj & Epreqlvi —v; ¢ E).

Next, we define UniformSGS and PC (Spirtes et al., 1989; Spirtes and Glymour, 1991):
see Algorithms 1 and 2. We focus on the skeleton (undirected graph) recovery portion of
the algorithms, and ignore their edge orientation phase. Note that in Algorithm 2, we did
not specify the order of the selected sets in the for loop.

4.3. Performance

For the remainder of this section, we assume that limy/|_,c p1 # 0: as we showed in Section
4.1, this rules out only a vanishingly small portion of all possible graphs. Due to mono-
tonicity, this implies that p; is bounded from below by some positive constant. In practice,
constraint based methods must replace the d-separation oracle with a statistical conditional
independence test. Most of the tests used in practice are only accurate for small condition-
ing sets (Runge et al., 2019; Li and Fan, 2020), and thus most constraint-based methods
restrict themselves to small conditioning sets in practice. However, a direct application of
Theorem 14 shows that for a constraint-based method to achieve high precision, the size of
the conditioning sets considered must increase linearly with |V|, which for large graphs leads
to much larger conditioning sets than what’s considered feasible by most statistical tests.
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Algorithm 1: The UniformSGS Algorithm
Input: V, the variables
Output: E,,..q4, the predicted edges

1 Epred%{w_y:xaye‘/vx%y}

2 for z,y € V do

3 for Z C V\{z,y} chosen uniformly at random without replacement do
4 if v -z ¢y then

5 Remove x — y from E,;.cq

6 Break

7 end

8 end

9 end

10 return E,.q

Algorithm 2: The PC Algorithm
Input: V| the variables, and Ciax, the maximum conditioning set size considered
Output: E,,..q4, the predicted edges

1 Epredk{w_y:xaye‘/vx#y}

2 Yw € V, Adj(w) < V\{w}

3 for z,y € V do

4 for 7 € 24di@)\{y} |y oAdi(y)\{z} ¢ ¢ |Z| < Ciax do
5 if z l_Z,G Y then
6 Remove x — y from E,;.cq
7 Adj(z) + Adj(z)\{y}
s Adj(y) « Adj(y)\{z}
9 Break
10 end
11 end
12 end

13 return E,..q

Note that since d§; in Corollary 19 below is arbitrary, the bound applies to any arbitrary
fraction of all variable pairs.

Corollary 19 Let 0 < §; < 1. Let A be a constraint-based method which only calls the
oracle with conditioning sets of size less than 0.5p3(81|V| — 2). Then, for every node pair
vi,vj € V where i < j and §j > 61|V, we get that P(v; —v; & Eppealvi —v; ¢ E) = O(e™IV1).

Even when we ignore statistical considerations and allow testing conditioning sets of
arbitrary size, our results spell trouble for constraint-based methods. For the PC Algorithm,
Corollary 19 already shows that Cj,., must grow linearly with |V| for good precision.
However, this doesn’t rule out the possibility of a sweet spot: a value of Chyax large enough
to avoid Corollary 19 yet small enough to enable polynomial running time. Alas, Theorem
20 and its Corollary 21 rule out such a sweet spot. Note that PC restricts the search space
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to 244 @)\ y2Ad(W\=} jngtead of 2V \M=¥}: this does not impact our analysis in part (i) of
Theorem 20, but we do need to take it into consideration when we prove part (ii). Theorem
20 continues to hold even if PC searches in 2V \#¥} instead of 244 @\ {y} 244 (y)\{=}

Theorem 20 Let 0 < 1 < 1,0 < dg < 1. In the PC Algorithm:

i) Assume Cmax < 0.5p2(61|V| = 2). For every vi,v; € V where i < j and j > 61|V|, we
1 j
get P(v; —vj & Eppeglvi —vj ¢ E) = O(e~ V.

(it) Assume Crmax > 0.5p1(02|V| — 2). For every vi,v; € V, if v; —v; € E then with
probability 1 — O(e~ V1), PC makes ©(elV1) oracle calls for x = v;, y = v;.

Corollary 21 formalizes our claim that for large |V|, PC has low precision (Theorem
20(i)) or exponential running time (Theorem 20(ii)). In Corollary 21, note that since we
can choose 1 as small as we like to begin with, we can make sure that when we end up in
case (i), it holds for an arbitrarily large fraction of the pairs.

Corollary 21 Let 0 < 1 < 1. In the PC Algorithm, for every vi,v; € V where i < j and
j > 61|V, either P(v; — v; & Eppealvi —v; ¢ E) = O(e™ V1), or the PC Algorithm makes
O(elV1) oracle calls with probability 1 — O(e™ V1) for x = v;, y = v; when v; —v; € E.

Finally, we analyze UniformSGS. Since there is no size limit on the conditioning sets
considered, then whenever x = v;, y = v;, v; — v; € E, UniformSGS trivially requires an
exponential number of oracle calls, because it is called on every subset in 2¥4:i. Theorem 22
shows that for large |V, an exponential number of calls is needed even when v; —v; ¢ E.

Theorem 22 When testing whether v; —v; € E, let C be the number of oracle calls made
by UniformSGS. Let o =1+ L

RN

(i) ElCloi —v; ¢ B] > L(32)V1-2 ~ 1),

(ii) E[C] > p12V172 + (1 — p1) L((52)VI72 —1).

2—p%

5. Conclusion

In this paper, we considered a random DAG model G = (V, E), where each undirected edge
is generated i.i.d. with a fixed probability. We have shown that on this model, even when
d-separation is guaranteed to exist, only very few conditioning sets are d-separating. We
have shown that as |V| — oo, unless the graph is extremely sparse, a randomly chosen
conditioning set is highly unlikely to be d-separating, under different randomization scenar-
ios. Specifically, the probability of d-separation decays exponentially to 0 as the |V| — oo
when the conditioning set includes each node with any fixed i.i.d. probability, or when it is
limited to fixed size, or even when we try all conditioning sets of size up to a certain linear
fraction of the nodes. We showed that extremely sparse graphs represent a vanishingly small
portion of all possible graphs. We used our bounds to show that in the average case, the PC
and UniformSGS Algorithms, as well as any constraint-based method restricted to small
conditioning sets, are likely to have poor performance on large and non extremely sparse
graphs. Our results indicate that any constraint-based method meant for causal discovery
in large graphs must search for d-separating conditioning sets in a non-trivial manner, and
must include large conditioning sets in the search.
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Appendix A. Experiments

Our first experiment (Figure 3) demonstrates Theorem 14 and its implications for any
constraint-based algorithm which limits the conditioning set size (Corollary 19), including
the PC Algorithm (Theorem 20 and Corollary 21). In our experiment, given a random
DAG with |V| nodes and expected density p; € {0.05,0.1}, we sample uniformly at random
30 d-separable variable pairs without replacement from all d-separable pairs, and test each
pair for d-separation using all conditioning sets of size up to Cpax € {2,3}. We define the
empirical precision to be the percentage of pairs (among the 30) for which a d-separating
conditioning set is found. Our results are shown in Figure 3, and indeed already for |V/|
in the low hundreds, most d-separable pairs do not have d-separating conditioning sets of
size up to Cpax. An equivalent interpretation of our results is as an upper bound on the
empirical precision of any constraint-based method limited to conditioning sets of size at
most Chax. Indeed, consider an idealized such constraint-based method, which always finds
a d-separating set of size at most Ciax if one exists. The idealized algorithm is free from any
issues involving conditional independence test quality, data sample size, or any particular
functional form of the structural equation model. Our experiment shows that even this
idealized algorithm performs poorly on our test graphs.
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Figure 3: Experiment for Theorem 14.
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Our second experiment (Figure 4) demonstrates Theorem 12. Given a random DAG
with |V| nodes and expected density p; € {0.05,0.1}, we sample uniformly at random 100
d-separable variable pairs without replacement from all d-separable pairs. For each pair, we
sample 1000 conditioning sets, including each variable (except the pair) in the conditioning
set with i.i.d. probability po € {0.1,0.5,0.9}, and calculate the ratio of the number of
d-separating sets over all 1000. We then calculate the maximum ratio over all 100 pairs.
Consistently with Theorem 12, d-separation becomes rare fast as |V| — oc.
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(a) Results for p; = 0.05. (b) Fine-grained results for p; = 0.05.
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(¢) Results for p; = 0.1. (d) Fine-grained results for p; = 0.1.

Figure 4: Experiment for Theorem 12. Figures 4(b) and 4(d) describe the same scenarios
as Figures 4(a) and 4(c) respectively, but more fine-grained on the range 100 < |V| < 300.

Appendix B. Proofs

In this appendix, we include the proofs omitted from the main paper.
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Corollary 23 Let Z be chosen randomly from 2Vii as follows: for every v € Vi,j, we include
v € Z with i.i.d. probability 0 < ps < 1. Then, P(v; Fz ¢ vjlv; —v; ¢ E) is upper bounded
by (1 — (1 — max {ps, (1 — p2) })p}) V172,

Proof Immediate from Theorem 12, since by replacing ps and (1 — p2) with their upper
bound max {p2, (1 — p2)}, we get:

1—p}+ (1 —p2)p)VI7 (1 — p? + pop})’ 2
} 2)|V\*j+j*2

(
< )}p1
o)V
)

1 —p% + max {p2, (1 — py

1 —p% + max {p2, (1 — p2
1— (1 — max {p2, (1 — p2)})pd) V12

(
(
(
(

Theorem 15 Let a € {0,1,2,...,|V| —2}. Let Z be chosen uniformly at random among
all subsets of size a of V; j. Then, the probability P(v; bz g vjlvi —v; ¢ E) is upper bounded
by (1= pt(2 =) i)V (L = pi)y o2

Proof Let 26‘:"’]' be the set of all subsets of V;; of size exactly a. Let z € 25“- Let
Mne(2) = |Vae\2z| be the number of nodes from V,,. outside of z, and m.(z) = |z N V| be
the number of nodes from V, inside z. my,.(2) is the number of paths in @, which, if exist,
violate pseudoseparation; similarly, m.(z) is the number of paths in Q. that, if exist, violate
pseudoseparation. Pseudoblocking holds iff all paths counted by m(z) = m¢(z) +muc(z) do
not exist, and by Lemma 7 each of them fails to exist with probability 1 — p% independently
of the others and of whether v; —v; € E. Thus:

P(vi Fg vilvi — v; ¢ B) = (1—p})™,
Then, using the fact that Z is independent from whether or not v; — v; € E, we get:

P(UZ‘ FZS’G Uj|Ui — ’Uj §é E)

= Z P(Ui F?G vj|vi — Uy ¢ E, Z = Z)P(Z = Z)
z€2Xi‘j

= > (1=-p)"IP(Z =2)

V. .
2€245"7
=E[(1 — p)"¥)]
Let M, = m.(Z), Mye = mpe(Z). M. determines M,,, as exactly a — M, slots in Z

are given to nodes from V., so the remaining |V,.| — (« — M,.) = j — 2 — (a« — M,) =
M.+ (7 — o — 2) nodes from V,,. end up outside of Z: M, = M.+ (j — a — 2). Therefore,
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m(Z) = M.+ My =2M. + (j — a — 2). Thus, we get:

P(vi Hy g vilvi —v; ¢ E)
—-F (1 )2M ct+(j—a— 2)]
=E[((1 - p1)*)" ]E[(1 - pi) 77
(

(
EI(0 =P =ty
E eln(

(vi
[
E[
[
[

Since Z is chosen uniformly at random from QXf’j, M. can be thought of as drawing « nodes
from the population V; ; of nodes, where V, of the nodes are defined as “success” states (as
in, every node from V. that we draw increases the value of M, by one). This means that M,
is a hypergeometric random variable with population size N = |V| -2, K = |V.| = |V| —j
success states, and number of draws d = a. Thus, ]E[eln((lfpﬁ)z)MC] can be derived from
the moment generating function of the hypergeometric distribution. It is known that the
moment generating function of the hypergeometric distribution with parameters N, K and
d is upper bounded by the moment generating function of the binomial random variable
with parameters % and K (Hoeffding, 1963). Applying this result, we get:

Bl (DM (1 — pfyime?
d d ;
(=) + A=p)P - pty e
(07
=((1- W) +(1—-pi)?

=(1- P1(2 101)|V|72

WIZI(1 = ppyie?

VI-2
W (1= piyime?

Therefore we have established:
P(vi 2,6 vj|lvi —v; ¢ E)
<P(v; g vjlvi —v; ¢ E)

<(1-pi2-pi)

V=i (] _ p2)i—a—2

Lemma 24 If limjy oo d = 0, then limy| o 122 = 0.

Proof Assume lim|y |, d = 0. Consider [V| large enough so that d < 0.5, and for conve-

nience assume é divides (“2/'). The total number of graphs in G* is
A=20%),

V]
For any n, the number of graphs with exactly n edges is (( 2 )) Graphs in G* with density
at most d have at most d ('g') edges; the number of such graphs is therefore

=3 ()

n=0
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We claim that B < WA (it’s actually true that B < dA, but we don’t need it); if
a2

we can show this, then the ratio of graphs with density at most d to all graphs is

< 1-2d— (Y1) _ d

A 1-2d4— (Y)~

N Ry

which goes to 0 as |V| — oo, so that will prove our claim.

Why does B < WA Note that by definition, A = 3°02) ((4)). Therefore,

first d(] £ A, (=501 (1) n C i
B is the first d( ) terms o Let C = Z _a(V) 41 ( 2 ) Every term in C' is larger
than every term in B (binomial coefficients are larger the closer they are to the midpoint),
and the number of terms in C'is (1 — 2d) ('g') — 1, while the number of terms in B is d(‘g‘).

It follows that £ < 2 « — 4 ]
OlIOWS a A C 1—2d—(“2/‘) T

Theorem 17 Let dy be the density of G. If limy oo p1 = 0, then limy| o E [‘gj"} =0.

Note that for any a > 0, this implies limy|_, (ﬁ a) =0.

Proof Assume limy|_,o p1 = 0. Condition on d; < /p1 to get

G|
G4
By < VARIEG < V7D
dq
Bl = R = v

We bound the first term using P(d; < /p1) <1

G|

E[ ‘G*’ |d1 < \/pT]P(dl < \/171)
Gh
<El el < V7
|GVPL|
e
Then, we bound the second term via the fact that I‘%*" < 1 for all possible values of d;:
|G™]
E[ T [di > /p1]P(d1 > \/P1)
<P(dy > /p1).
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Using Markov’s inequality and the fact that E[d;] = p1, we get that

Eld]
N

P(di > /p1) < =/p1-

Combining the bounds, we get E[HGG:‘] < |C|TVC\_;/;| + /p1- As p1 — 0, |G‘C\;/:|| — 0 by Lemma
16. Since lim|y|_,o, p1 = 0, this compietes the proof. |

Corollary 25 Let 0 < 61 < 1. Let A be a constraint-based method which only calls the
oracle with conditioning sets of size less than 0.5p3(61|V| — 2). Then, for every node pair
vi, v € V where i < j and §j > 61|V, we get that P(v; —v; & Eppealvi —vj ¢ E) = O(e™IV1).

Proof Follows from Theorem 14 and the fact that for v; — v; € Eppeq it is necessary that
there exists a d-separating subset in {Z € 2% : |Z| < Chiax }, where Ciax is the maximum
size of conditioning set considered by the algorithm. |

Theorem 20 Let 0 < d1 < 1,0 < do < 1. In the PC Algorithm.:

(i) Assume Crax < 0.5p3(61|V| —2). For every v;,v; € V where i < j and j > §;|V|, we
get P(v; — vj & Eppealvi —v; ¢ E) = O(e” V).

(it) Assume Crmax > 0.5p1(02|V| — 2). For every vj,v; € V, if v; —v; € E then with
probability 1 — O(e~ V), PC makes ©(elV) oracle calls for x = v;, y = v;.

Proof Part (i) follows from Theorem 14 and the fact that for v; —v; € Ep.cq it is necessary
that there exists a d-separating subset in {Z € 2V : |Z| < Cpax}. For part (ii), consider
v; —v; € E. Edges from E never get deleted, so at all times £ C Ej;.q. Defining S; =
Adj(v;)\{vi}, |S;] is therefore always bounded from below by the number of edges in F
adjacent to v; except v; —v;, which is a binomial random variable with parameters p; and
|V| — 2. Using the Chernoff bound, we get that

0.25p1 (|V|-2)

P(1Sj] < 05p1([V]=2) <e 2z =0( V).
Therefore, with probability 1 — O(e*|V|)7
|95 > 0.5p1(|V| = 2) > 0.5p1 (02| V] - 2),

and since also Ciax > 0.5p1(02|V| — 2), there are at least 20P1(%21VI=2) — @(elV]) subsets
in the search space (we can use © instead of Q because there are at most 2/V1=2 = O(elV1)
subsets). Since v; —v; € E, there is no d-separating set, so the oracle will be called on every
subset in the search space. |

Corollary 26 Let 0 < 61 < 1. In the PC Algorithm, for every v;,v; € V where i < j and
j > 61|V, either P(v; — v; & Eppealvi —v; ¢ E) = O(e™ V1), or the PC Algorithm makes
O(elV1) oracle calls with probability 1 — O(e” V1) for x = v;, y = v; when v; —v; € E.
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Proof Note that no matter how small we choose é; > 0 in Theorem 20, we can always
choose d3 > 0 s.t. (p161 —62)|V| > 2p1 — 2, or equivalently p;(61|V|—2) > 62|V | —2. When
we do s0, 0.5p2(01|V| — 2) > 0.5p;1 (62| V| — 2), and so we are necessarily in either case (i) or
(ii) of the theorem. This is the formalization of our claim that for large |V|, PC has low
precision (case (i)) or exponential running time (case (ii)). |

Theorem 22 When testing whether v; —v; € E, let C be the number of oracle calls made

by UniformSGS. Let o =1+ W-

(i) E[Clv; — v ¢ E] > 2((5;2)V172 - 1),

2—p1

Proof First, assume v; — v; ¢ F. Let K = [{z € 2"Vt v, qu;}| (the number of
subsets that are not d-separating in G). Let G} ; = {g = (V, E,) € G : v; —v; ¢ E,}, and
for each g € Gj, let kg be the value of K when G = g. Conditional on K = kg, C'is a
negative hypergeometric random variable with population size N = 2VI=2 (all subsets), kg
success states, and failure number » = 1. The expectation of such a negative hypergeometric

. . kg
random variable is Nk ¥l Therefore, we get

E[Clv; —vj & E]

=E[C|G € G;j]

= > E[C|G =gP(G =g|G € G}))
gEG;j

kg *
gEGz’."j

- E[K|G € G} ]
“N-E[K|GeG,]+1
__ E[KJvi—v; ¢ ]

N —-E[K|v;—vj ¢ E] +1’

where the inequality follows from Jensen’s inequality.

Suppose Z is chosen as in Theorem 12 with po = 0.5, meaning uniformly at random
over 2VMvivit Because Z is chosen uniformly, P(vif4zqv;|G = g) is simply Q‘I‘fﬁ, and so
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ky = 2VI72P(v/ 7 v;|G = g). Now we can compute:
E[K|v; —vj ¢ E]

=E[K|G € G} ]
= ) kPG =g|G € Gi;)
gEG;j
=Y 2VIPP(u g av41G = g)P(G = g|G € GF)
geG;*’j
_olV|-2 Z P(viFz,av;lG = 9)P(G = ¢|G € Gy )
gEG;j

:2|V|_2P(UZ'J7[Z7ij|G € G;-k’j)
:2|V|_2P(UZ'J7ZZ7g’Uj|’Ui — vj ¢ E)
Applying Theorem 12, we get P(vFzgvjlvi—vj ¢ E) >1—(1— 0.5p7)IV1=2, and therefore
we get:
E[K|v; —v; ¢ E] > 21721 — (1 - 0.5p3)IVI=2)
=212 2 - )12,
and thus, bringing everything together:
E[Clvi —v; ¢ E]
E[Kvi —v; ¢ F]
_N—E[K|vi—v]~ Qé E]+1
_ E[K|vi —v; ¢ E]
2VIm2 —E[K|v; —v; ¢ E]+ 1
AVI=2 — (9 — p)IVI-2
T2-p)VIT 1
V12 — (2 pR)IVI-?
- B (2_p2)|V\—2
2=p)V72 + =
2VI=2 — (3 — p})lVI-2
(1+ W)@ —pp)lVI=2
a2 g ppvI-2
a2 —pp)lVi=2
1 2
= ()M - 1),
a2 —p7
We get the unconditional bound in (ii) with the following calculation:
E[C]
=E[Clvi —v; ¢ EP(vi —v; ¢ E)
+ E[C‘Uz — V5 € E]P(Ui — v € E)
:E[C”UZ‘ — v §é E](l — pl) + 2|V|72p1
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Appendix C. Unconditional Bounds
Theorems 12 and 14 yield slightly improved bounds when we do not condition on v;—v; ¢ E.

These bounds are given in corollaries 27 and 28 below.

Corollary 27 Let Z be chosen randomly from 2Vii as follows: for every v € Vi, we
include v € Z with i.i.d. probability 0 < po < 1. Then, P(v; Fz.g v;) is upper bounded by
(1= p1)(1 = pf + (1= p2)pD)VI7 (1 = p? + pap?) 2.

Proof Recall from Theorem 6 that v; and v; are d-separable in G iff v; —v; ¢ E, so
P(v; Fz,¢ vj|lvi —v; € E) = 0. Therefore, we get:
P(v; k7,6 vj)
:]P)(Ui l_Z,G Uj|1}i — vy ¢ E)(l — pl) +0-p;
:]P)(’UZ l_Z,G Uj|Ui — Uj ¢ E)(l — pl)-

Applying the bound from Theorem 12 completes the proof. |

Corollary 28 Let Z0501(=2) C 2Vii be the collection of all subsets of size up to at
most 0.5p2(j — 2). Then, P(3Z € 2012 54 o, Fza vj) is upper bounded by (1 —

0.25p7 (j—2)
pr)e” 2

Proof Similar to Corollary 27. |
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