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Abstract

Probabilistic Circuits (PCs) are prominent tractable probabilistic models, allowing for a
wide range of exact inferences. This paper focuses on the main algorithm for training PCs,
LearnSPN, a gold standard due to its efficiency, performance, and ease of use, in particular
for tabular data. We show that LearnSPN is a greedy likelihood maximizer under mild
assumptions. While inferences in PCs may use the entire circuit structure for processing
queries, LearnSPN applies a hard method for learning them, propagating at each sum node
a data point through one and only one of the children/edges as in a hard clustering process.
We propose a new learning procedure named SoftLearn, that induces a PC using a soft
clustering process. We investigate the effect of this learning-inference compatibility in PCs.
Our experiments show that SoftLearn outperforms LearnSPN in many situations, yielding
better likelihoods and arguably better samples. We also analyze comparable tractable
models to highlight the differences between soft/hard learning and model querying.

Keywords: Probabilistic circuits; Probabilistic inference; Probabilistic graphical models.

1. Introduction

Generative probabilistic models typically aim to learn the joint probability distribution of
data, to perform probabilistic inference and answer queries of interest. However, not all
the probabilistic models are the same in that regard. Models like variational autoencoders
(VAEs) (Kingma and Welling, 2013) and generative adversarial networks (GANs) (Goodfel-
low et al., 2020) possess exceptional modeling prowess; nevertheless, their ability to perform
probabilistic inference such as marginalization and conditioning is rather limited, mainly
due to computational (tractability) reasons.

In contrast, tractable probabilistic models, such as probabilistic circuits (PCs), which
include sum-product networks (SPNs) (Poon and Domingos, 2011; Sánchez-Cauce et al.,
2021), allow for a wider range of exact inferences, arguably at the expense of some fitness
power. PCs are a type of Probabilistic Graphical Models (PGMs), a class of models using a
graph-based representation to encode high-dimensional distributions (Koller and Friedman,
2009). Unlike Bayesian networks, which have a notoriously high complexity for general
queries (De Campos, 2011; De Campos and Cozman, 2005), PCs can produce several types
of inferences in polynomial time under arguably mild assumptions (Vergari et al., 2021).

While intractable models such as VAE and GANs rely on deep neural networks as their
structure, their PGM counterparts find graph structures that fit the data well. Moreover,
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PCs need to reach structures that facilitate exact inferences, which leads to a constrained
structure learning problem, which has become an active line of research for many years.
Many algorithms have been devised to learn PCs from data, among which LearnSPN (Gens
and Domingos, 2013) is considered a gold standard for its efficiency, performance, and ease
of use. In addition to being the most widely known (and used) procedure for learning
PCs—if not the best performing one in general, LearnSPN is also the building block of
many subsequent algorithms (Lee et al., 2013; Molina et al., 2018; Vergari et al., 2015).

In a nutshell, LearnSPN follows a greedy search approach. The data is recursively
partitioned into smaller chunks: the structure of the network is defined recursively, either by
grouping variables (giving birth to product nodes) or clustering instances (resulting in sum
nodes). We claim that this greedy learning approach may result in inappropriate clusters
and lead to partitioning marginals rigidly at sub-optimal locations, which can potentially
lead to overfitting and poor generalization.

In this paper, we propose the SoftLearn procedure as a counterpart to LearnSPN, with
the aim to mitigate such potential drawbacks. SoftLearn is a soft learning scheme akin to
LearnSPN which may provide smoother marginals between data clusters so as to reduce
the errors induced by misgrouped instances, and therefore lead to better likelihoods and
arguably better samples. We compare SoftLearn with LearnSPN over a range of datasets
and configurations, and show that SoftLearn manages to outperform LearnSPN in most
cases, which empirically validates our claims regarding the potential improvements made
by our soft learning scheme. We also draw comparisons with Cutset Networks (Di Mauro
et al., 2017), another prominent tractable probabilistic model with similar goals.

2. Related Work

Arguably, the most common practical approach to learn the structure of PCs is to re-
cursively partition the data matrix over the instances (forming sum nodes) and variables
(forming product nodes) in a top-down fashion (Gens and Domingos, 2013; Molina et al.,
2018). Adel et al. (2015) proposed to cluster the joint space of instances and variables, in-
stead of alternating between instance and variable clustering. Conversely, another category
of approaches consists in learning the structure in a bottom-up fashion by incrementally
aggregating correlated variables (Hsu et al., 2017; Kalra et al., 2018).

In another line of work, several attempts have been made to learn the structure of PCs
in a more principled way, based on non-parametric formulations (Trapp et al., 2016) and/or
via Bayesian structure learning (Trapp et al., 2019; Vergari et al., 2019). The Merged-L-
SPN (Rahman and Gogate, 2016) algorithm proposes to merge subtrees in a post-processing
approach to reduce computation complexity and improve the generalization of LearnSPN.
There have also been a variety of approaches aimed at learning other structures of tractable
probabilistic models, such as probabilistic sentential decision diagrams (PSDDs) (Liang
et al., 2017) and Cutset networks (Di Mauro et al., 2017; Rahman et al., 2019).

3. Probabilistic Circuits

In this paper, we use the terms “SPNs” and “PCs” interchangeably. SPNs use circuits
with three types of nodes: sum nodes can be interpreted as latent variables; product nodes
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encode context-specific independence; and leaves encode (tractable) univariate probability
distributions (Peharz et al., 2017). Structurally, an SPN is a rooted directed acyclic graph
(RDAG). A directed graph is defined by a finite set N of nodes and a set E ⊆ N × N
of ordered node pairs, called edges. For example, if N,C ∈ N and (N,C) ∈ E , then we
have a directed edge between N and C, written as N → C. A directed acyclic graph
does not contain any directed cycle (i.e., a path of directed edges from any node to itself,
non-directed cycles being allowed). We denote the root of the graph (i.e., a node without
incoming edge) by R. We assume nodes can only belong to a single graph; thus, N and E
can be left implicit in the notation.

Any node N can be associated with important subsets:

• children chN := {C ∈ N : N → C} are those nodes to which there is a directed edge
from N ,

• descendants deN := chN ∪
⋃

C∈chN deC can be accessed by a sequence of directed
edges from N ,

• leaves lvN := {D ∈ deN : chD = ∅} are descendants of N that do not have children
themselves.

Each nodeN of an RDAG determines a sub-RDAGN↓ rooted inN with nodes {N}∪deN—
the whole RDAG can be written as R↓. Given a non-leaf node N of an RDAG, two of its
children C1, C2 ∈ chN are said to be either overlapping if and only if lvC1 ∩ lvC2 ̸= ∅, or
disjoint if and only if lvC1 ∩ lvC2 = ∅.

Let X be a finite collection of random variables; X ∈ X denotes that a random variable
X belongs to X (collections of random variables and their realizations are in boldface, as
opposed to single random variables and their realizations). Here, valX stands for the set of
possible realizations x of X, and valX for the set of possible realizations x for the variables
in X , i.e., valX =×X∈X valX. Let Y ⊆ X be a subcollection of the variables in X .
Joint realizations x ∈ valX or y ∈ valY can be projected onto a subspace. For example,
if Y ⊆ X , then x |Y ∈ valY ; we use the same notation y |X ∈ valX to project y onto a
variable X ∈ Y .

A SPN encodes a probabilistic model over a collection of variables X (Peharz et al.,
2015; Poon and Domingos, 2011; Sánchez-Cauce et al., 2021). It consists of an RDAG
with structural constraints, and composed of three distinct types of nodes: sum nodes,
associated with (numerical) parameters w ; product nodes, and distribution nodes: these
latter describe simple distributions at the leaves, which can be recursively combined using
sums and products, so that the root encodes a complex distribution.

Every node N in a SPN is associated with a collection of random variables, called its
scope, over which it defines a probability distribution: e.g., XN stands for the scope of N .
The scope of a non-leaf node N is the union of its child scopes: XN =

⋃
C∈chN XC . The

root scope is XR = X (we assume every random variable to be in the scope of at least one
leaf). We will write the projection of a node scope using the node symbol: x |N := x |XN

.
A sum node S in the SPN is associated with a function wS on chS that returns edge

weights wS→C := wS(C) for any C ∈ chS: thus, wS is the weight vector associated
with S. We assume the weights to be normalized and non-negative: for all C ∈ chS,∑

C∈chS wS→C = 1 and wS→C ≥ 0. The numerical parameters w of the entire SPN can
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simply be seen as the map w : S 7→ wS that identifies this vector for any sum node in
the SPN. The value S(f) of any sum node S is recursively obtained from the values of its
children: S(f) :=

∑
C∈chS wS→CC(f). A product node P in the SPN is associated with a

value P(f), also recursively computed using the values of its children: P(f) :=
∏

C∈chP C(f).
Finally, any leaf in the RDAG is a distribution node D in the SPN. Distribution nodes define
a probability distribution over their scopeXD. We assume the scopeXD of any leaf nodeD
to consist of a single random variable, and thus leaf nodes to encode univariate distributions.

Assume we wish to calculate the expectation R(f) := ER↓,w (f) of a function f according
to the distribution encoded by the SPN with root R and weights w . Let f be a product
of indicators over variables in X (this allows for a range of probabilistic queries, including
conditionals and marginals). Let ED denote the expectation operator with respect to the
distribution in any leaf node D. The expectation R(f) can be computed by propagating the
expected values D(f) := ED(fD) in the leaves to the root node, thereby associating each
node N with an expected value N(f). Distribution nodes, being always the leaves in the
RDAG, are the terminal points of the recursive definition of the node values. We assume in
the sequel that we can efficiently evaluate the expectations in the leaves, which opens the
way to efficiently computing the expectation R(f).

SPNs typically use additional assumptions to ensure the probabilistic model is proper
(Peharz et al., 2015). For any sum (S) and any product (P ) node in the SPN, it holds that

A1: XC1 = XC2 for all C1, C2 ∈ chS; (smoothness)

A2: XC1 ∩XC2 = ∅ for all C1, C2 ∈ chP . (decomposability)

Any SPN that meets both requirements is said to be valid.

4. Learning PCs

We first detail LearnSPN (Gens and Domingos, 2013) and point out a potential drawback;
then, we introduce our method SoftLearn, explaining how it differs from LearnSPN, and
illustrating how it might mitigate some issues.

LearnSPN employs a greedy search in the space of SPNs, and augments the network in
a top-down fashion accordingly. It initializes the network with a single node R representing
the entire dataset (with scope X ), and then proceeds by recursively partitioning the dataset
into smaller chunks based on instance/variable-wise groupings found in the data. For each
variable-wise grouping, a product node P is added to the network (representing a partition of
the variables into conditionally independent groups); and each time instances are clustered, a
sum node S is added to the network (representing a mixture of the corresponding instances).
This process is recursively applied until a stopping criterion is met, at which point each
group of data corresponds to a univariate distribution that can be modeled reliably in the
corresponding leaf of the network. Product nodes P are created by using independence tests
(pairwise tests will form a dependency graph, and variables in distinct components of the
graph become the scope of the children of P ), while sum nodes S are created by performing
hard clustering on the instances with the induced children having same scope as S.

The learning scheme of LearnSPN can seemingly be improved, as it appears not to
be consistent with how queries in PCs work. During inference, a PC may use the entire
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Algorithm 1 LearnSPN(D|N ,XN )

1: Input: set of instances D|N ⊆ valXN for a scope XN

2: Output: an SPN N↓ representing a distribution over XN learned from D|N
3: if |XN | = 1 then
4: N ← leaf univariate distribution node D estimated from the variable’s values in D|N
5: else
6: partition XN into approximately independent subsets XCj , that is, (XCj )j=1,...,J is

a partition of XN

7: if J > 1 then
8: N ←

⊗J
j=1 LearnSPN(D|Cj ,XCj )

9: else
10: partition D|N into subsets of similar instances Di|Ci , where Ci = N , with i =

1, . . . , I
11: if I > 1 then
12: N ←

⊕I
i=1

|Di|Ci
|

|D|N | LearnSPN(Di|Ci ,XCi)
13: else
14: N ←

⊗|XN |
j=1 LearnSPN(D|Xj , {Xj})

15: return N

structure to process a particular query, while the relevant information to that query is only
used to train some parts of the network structure, since at each sum node, a datapoint is
propagated through one and only one of the children/edges as in a hard clustering process.
Inherently, the response to a query will be mostly affected by the network parts trained on
the relevant information; thus, this incompatibility does not lead to an erroneous response
as long as the clustering in LearnSPN can well classify the queried datapoint. However, for
datapoints that lie near the cluster borders, the response can become considerably erroneous
in case of misgrouping by the clustering approach used in Line 10 of Algorithm 1. We will
further clarify our point with a two-dimensional example in Section 4.3.

Our proposal, SoftLearn, induces a PC using a soft clustering process, so as to alleviate
the costs of such misgrouping. Thus, after clustering, each datapoint is shared among the
children of the sum node proportionally to its cluster memberships; this way, each datapoint
will be propagated through the entire network, but with different weights indicating its
importance to a particular part of the network. In order to do so, during clustering, for a
set of K clusters {C1, C2, . . . , CK}, a set of K ‘datapoint’ weights are associated to each
datapoint, {v1, v2, . . . , vK} such that

∑
i vi = 1. Each instance in the dataset starts with a

datapoint weight equal to 1 (i.e. the very first call of Algorithm 2 will have V |N = [1, ..., 1]
as its weight input) and this is divided among the children of sum nodes as the algorithm
recursively performs clustering.

However, propagating the weights associated with data points throughout the network
and using them to learn a PC requires extensive adjustments to other parts of LearnSPN as
well, beyond simply re-engineering the procedures, since clustering methods used to induce
sum nodes, independence tests to induce product nodes, and distribution nodes at leafs
need all to be adapted to deal with weighted datapoints.
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We note that LearnSPN is a greedy maximizer of data likelihood, because each new
node in the recursive construction can only increase the likelihood with respect to the
alternative early stop of the procedure. This argument is detailed in Appendix D. A number
of implementations of LearnSPN have been proposed. We use the version implemented
by Correia et al. (2020) (see Algorithm 1) upon which we build our method, since such
implementation achieved state of the art results. We nevertheless provide the results of the
original implementation (Gens and Domingos, 2013) in our experiments in Section 5.

4.1. Univariate density estimation

Following Correia et al. (2020), we model the distribution over discrete or continuous vari-
ables using a multinomial or Gaussian distribution, respectively. These choices are not
limiting, since PCs under this formulation can fit any distribution so long as structure
learning is able to split the space properly and data are enough. In our case, each datapoint
propagated in the learning algorithm has an associated weight. We employ the weights in
our calculations as a measure of frequency. Take a univariate dataset D|D = {d1, d2, . . . , dm}
and a set of corresponding weights V = {v1, v2, . . . , vm} at a particular leaf D, with vi > 0
for all i (datapoints with zero weight are discarded). For discrete variables, we will have:

P̂ (XD = k) =
Vk∑m
j=1 Vj

, where Vj =
∑

i: di=j

vi. (1)

For continuous variables, we use a Gaussian N (µ̂, σ̂) obtained with the proper derivations
to achieve the reweighted estimation with Bessel’s correction (derivations are omitted for
ease of exposure): µ̂ = (

∑
i vidi)/(

∑
i vi),

σ̂ =

√√√√ ∑m
i=1 vi

(
∑m

i=1 vi)
2 −

∑m
i=1 v

2
i

m∑
i=1

vi(di − µ̂)2. (2)

4.2. Independence tests

For discrete variables, Correia et al. (2020) propose to use the chi-square test of indepen-
dence, and to add a product node if the variables can be split into independent subsets. In
brief, the chi-square test uses the difference between expected (under null hypothesis of in-
dependence) and observed “frequencies,” using contingency tables. To account for weighted
instances, we form weighted contingency tables and then proceed with the chi-square test
based on the weighted tables. The calculations are similar to what is done in Equation (1)
(we leave for the reader to fill in the simple gaps to perform this computation).

In the case of two continuous variables or of mixed variables, we first discretize the
continuous variables, and then apply the weighted chi-square test, while Correia et al.
(2020) use the Kruskal and Kendall’s tau tests. Adapting Kruskal and Kendall’s tau to
deal with weighted data and meaningful commensurable interpretation among tests seems
to be a challenge in itself. Our choice is motivated by the clear interpretation of partial
frequencies that now all tests have in common, regardless of the data type, so all tests are
commensurable. Their efficacy is not largely affected so long as enough data points are
available (which is the case, as we would want to stop expanding the model otherwise).
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4.3. Clustering

In addition to handling soft membership degrees so as to quantify the relevance of an
instance to a group, the clustering methods in our approach should also be able to admit
weighted datapoints as inputs. We investigate two options. The first one is an adjusted
version of the K-means clustering algorithm. In order to work with weighted data, we only
change the update rule of centroids to account for datapoint weights. Originally, assuming
a centroid O is associated with m datapoints {d1, d2, . . . , dm}, it would be updated as:
Oupd = (

∑
i di)/m. In our adjusted version where datapoints are associated with weights

{v1, . . . , vm}, the update rule is simply Onew =
∑

i vidi/
∑

i vi.
Additionally, we utilize a weight function v(d, {Oi}, i), that computes the weight vi of

each datapoint d in each group i based on the group centroid Oi. We define an arguably
natural reweighted function as:

vi := v(d, {Oi}, i) =
exp{β(1− ||d−Oi||F∑

i ||d−Oi||F
)}

∑
i exp{β(1−

||d−Oi||F∑
i ||d−Oi||F

)}
.

To put it in words, this reweighted function (i) computes the (Euclidian) distances of the
datapoint d to group centroids {Oi}∀i and normalizes them; (ii) computes an intermediate
relevancy degree 1 − ||d − Oi||F /

∑
i ||d − Oi||F to each group, which trivially gives more

(resp. less) value to groups that are closer to (resp. further away from) the datapoint; and
(iii) applies a softmax function to the relevancy degrees.

The second clustering method we investigate is based on estimating mixtures of distri-
butions using the Expectation-Maximization (EM) algorithm, under a conditional indepen-
dence assumption. Let the dataset be D|S over variables X |S . In order to perform EM
clustering, we assume the underlying distribution to be a mixture of c fully factorized dis-
tributions (c is the targeted number of children for S): P (X ) =

∑c
i=1 P (i)

∏
X∈X P (X|i).

In a nutshell, EM estimates the model parameters by iteratively alternating between an
expectation and a maximization step, until a stopping criterion is met. The expectation
step amounts to updating the (soft) memberships of the instances to the clusters, based
on the current distribution estimates; and the maximization step, to update the univariate
distributions P (X|i) and the group priors P (i) based on the new memberships. In order
to make EM work with weighted data, we only need to make two changes to the algo-
rithm: we modify the univariate distribution updates in the maximization step to include
the weights, as for univariate distribution estimation in Section 4.1, and we make the up-
dates for the group priors P (i) proportional to the sum of weights (instead of whole counts).
Both steps are repeated iteratively until convergence to a stationary point (as usual in EM).
The adjustments result in a soft learning scheme SoftLearn, whose pseudocode is given in
Algorithm 2, which is not only more compatible with the soft inference scheme of PCs, but
also uses each datapoint to learn every part of the network.

We close this section with an (extreme-case) illustrative example of the potential benefits
of SoftLearn (so please bear with us). Assume that data (X,Y ) ∈ R2 is generated from a
PC as per Expression (3) (we use a flat notation for the PC):

(X,Y ) ∼ 0.5 · NX(−0.5, 1)⊗NY (−2, 0.2)⊕ 0.5 · NX(0.5, 1)⊗NY (2, 0.2). (3)
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Algorithm 2 SoftLearn(D|N ,XN , V |N )

1: Input: set of instancesD|N ⊆ valXN for a scopeXN , set of weights V |N corresponding
to datapoint instances

2: Output: an SPN N↓ representing a distribution over XN learned from D|N
3: if |XN | = 1 then
4: N ← leaf univariate distribution node D estimated from the variable’s values in D|N

with weights in V |N
5: else
6: partition XN into approximately independent subsets XCj using weighted indepen-

dence tests with weights V |N , that is, (XCj )j=1,...,J is a partition of XN , using D|N
and V |N

7: if J > 1 then
8: N ←

⊗J
j=1 SoftLearn(D|Cj ,XCj , V |Cj )

9: else
10: partition D|N using a weighted soft clustering with datapoint weights V |N , yield-

ing new weights {Vi}∀i, with i = 1, . . . , I (I is the number of groups)
11: update Vi ← Vi · V |N and let si =

∑
Vi

12: if I > 1 then
13: N ←

⊕I
i=1

si∑
j sj

SoftLearn(D|Ci ,XCi , Vi)

14: else
15: N ←

⊗|XN |
j=1 SoftLearn(D|Xj , {Xj}, V |Xj )

16: return N

Figure 1(a) shows the equivalent graphical representation, which respects smoothness and
decomposability Assumptions and hence induces a valid joint distribution for X,Y . Fig-
ure 1(b) shows a sample with 1000 datapoints (green points) for each of the two mixture
components, which are independent bivariate Gaussians. Sampling is performed top-down,
choosing the direction to take in a sum node based on its weights, while following all paths
from product nodes, yielding a full sample when the corresponding leaf nodes are reached
and sampled. This generating distribution is obviously unknown to the learning algorithms.

We start running both LearnSPN and SoftLearn on this dataset. Initially, the conditions
in Line 7 of Algorithms 1 and 2 both fail, X and Y being not independent (X is shifted
based on Y ), and the algorithms proceed with creating a sum node. Assume now that
the clustering fails and partitions the points as per the gray line in Figure 1(b) (that is, at
X = 0). Hence, in the continuation, LearnSPN will have to recursively deal with the groups
of points in the left- and right-sides of the gray line separately, while SoftLearn will weight
the pertinence of each data point to each of the two groups. After that first sum node, a
product node will not appear again (X and Y being still considerably dependent). Assume
now that the next clusterings run to create new sum nodes work perfectly well (otherwise,
the difference in favor of SoftLearn could be even stronger, as we will see), and hence split
points perfectly (positive Y go to one side and negative Y to the other). Finally, X and Y
will be found independent (enough) and the four bivariate Gaussians will appear as in the
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NX(−0.5, 1) NY (−2, 0.2) NX(0.5, 1) NY (2, 0.2)

0.5 0.5

(a) (b)

Figure 1: (a) PC structure equivalent to Expression (3), with a root sum node (in blue)
with balanced weights to its children, which are two product nodes (in green), and four leaf
distribution nodes (in salmon). (b) Green points (X,Y ) (resp. horizontal and vertical axes
as usual) generated from the PC in Expression (3). The gray line is a hypothetical bad
partition obtained for the root node. SoftLearn yields the mean parameters of the Gaussian
leafs represented by the black diamonds, which still captures the whole Gaussians on both
sides of the gray cut of the first step; standard LearnSPN yields the red triangles as means,
as both clusters are necessarily treated separately.

following expressions. LearnSPN gives the model in Expression (4):

(X,Y ) ∼ .49(0.7 · NX(−1, .69)⊗NY (−2, .2)⊕ .3 · NX(−.69, .54)⊗NY (2.01, .2))⊕
.51(.31 · NX(.64, .53)⊗NY (−1.98, .2)⊕ .69 · NX(.98, .68)⊗NY (2, .19)); (4)

and SoftLearn the model in Expression (5):

(X,Y ) ∼ .5(.5 · NX(−.51, 1.01)⊗NY (−1.99, .2)⊕ .5 · NX(.48, .99)⊗NY (2, .2))⊕
.5(.51 · NX(−.47, .99)⊗NY (−1.99, .2)⊕ .49 · NX(.52, 1)⊗NY (2, .2)). (5)

In this hypothetical example, both approaches learn reasonable parameter estimates
for the distribution leafs over Y (the true generating distribution is in Expression (3)),
but LearnSPN struggles to get good estimates for X due to the bad clustering at the first
sum node (the true should be Gaussians N (0.5, 1)) and N (−0.5, 1))). On the other hand,
SoftLearn has less difficulty to achieve good estimates for X. The Gaussian means of the
distribution leaf nodes obtained by LearnSPN are shown in Figure 1(b) as red triangles,
while the same is shown for SoftLearn in black diamonds. The figure clearly shows the
difference between the hard LearnSPN approach and SoftLearn, suggesting that the lat-
ter might better cope with bad clustering results. Arguably, such results are inevitable
when performing clustering with high-dimensional heterogeneous data—even though they
are unlikely to be in practice as bad as in this example. It is not hard to imagine node
pruning/merging techniques that would make the outcome of SoftLearn more compact in
this situation, as some terms in Expression (5) represent somewhat similar Gaussians (and
by that potentially we could recover even the simpler true structure of Expression (3)).
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5. Experiments

We conduct a variety of experiments to evaluate our hypothesis about learning-inference
compatibility and potential drawbacks of LearnSPN, by comparing its performance against
SoftLearn. We proceed in three steps: (i) we compare the test log-likelihood of SoftLearn
against LearnSPN on discrete and mixed datasets; (ii) we visually compare the quality of
samples generated by SoftLearn and LearnSPN on an image dataset; and (iii) we numerically
compare the quality of samples generated by SoftLearn and LearnSPN on discrete datasets.
Additionally, an analysis of the execution times of methods is provided in Appendix E.

On discrete (binary) datasets, SoftLearn is compared against both implementations of
LearnSPN (Correia et al., 2020; Gens and Domingos, 2013). For the rest of the experiments,
since we have no access to the original implementation of LearnSPN (Gens and Domingos,
2013), the comparison is held between SoftLearn and LearnSPN (Correia et al., 2020).
Both algorithms are optimized over two sets of hyperparameters, namely the chi-square test
significance p ∈ {0.01, 0.001, 0.0001} and the Laplace smoothing parameter of multinomial
density estimation α ∈ {0.1, 0.01, 10−6} (as usual on discrete data counts).

5.1. Test log-likelihood

Binary Datasets: We compare the test log-likelihood of our method against LearnSPN
(Correia et al., 2020; Gens and Domingos, 2013) on 20 real-world datasets (Lowd and
Davis, 2010; Van Haaren and Davis, 2012). The number of instances varies from 2K to
388K, and the number of variables from 16 to 1556. In addition, we include the results
of CNET (Rahman et al., 2014), as this method combines a hard learning scheme with
a hard inference scheme, representing the other side of the learning-inference spectrum.
Note that Rahman et al. (2014) report 3 sets of results for 3 different versions of CNET,
among which MCNET (which consists of an ensemble of CNETs) shows strong results and
outperforms our method on several datasets; however, since our method does not include an
ensemble of models and/or pruning, we only report the results for the vanilla CNET, as it is
the most comparable version to SoftLearn The results for LearnSPN (Gens and Domingos,
2013) and CNET are reported from their corresponding paper. The results for LearnSPN
(Correia et al., 2020) and SoftLearn are the average of 9 repetitions, and are summarized
in Table 1.

Mixed Datasets: We compare the test log-likelihood of the methods over a selection
of datasets from the OpenML-CC18 benchmark (Vanschoren et al., 2014). Table 2 presents
the results averaged over 9 repetitions.

As the results in Table 1 suggest, SoftLearn manages to outperform both implemen-
tations of LearnSPN on 14 out of 20 discrete datasets, and to outperform CNET on 18
out of 20 datasets. It also performs better than LearnSPN (Correia et al., 2020) on all
mixed datasets. This indicates that a soft learning scheme can have a positive impact
on the performance of LearnSPN over discrete and mixed datasets. We attribute this to
learning-inference compatibility caused by the soft learning scheme. SoftLearn results in
softer margins between groups when clustering: as a result, if a datapoint is misgrouped,
the induced error will not be as costly as with the original LearnSPN. We would also like to
note that for mixed datasets in SoftLearn, continuous variables are discretized for each inde-
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Data
LearnSPN

CNET
Soft

Gens Correia Learn
NLTCS -6.11 -5.99 -6.10 -5.97
MSNBC -6.11 -6.04 -6.06 -6.04
KDD-2k -2.18 -2.35 -2.21 -2.34
Plants -12.97 -12.87 -13.37 -12.57
Audio -40.50 -39.84 -46.84 -39.65
Jester -75.98 -53.23 -64.50 -53.00
Netflix -57.32 -56.82 -69.74 -56.49
Accid. -30.03 -28.89 -31.59 -29.54
Retail -11.04 -11.09 -11.12 -10.88
Pumsb. -24.78 -24.10 -25.06 -24.81

Data
LearnSPN

CNET
Soft

Gens Correia Learn
DNA -82.52 -83.67 -109.79 -82.06
Kosarek -10.98 -11.04 -11.53 -10.89
MSWeb -10.25 -9.85 -10.20 -9.68
Book -35.88 -34.33 -40.19 -33.03
E.Movie -52.48 -56.84 -60.22 -55.22
WebKB -158.20 -159.53 -171.95 -158.70
Reut.52 -85.06 -87.93 -91.35 -88.33
20ng -155.92 -122.16 -176.56 -121.09
BBC -250.68 -247.81 -300.33 -249.38
Ad -19.73 -18.53 -16.31 -20.30

Table 1: Performance results of SoftLearn vs. LearnSPN (Gens and Domingos, 2013),
LearnSPN (Correia et al., 2020), and CNET (Rahman et al., 2014) over 20 binary datasets.

Dataset LearnSPN SoftLearn
Early

SoftLearn
bank -20.139 -19.993 -19.997
electricity -11.229 -11.217 -11.226
segment -17.517 -17.480 -17.493
german -22.720 -22.395 -22.470
vowel -16.957 -16.584 -16.634
cmc -9.850 -9.811 -9.838

Table 2: Performance on mixed datasets.

Dataset
Test Log Likelihood

LearnSPN SoftLearn
Orig. Synth. Orig. Synth.

NLTCS -5.997 -6.051 -5.976 -6.022
Audio -39.823 -40.307 -39.649 -40.143
Retail -11.074 -11.196 -10.880 -10.974
MSWeb -9.833 -10.058 -9.696 -9.982
Reuters-52 -87.838 -90.741 -88.609 -97.002

Table 3: Performance drops.

(Left) Performance results of LearnSPN vs. SoftLearn on mixed datasets; the last column
displays results obtained using SoftLearn with at most 2 clustering iterations in the clus-
tering steps, thus enforcing early stopping (often before convergence). (Right) Performance
drop for PCs trained on synthetically generated samples, averaged over 3 repetitions.

pendence test, which adds another layer of estimation to the algorithm; however, SoftLearn
still manages to outperform its counterpart.

We also study the possibility of early stopping clustering algorithms to try to demon-
strate the greater robustness of SoftLearn to potentially worse clustering results (with the
benefit of speeding up the learning, as one can have fewer iterations). We limited clustering
to only 2 iterations (often stopping before convergence). The results (last column in Ta-
ble 2) suggest that the speed up comes with little harm to the accuracy of the model, which
still outperforms LearnSPN run without early stopping (broader experiments are needed
for a more conclusive claim in this regard; current experiments suggest a strong potential).

5.2. Image data

We employ LearnSPN (Correia et al., 2020) and SoftLearn to learn PCs over the binary-
MNIST (Larochelle and Murray, 2011) dataset, and then we qualitatively evaluate the
generated samples from both PCs. We decide to learn each PC on a single class of the
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Figure 2: Samples of digits generated using LearnSPN (left) and SoftLearn (right).

dataset at a time in order to better visualize the samples. Figure 2 shows the generated
samples from PCs learned on classes 9 and 5 of the dataset, respectively. As the results
would suggest, the samples generated from the PC learned by SoftLearn appear to be less
cluttered. We believe the soft clustering to be responsible for some better samples when
compared to those generated from the PC trained with LearnSPN. Samples drawn from
SoftLearn are mostly clear to interpret, even if they can also be noisy or erroneous.

5.3. Quality of generated samples

Here we aim to compare the quality of samples generated from PCs learned via LearnSPN
and SoftLearn. We follow the experiment setup proposed by Fakoor et al. (2020). For
each algorithm and dataset, i.e., we (i) learn a PC over the training dataset (using the
best-performing set of hyperparameters); (ii) generate a synthetic dataset using the learned
PC; (iii) learn another PC over the generated synthetic dataset; and (iv) interpret the test
log-likelihood of learned PCs as an indicator for the quality of generated samples. The
results of this experiment over 5 datasets are summarized in Table 3. While SoftLearn still
outperforms LearnSPN on 4 out of 5 datasets, it shows a greater performance drop in 3 out
of 5 experiments. This shows that while SoftLearn objectively generates better samples,
whether or not its performance is more affected by the synthetic data remains inconclusive.

6. Conclusion

In this paper, we shed light on the importance of learning-inference compatibility of PCs
and the potential drawbacks of greedy algorithms such as LearnSPN, which can lead to rigid
partitions and poor generalization. We also introduced SoftLearn, a soft structure-learning
scheme to mitigate the costs of such greedy behaviors. Our experiments showed that this
soft method outperforms LearnSPN on various configurations on test likelihoods, and that
it arguably generates better samples likely due to its smoother partition margins.

This paper attempts to push a reasonably simple idea of soft clustering, yet with intri-
cate changes required in the clustering and independence test methods. We truly believe
structure learning to be a major point of improvement for PCs to reach even greater accu-
racy in real-world applications, in particular for structured/tabular data. Multiple avenues
remain to be explored in learning the structure of PCs, which constitute excellent future
work. We intend to continue the study with pruning/merging techniques and to move away
from excessively structure-learning greedy approaches. In some sense, SoftLearn is a partial
step in that direction by trying to mitigate greediness.
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Appendix A. Dataset Details

Dataset Vars. Train Valid. Test Density
NLTCS 16 16181 2157 3236 0.332
MSNBC 17 291326 38843 58265 0.166
KDDCup2k 65 180092 19907 34955 0.008
Plants 69 17412 2321 3482 0.180
Audio 100 15000 2000 3000 0.199
Jester 100 9000 1000 4116 0.608
Netflix 100 15000 2000 3000 0.541
Accidents 111 12758 1700 2551 0.291
Retail 135 22041 2938 4408 0.024
Pumsb-star 163 12262 1635 2452 0.270
DNA 180 1600 400 1186 0.253
Kosarak 190 33375 4450 6675 0.020
MSWeb 294 29441 3270 5000 0.010
Book 500 8700 1159 1739 0.016
EachMovie 500 4524 1002 591 0.059
WebKB 839 2803 558 838 0.064
Reuters-52 889 6532 1028 1540 0.036
20 Newsgrp. 910 11293 3764 3764 0.049
BBC 1058 1670 225 330 0.078
Ad 1556 2461 327 491 0.008

Table 4: Discrete datasets statistics.

Dataset
Vars.

Size
Categorical Numeric

bank 10 7 45211
electricity 2 7 45312
segment 1 19 2310
german 14 7 1000
vowel 3 10 990
cmc 8 2 1473

Table 5: Mixed datasets statistics.

As mentioned in Section 5.1, we use a set of twenty real-world binary datasets (Lowd and
Davis, 2010; Van Haaren and Davis, 2012) and 6 real-world mixed datasets (Vanschoren
et al., 2014) for the log-likelihood experiments. Over the binary datasets, the number of
instances varies from 2K to 388K, and the number of variables from 16 to 1556; over the
mixed datasets, the number of variables varies from 9 to 21, and the number of instances
from 990 to 45312. The details regarding these datasets are outlined in Tables 4 and 5.
Note that the binary datasets are already divided into train, validation, and test sets, and
hence, the details regarding the size of each set are also reported in the table.
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Appendix B. Experiment Details

In this section, we present supplementary results and details of our experiments, in addition
to the results reported in Section 5. For each method (LearnSPN and SoftLearn), and
for each dataset category (binary and mixed), we present a table outlining more details
regarding the experiments. Each table provides a more detailed version of the results, which
decomposes the results over the clustering method and provides the standard deviation of
the results over the 9 repetitions of the experiments. In addition to that, each table also
provides the hyperparameter configurations to reproduce the reported results. Tables 6
and 8 are dedicated to the experiments of LearnSPN and SoftLearn on binary datasets.
Similarly, tables 7 and 9 are dedicated to respective experiments of LearnSPN and SoftLearn
on mixed datasets.

Dataset
LearnSPN

EM K-means
Test LL p α Test LL p α

NLTCS -5.997 ± 0.008 0.01 0.01 -5.995 ± 0.007 0.01 0.1
MSNBC -6.042 ± 0.003 0.01 0.1 -6.041 ± 0.001 0.01 0.1
KDDCup2k -2.350 ± 0.001 0.001 0.1 -2.360 ± 0.003 0.0001 0.1
Plants -12.878 ± 0.026 0.01 0.1 -12.908 ± 0.020 0.01 0.1
Audio -39.841 ± 0.018 0.001 10−6 -39.938 ± 0.038 0.001 0.1
Jester -53.235 ± 0.031 0.001 0.1 -53.234 ± 0.026 0.001 10−6

Netflix -56.818 ± 0.027 0.001 10−6 -56.844 ± 0.028 0.001 0.1
Accidents -28.895 ± 0.122 0.0001 0.1 -29.114 ± 0.070 0.0001 0.01
Retail -11.092 ± 0.047 0.0001 0.1 -11.142 ± 0.017 0.0001 0.1
Pumsb-star -24.101 ± 0.088 0.0001 0.1 -24.206 ± 0.085 0.0001 0.1
DNA -83.674 ± 0.233 0.0001 0.1 -83.798 ± 0.182 0.0001 0.1
Kosarek -11.043 ± 0.035 0.0001 0.1 -11.188 ± 0.037 0.0001 0.1
MSWeb -9.847 ± 0.025 0.0001 0.1 -10.015 ± 0.018 0.0001 0.1
Book -34.334 ± 0.093 0.0001 0.1 -34.428 ± 0.080 0.0001 0.1
EachMovie -56.842 ± 0.078 0.0001 0.1 -57.129 ± 0.069 0.0001 0.1
WebKB -159.533 ± 0.227 0.0001 0.1 -160.601 ± 0.331 0.0001 0.1
Reuters-52 -87.932 ± 0.144 0.0001 0.1 -88.400 ± 0.161 0.0001 0.1
20 Newsgrp. -122.162 ± 0.138 0.0001 0.1 -122.827 ± 0.121 0.0001 0.1
BBC -248.293 ± 0.464 0.0001 0.1 -247.815 ± 0.248 0.0001 0.1
Ad -18.539 ± 0.152 0.001 0.1 -18.738 ± 0.403 0.01 0.01

Table 6: Performance of LearnSPN (Correia et al., 2020) on binary datasets.
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Dataset
LearnSPN

EM K-means
Test LL p α Test LL p α

bank -20.139 ± 0.030 0.01 0.1 -20.277 ± 0.045 0.01 0.01
electricity -11.229 ± 0.011 0.001 0.01 -11.488 ± 0.010 0.0001 0.1
segment -17.517 ± 0.081 0.01 0.1 -17.663 ± 0.090 0.01 0.01
german -22.720 ± 0.158 0.001 0.1 -22.857 ± 0.174 0.001 0.1
vowel -16.957 ± 0.079 0.01 10−6 -17.086 ± 0.076 0.01 10−6

cmc -9.850 ± 0.087 0.01 0.1 -9.902 ± 0.128 0.01 0.1

Table 7: Performance of LearnSPN (Correia et al., 2020) on mixed datasets

Dataset
SoftLearn

EM K-means
Test LL p α Test LL p α

NLTCS -5.979 ± 0.006 0.01 10−6 -5.974 ± 0.002 0.01 0.01
MSNBC -6.056 ± 0.003 0.01 0.01 -6.048 ± 0.001 0.01 0.01
KDDCup2k -2.372 ± 0.006 0.0001 10−6 -2.345 ± 0.005 0.01 10−6

Plants -12.643 ± 0.015 0.01 0.1 -12.572 ± 0.013 0.01 10−6

Audio -39.659 ± 0.023 0.01 0.1 -40.346 ± 0.014 0.01 0.01
Jester -53.005 ± 0.041 0.01 0.1 -53.545 ± 0.019 0.01 0.1
Netflix -56.491 ± 0.016 0.01 0.1 -57.698 ± 0.015 0.01 10−6

Accidents -30.092 ± 0.133 0.0001 0.1 -29.544 ± 0.049 0.0001 0.01
Retail -11.040 ± 0.021 0.0001 0.1 -10.887 ± 0.010 0.01 10−6

Pumsb-star -24.818 ± 0.244 0.0001 0.1 -28.397 ± 0.212 0.0001 0.01
DNA -83.026 ± 0.240 0.0001 0.01 -82.062 ± 0.078 0.01 10−6

Kosarek -11.108 ± 0.009 0.0001 0.1 -10.890 ± 0.020 0.01 10−6

MSWeb -9.881 ± 0.049 0.001 0.1 -9.688 ± 0.007 0.001 10−6

Book -34.173 ± 0.080 0.0001 0.1 -33.031 ± 0.022 0.01 10−6

EachMovie -57.401 ± 0.166 0.0001 0.1 -55.225 ± 0.058 0.0001 10−6

WebKB -162.361 ± 1.400 0.0001 0.1 -158.703 ± 1.015 0.01 0.01
Reuters-52 -90.240 ± 0.525 0.001 0.1 -88.338 ± 0.239 0.01 0.01
20 Newsgrp. -121.218 ± 0.138 0.0001 0.1 -121.091 ± 0.127 0.01 10−6

BBC -249.381 ± 0.937 0.0001 0.1 -250.080 ± 0.533 0.01 0.01
Ad -20.309 ± 0.794 0.01 0.01 -40.129 ± 1.791 0.01 0.01

Table 8: Performance of SoftLearn on binary datasets.
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Dataset
SoftLearn

EM K-means
Test LL p α Test LL p α

bank -19.993 ± 0.044 0.0001 0.1 -20.132 ± 0.033 0.01 0.01
electricity -11.217 ± 0.021 0.01 10−6 -11.422 ± 0.012 0.0001 0.1
segment -17.480 ± 0.071 0.001 10−6 -17.625 ± 0.100 0.001 0.01
german -22.423 ± 0.186 0.01 0.1 -22.395 ± 0.187 0.01 0.1
vowel -16.584 ± 0.156 0.01 10−6 -17.347 ± 0.169 0.01 0.01
cmc -9.820 ± 0.098 0.01 0.01 -9.811 ± 0.060 0.001 0.01

Table 9: Performance of SoftLearn on mixed datasets

Appendix C. Comparison with State of the Art

Dataset
LearnSPN

CNET
Learn

HCLT EiNet
RAT Soft

Gens Correia PSDD SPN Learn
NLTCS -6.110 -5.995 -6.10 -6.03 -5.99 -6.015 -6.01 -5.974
MSNBC -6.113 -6.041 -6.06 -6.04 -6.05 -6.119 -6.04 -6.048
KDDCup2k -2.182 -2.350 -2.21 -2.12 -2.18 -2.183 -2.13 -2.345
Plants -12.977 -12.878 -13.37 -13.79 -14.26 -13.676 -13.44 -12.572
Audio -40.503 -39.841 -46.84 -41.98 -39.77 -39.879 -39.96 -39.659
Jester -75.989 -53.234 -64.50 -53.47 -52.46 -52.563 -52.97 -53.005
Netflix -57.328 -56.818 -69.74 -58.41 -56.27 -56.544 -56.85 -56.491
Accidents -30.038 -28.895 -31.59 -33.64 -26.74 -35.594 -35.49 -29.544
Retail -11.043 -11.092 -11.12 -10.81 -10.84 -10.916 -10.91 -10.887
Pumsb-star -24.781 -24.101 -25.06 -33.67 -23.64 -31.954 -32.53 -24.818
DNA -82.523 -83.674 -109.79 -92.67 -79.05 -96.086 -97.23 -82.062
Kosarek -10.989 -11.043 -11.53 -10.81 -10.66 -11.029 -10.89 -10.890
MSWeb -10.252 -9.847 -10.20 -9.97 -9.98 -10.026 -10.12 -9.688
Book -35.886 -34.334 -40.19 -34.97 -33.83 -34.739 -34.68 -33.031
EachMovie -52.485 -56.842 -60.22 -58.01 -50.81 -51.705 -53.63 -55.225
WebKB -158.204 -159.533 -171.95 -161.09 -152.77 -157.282 -157.53 -158.703
Reuters-52 -85.067 -87.932 -91.35 -89.61 -86.26 -87.368 -87.37 -88.338
20 Newsgrp. -155.925 -122.162 -176.56 -161.09 -153.40 -153.938 -152.06 -121.091
BBC -250.687 -247.815 -300.33 -253.19 -251.04 -248.332 -252.14 -249.381
Ad -19.733 -18.539 -16.31 -31.78 -16.07 -26.273 -48.47 -20.309

Table 10: Performance results of SoftLearn vs. LearnSPN (Gens and Domingos, 2013),
LearnSPN (Correia et al., 2020), CNET (Rahman et al., 2014), LearnPSDD (Liang et al.,
2017), Hidden Chow Liu Trees (Liu and Van den Broeck, 2021), Einsum Networks (Peharz
et al., 2020a), and RAT-SPN (Peharz et al., 2020b) over binary datasets.

Once again, we would like to note that our motivation for proposing SoftLearn is not to
compete with the state of the art methods, but to introduce a better base model compared
to LearnSPN. LearnSPN is utilized as a base model (or a building block) for many sub-
sequent algorithms that managed to achieve impressive competitive results, outperforming
LearnSPN itself. Such algorithms can utilize SoftLearn interchangeably, and based on the

291



Ghandi Quost de Campos

results reported in this paper, we believe that utilizing SoftLearn instead of LearnSPN will
lead to noticeable performance gains, helping other algorithms achieve or surpass state of
the art. Hence, our experiments were mainly designed to compare SoftLearn with its main
competitor, LearnSPN, on a variety of test configurations. Nevertheless, we include a com-
parison between SoftLearn and some of the state of the art methods (namely LearnPSDD
(Liang et al., 2017), Hidden Chow Liu Trees Liu and Van den Broeck (2021), Einsum Net-
works (Peharz et al., 2020a), and RAT-SPN (Peharz et al., 2020b)) on binary datasets in
table 10.

SoftLearn manages to outperform LearnPSDD on 16 out of 20 datasets, EiNet on 14
out of 20 datasets, and RAT-SPN on 15 out of 20 datasets. The only method that performs
better on average than SoftLearn is HCLT (SoftLearn still outperforms HCLT on 8 out
of 20 datasets), which has a larger set of hyperparameters and is fine-tuned over a larger
(and more precise) set of hyperparameter configurations. In addition, SoftLearn manages to
achieve the best results (among all the aforementioned methods) over 6 out of 20 datasets
(On a separate not, we would like to mention that ID-SPN (Rooshenas and Lowd, 2014)
also manages to statistically outperform SoftLearn on average, however, we do not consider
ID-SPN a reasonable competitor since its resulting structures are orders of magnitude larger
than the structures learned by SoftLearn and LearnSPN. This means that ID-SPN poten-
tially achieves better performance at the cost of over-parametrization and larger amount of
computations, which does not lead to an unbiased comparison). These results show that
despite its simple design as a base model (like LearnSPN), SoftLearn is competitive to state
of the art models, while having a very large room to grow when used as a building block of
more elaborate methods.

Appendix D. Theoretical Intuition

In this section, we will provide theoretical insight into how methods like LearnSPN and
SoftLearn optimize the global likelihood. Before going into the details, we first reiter-
ate the learning process of LearnSPN/SoftLearn and establish necessary assumptions. In
LearnSPN/SoftLearn, each learning iteration does one of the following tasks: i) adding a
(factorized) leaf node at the end of a path; ii) adding an internal sum node; iii) adding an in-
ternal product node. We assume that we have the option to terminate LearnSPN/SoftLearn
at any arbitrary iteration of learning. Doing so means that we stop clustering over in-
stances/variables and finalize the PC by adding factorized distributions to each path that
does not already end in a leaf node. We call the resulting PC produced by this process the
alternative PC at iteration t. If we terminate the algorithm at the root of the PC, then
the alternative PC would be a fully factorized distribution as in Figure 3(a). Similarly, if
we first add a sum node (with two children) to the root of the PC, and then proceed to
terminate the learning, the alternative PC would have a structure similar to Figure 3(b)

Depending on the task performed by the learning algorithm, the difference between
any two consecutive alternative PCs (alternative PC at iteration t and alternative PC at
iteration t + 1) can be: i) nothing (adding leaf nodes is inconsequential in alternative
PCs since the process of termination includes adding a leaf node to any path without
leaves); ii) a sum node; iii) a product node. If there is no difference between consecutive
alternative PCs, then the likelihood of the data stays the same between the two PCs. In
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Figure 3: Example of termination process. (a) termination at the root of the graph. (b)
termination after adding a sum node with two children.

the case where the difference between two alternative PCs is in a product node, it can
be easily deducted that the likelihood still remains the same, since a product node by
itself (with factorized leaves) cannot induce any changes to the likelihood (the product of
two factorized distributions over disjoint variables is equal to the product of univariate
distributions over each variable). This leaves us only with the case where the difference
between two consecutive alternative PCs is in a sum node. In this case (we can take the
PCs represented in Figures 3(a) and 3(b) as an example; the same logic can be generalized
to any arbitrary structure at any arbitrary iteration, with the exception that the difference
in the likelihood will be weighted by a positive multiplier), the difference in the likelihood
stems from the difference between p0(X1, ..., Xm) and p1(X1, ..., Xm) (or in the general
case, the difference between pt(X1, ..., Xm) and pt+1(X1, ..., Xm)), where p0(X1, ..., Xm) is
a factorized distribution learned on some data D, and p1(X1, ..., Xm) is a mixture of C
(number of output clusters) factorized distributions based on the resulting clusters, learned
from the same data D. If we can guarantee that p1 has a better likelihood compared to p0,
then we can conclude that in every iteration of learnSPN/SoftLearn, the likelihood either
increases or stays the same, a process that gradually maximizes the likelihood of the data
as the learning algorithm proceeds.

Whether or not p1 is an increase over p0 in terms of likelihood depends on the clustering
algorithm. Yet, we can prove that there is always a solution that obtain the same likelihood
as (or better than) the alternative option. Without losing generality, assume that we are
adding a sum node with two children. In the case of soft clustering, one can equally divide
each sample between the two clusters (weighing half to each side), which will lead to the same
likelihood as the alternative fully factorized model. Hence, any soft clustering algorithm
that performs a job at least as good as this (which is surely expected) obtains the same or
better likelihood after the sum node is added. When using hard clustering, the argument is
slightly different (as we cannot “split” the data points in half to use in each side). In this
case, one can think of the following split: choose an arbitrary data point and take all its
t ≥ 1 copies to be represented in one of the child of the sum node (with weight w equal to
t over the number of data points in consideration) and all other points to the other child
(with weight 1−w). It is not hard to see that both children will have better likelihood than
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the one of the alternative model for the part of the data points they represent, and thus
the appropriate weighting yields a better model than the alternative model.

In addition to the intuitive perspective on clustering methods, we would also like to
mention that some algorithms such as hard/soft EM, if properly initialized, can theoret-
ically guarantee that the resulting mixture will have a better likelihood compared to the
alternative factorized model.

Appendix E. Execution Times

Data LearnSPN SoftLearn
NLTCS 84.42 80.43
MSNBC 97.61 346.73
KDD-2k 282.22 908.71
Plants 122.15 174.28
Audio 134.04 168.94
Jester 100.08 134.35
Netflix 130.03 179.28
Accid. 125.29 412.04
Retail 176.19 268.14
Pumsb. 129.73 124.89

Data LearnSPN SoftLearn
DNA 117.27 125.49
Kosarek 214.54 690.04
MSWeb 254.99 1267.11
Book 1542.46 1067.42
E.Movie 163.16 774.38
WebKB 361.85 1480.80
Reut.52 524.73 4769.28
20ng 1724.41 11770.24
BBC 419.26 513.10
Ad 364.82 333.84

Table 11: Average execution time (in seconds) of SoftLearn vs. LearnSPN (Correia et al.,
2020) over binary datasets. Best-performing hyperparameters are used for both methods.

Although SoftLearn statistically outperforms LearnSPN on a variety of experiments, this
advantage comes at the cost of higher execution (learning) times. From a theoretical point
of view, this is expected since SoftLearn theoretically propagates all data points throughout
the structure, and forces every module to process all the data points, albeit with varying
weights (i.e. SoftLearn is not optimized around being faster). Practically, this can be
alleviated by discarding the instances that have low membership, which is why we chose a
threshold of 0.01 (membership score) to cut off practically irrelevant instances and speed up
the learning process. However, even this practical trick cannot make SoftLearn comparable
to LearnSPN. Table 11 outlines the average execution times of SoftLearn compared to
LearnSPN on binary datasets. SoftLearn only manages to achieve better execution time on
4 out of 20 datasets (2 of which with less than a 5% margin, and one with less than a 10%
margin), which clearly indicates the superior performance of LearnSPN in execution time.
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