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Abstract

Many Bayesian Network structure learning algorithms are unstable in that the learnt graph
is sensitive to arbitrary artefacts of the dataset, such as the ordering of columns (i.e.,
variable order). PC-Stable, developed by Colombo and Maathuis (2014), attempts to
address this issue for the widely-used PC algorithm, prompting researchers to use the
‘stable’ version instead. However, this problem seems to have been overlooked for score-
based algorithms. In this study, we show that some widely-used score-based algorithms
suffer from the same issue and that PC-Stable, although less sensitive than most of the
score-based algorithms tested, is not completely stable. We also present a solution to
score-based greedy hill-climbing that completely eliminates this instability, and provide
two implementations: the HC-Stable and Tabu-Stable algorithms, the latter of which learns
more accurate graphs than all the well-known algorithms we compared it to.
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1. Introduction

Bayesian Networks (BNs) (Koller and Friedman, 2009) are an approach for modelling com-
plex probabilistic relationships in diverse domains such as healthcare (Kyrimi et al., 2021),
fault diagnosis (Cai et al., 2017) and the environment (Vitolo et al., 2018). They can be
used to answer probabilistic queries which predict the probability distribution of a subset of
variables conditional on the values of other variables, and so can answer questions such as
if these symptoms are present, what is the probability the patient has disease Y?. Moreover,
if one additionally assumes that the relationships are causal, then the resulting Causal BN
can be used to answer interventional queries such as if the patient is given this treatment,
what is the likely outcome? (Pearl, 2009). Thus, BN’s have an important potential role as
A.I. decision support systems.

Because BNs are probabilistic graphical models, one key challenge is to specify the
graphical structure underlying them. Using machine learning to infer this structure from
observational data is an active research area. Recent work by Kitson and Constantinou
(2024) shows that many algorithms are unstable; that is, sensitive to artefacts of the data,
such as the ordering of columns in the data. The principal contribution of this paper is to
describe an approach which eliminates this instability for greedy score-based hill-climbing
algorithms. We show that one of our implementations, Tabu-Stable, is completely stable
and learns more accurate graphs than all of the well-known algorithms that we compare it
to. The approach described in this paper also has wider applicability to many algorithms
that make use of greedy hill-climbing, such as hybrid algorithms.
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2. Background

2.1. Bayesian Networks

The key element of a Bayesian Network is a Directed Acyclic Graph (DAG) where each node
represents a variable and the directed edges, or arcs, represent a dependence relationship
between the two variables. We denote the n variables in the BN as X1, ..., Xn. If there is
an arc XA −→ XB, XA is termed the parent of XB. The DAG is constructed so that a
node is conditionally independent of all variables except its descendants given its parents.
This is called the Local Markov Property and allows the global probability distribution to
be expressed compactly as:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

where Pa(Xi) are the parents of Xi.
A key result flowing from the Local Markov Property is that a graphical property of

the DAG, d-separation, is equivalent to variables being conditionally independent of one
another (Pearl, 1988). D-separation can be used to infer the graph structure from the
independence and dependence relationships present in the data. In general, however, more
than one DAG is consistent with the independence relationships (Verma and Pearl, 1990).
These Markov Equivalent graphs belong to a Markov Equivalent Class (MEC). A MEC
is usually represented by a Completed Partially Directed Acyclic Graph (CPDAG), where
directed edges indicate edges where all DAGs in the MEC have that same orientation, and
undirected edges indicate that some DAGs have one orientation and the rest the other.

The other component of a BN is the specification of the probabilistic dependence re-
lationship between adjacent variables and the probability distributions assumed. For the
discrete variable networks considered here, this takes the form of Conditional Probability
Tables (CPTs) which define a multinomial distribution for the child values for each combi-
nation of parental values.

2.2. Structure Learning Algorithms

The specification of a BN’s DAG structure may be undertaken using human expertise, using
a structure learning algorithm to learn it from data, or a combination of both. Structure
learning algorithms usually learn from observational data, since it is more readily available.
The algorithms typically make assumptions that often do not hold in practice. For example,
that there is no missing data, measurement error or latent confounders.

Constraint-based algorithms such as PC (Spirtes and Glymour, 1991), GS (Margaritis
and Thrun, 1999) and Inter-IAMB (Tsamardinos et al., 2003) use statistical conditional
independence (CI) tests to identify the independence relationships in the data, and use
the d-separation principle to infer the DAG structure. Constraint-based algorithms usually
assume faithfulness, which states that there are no independence relationships in the data
which are not implied by the DAG. Variants of the approach such as FCI (Spirtes et al.,
2001) can account for latent confounders.

Score-based algorithms represent the second major class of algorithms. These follow
a more traditional machine-learning approach of using an objective function to assign a
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score to each graph and then employ some strategy to find a high-scoring graph. The Hill-
Climbing (HC) (Herskovits, 1990) and Tabu (Bouckaert, 1995) algorithms are two simple
score-based algorithms that remain competitive and commonly-used. Other score-based
approaches search through MEC space, for example, GES (Chickering, 2002) and FGES
(Ramsey et al., 2017). Exact score-based algorithms, such as GOBNILP (Bartlett and
Cussens, 2017) guarantee to return the highest scoring graph, though typically with limits
placed on the number of parents of any node.

Other classes of algorithms include hybrid ones such as MMHC (Tsamardinos et al.,
2006) and H2PC (Gasse et al., 2014) which use a mix of score and constraint-based methods.
More recent developments include algorithms which make additional assumptions about the
functional relationships between variables to identify arc orientations (Peters et al., 2014),
and algorithms such as NOTEARS (Zheng et al., 2018) which treat structure learning as
a continuous optimisation problem. Kitson et al. (2023) provide a comprehensive survey
across the different classes of algorithms.

The objective function in score-based approaches usually includes the log-likelihood
of the data being generated from the graph, with two commonly-used scores being BIC
(Suzuki, 1999) and BDeu (Heckerman et al., 1995). The BIC score, SBIC , for a graph G
with n variables and dataset D is computed as follows:

SBIC(G,D) =

n∑
i=1

qi∑
j=1

ri∑
k=1

[
Nijk log

Nijk

Nij

]
− logN

2
· F (2)

The first term on the right hand side of Equation 2 is the log-likelhood and is based on
counts of values in the dataset. Specifically, Nijk is the number of rows where node Xi

has the kth out of the ri possible values and its parents Pa(Xi) have the jth combination
of values out of the qi possible combinations, and Nij is the total number of rows where
the parents have that jth combination of values. The second term is a model complexity
penalty, where N is the total number of rows in D, and F is the number of free parameters
in the CPTs of the model.

BDeu, SBDeu, is a Bayesian score representing the posterior probability of graph G
given the data D assuming some prior beliefs about the probability of each graph and set
of parameter values. If all graphs are assumed equally probable, then BDeu is given by:

SBDeu(G,D) =

n∑
i=1

qi∑
j=1

[
log

Γ(N
′

qi
)

Γ(Nij +
N ′

qi
)
+

ri∑
k=1

log
Γ(Nijk +

N ′

riqi
)

Γ( N ′

riqi
)

]
(3)

where Γ is the Gamma function, N ′ assigns a weight to the prior parameter beliefs, and
other symbols take the same meanings as in Equation 2. BIC and BDeu are decomposable
scores, since they represent the sum of individual scores for each node. This property
facilitates the efficient re-computation of the graph score as the graph is modified. Both are
also score equivalent which means they assign the same score to all DAGs in a particular
MEC.

2.3. Related Work

The instability of structure learning algorithms, and specifically their sensitivity to arbitrary
dataset artefacts such as variable order, seems to have attracted relatively little attention.
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Variable order in this paper means the order of the columns in the dataset, something
which is arbitrary and ideally ought to have no effect on the learnt graph. Exact algorithms
such as A-Star (Yuan et al., 2011) which implicitly determines the best node order, and
those that search over MECs such as GES and FGES should, in principle, be insensitive
to dataset artefacts. Algorithms that rely on a topological order being specified such as
K2 (Cooper and Herskovits, 1992), or ones that generate an order themselves (Larranaga
et al., 1996; Behjati and Beigy, 2020), should also be stable. Approaches that average over
several learnt graphs, either those sampled from a posterior distribution of graphs such
as Order-MCMC (Friedman and Koller, 2003), or which use different sub-samples of data
(Broom et al., 2012) or different classes of learner (Constantinou et al., 2023) might be less
sensitive since any effect of dataset artefacts may tend to ’cancel out’ over the population
of learnt graphs.

Nonetheless, the stability of algorithms is rarely explicitly considered or evaluated. An
exception is PC-Stable (Colombo and Maathuis, 2014) where the authors strive to minimise
the effect of node processing order in the PC algorithm which they find has a considerable
effect on how errors propagate throughout the learning process. PC-Stable offers better
accuracy and lower sensitivity to variable order than PC, and it is generally chosen over
PC for that reason. However the results in Subsection 5.3 demonstrate that it retains
a considerable amount of instability. Kitson and Constantinou (2024) demonstrate that
variable order can impact the ranking of algorithms, but it is not usually considered when
comparing algorithms. Scutari et al. (2019) do try a small number of different orderings in
order to improve arc orientations as part of a comparative benchmark, but sensitivity to
ordering is not reported.

3. Eliminating Instability in Hill-Climbing

This section discusses the source of instability within hill-climbing algorithms and how it
can be addressed. The focus is on the Tabu algorithm since it is commonly used and is
competitive in benchmarks, but we apply the same approach to the simpler HC algorithm.
The resulting two new algorithms, Tabu-Stable and HC-Stable, are described.

3.1. How Instability Arises in Hill-Climbing Algorithms

HC is a greedy, score-based hill-climbing algorithm. It typically starts exploring the search-
space of graphs from an empty DAG, and searches for the single arc addition, deletion
or reversal which increases the score of the DAG the most at each iteration. Changes
that would create a cycle are not considered. The algorithm terminates when there are no
further changes that would increase the score, and the resulting DAG generally has only a
locally-maximum score.

Tabu is a higher-performing variant of HC that allows iterations where the score stays the
same or decreases allowing the algorithm to escape some local maxima. Tabu maintains a
fixed-length list of recently visited DAGs, tabulist, to prevent the algorithm from repeatedly
considering previously-visited DAGs. The black-coloured pseudo-code in Algorithm 1 shows
the main elements of Tabu. The deltas variable holds the score change associated with every
possible change to the DAG. Lines 5 to 25 form the main iterative loop, with the highest-
scoring change for each iteration identified in the foreach loop, and applied to the DAG
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at line 19. UpdateDeltas updates deltas appropriately following the change; for example,
adding arc A −→ B would mean that deltas for adding arcs which point to B must be
recalculated to take into account that B now has a new parent. The stop condition for
the main loop is that none of the last noinc (a hyperparameter) changes have increased
the score. HC is similar to Algorithm 1 except that tabulist is not required, and the
stop condition is that there are no further changes which will increase the score.

Figure 1: The sequence of DAG changes when HC learns the Asia network from 10,000
samples. The numbers beside each arc show the iteration at which it is added. Arc colours
compare the learnt arc against the true arc, and whether it is solid or dashed indicates
whether its orientation was arbitrary. Variable order within the dataset is alphabetic.

Figure 1 illustrates the source of instability in hill-climbing by showing the sequence
in which HC conventionally learns the Asia network from 104 rows of data, when using
the BIC score as the objective function. Both orientations of the edge bronc—dysp give
the same maximal score improvement at the first iteration. If HC is implemented to use
the variable order to orientate the arc in this situation, and that order is alphabetic, then
orientation bronc −→ dysp would be chosen. This arbitrary orientation happens to agree
with the true graph. The orientation of the second arc added, either → lung, is similarly
arbitrary, but in this case, incorrect. Just like in the case of constraint-based learning with
the PC algorithm, this instability propagates to subsequent iterations. For example,
if the variable order had been such that the second iteration correctly added lung → either,
then edge tub—either would also have been orientated correctly. This, in turn, would have
stopped the extraneous arc lung → tub being added. While the impact of variable order
varies from network to network, Kitson and Constantinou (2024) show that it is generally
considerable, typically overshadowing the impact of changing objective functions, sample
size or hyperparameters.

3.2. Stabilising Hill-Climbing

Algorithm 1 illustrates the key elements, shown in red pseudo-code, of the new algorithm
Tabu-Stable that avoids the arbitrary orientations and hence, becomes completely insensi-
tive to the ordering of the variables as read from data. The key is to determine a stable order
at line 4 that is not dependent on dataset artefacts such as variable order. The DAG change
with the highest score improvement at each iteration is determined in the for each loop
as usual, but this now also records whether there is an equivalent change (equiv change),
which adds an arc in the opposite orientation with the same maximum score improvement.
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In that case, the one consistent with stable order is added to the DAG. Analogously to the
relationship between Tabu and HC, HC-Stable is simply Tabu-Stable with tabulist removed
and a stop condition that there are no further changes that would increase the score.

Algorithm 1: Tabu-Stable (changes to standard Tabu shown in red)

Input: data, data set to learn graph from
Output: best dag, highest-scoring DAG found

1 stable order ← GetStableOrder(data) (see Algorithm 2)
2 best dag ← dag ← empty DAG
3 tabulist← empty list
4 deltas← score change for each arc addition

5 repeat

6 max delta← None
7 foreach dag change = AllowedChange(dag, tabulist) do
8 if max delta = None or delta[dag change] > max delta then
9 max delta← delta[dag change]

10 best change← dag change
11 equiv change← None

12 else if AddingSameEdgeWithSameDelta(dag change, best change) then
13 equiv change← dag change
14 end if

15 end

16 if equiv change ̸= None and equiv change consistent with stable order then
17 best change← equiv change
18 end if

19 dag ← dag + best change
20 UpdateDeltas(deltas, best change)
21 insert dag into tabulist
22 if Score(dag, data) > Score(best dag, data) then
23 best dag ← dag
24 end if

25 until stop condition

The function GetStableOrder shown in Algorithm 2 returns the stable node order used
to avoid arbitrary orientations. This order is generated in two stages. Firstly, lines 1-11
of Algorithm 2 produce dec score order, which contains nodes primarily ordered by the
decomposable score, BIC or BDeu for example, that will later be used in the structure
learning itself. The sort key for the list has three elements, which in order of precedence
are: (1) the score of the node without parents, (2) the mean score of the node where every
other node is taken as its single parent (computed in lines 4 to 7), and (3) a textual rendition
of the counts of values of the variable, e.g. ”{’no’: 5, ’yes’: 3}”. The first two elements of the
sort key use scores such as those described in Equation 2 and Equation 3 and are therefore
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Algorithm 2: GetStableOrder - determines a stable processing order

Function GetStableOrder(data):
Input: data, data set learning graph from
Output: stable order, stable order for use in Tabu-Stable

1 dec score order ← empty list
2 foreach variable in data do
3 uncond score = NodeScore(variable)
4 cond score = 0.0
5 foreach possible single parent of variable in data do
6 cond score← cond score+NodeScore(variable, single parent)/(n− 1)
7 end
8 sorted value counts← counts of unique values of variable in data
9 sort key = (uncond score, cond score, sorted value counts)

10 dec score order ← InsertByKey(variable, sort key)

11 end
12 inc score order ← reverse(dec score order)
13 inc dag ← HC(data, inc score order)
14 dec dag ← HC(data, dec score order)
15 if DAGScore(inc dag, data) > DAGScore(dec dag, data) then
16 stable order = TopologicalOrder(inc dag)
17 else
18 stable order = TopologicalOrder(dec dag)
19 end
20 return stable order

determined solely by the data distribution itself. Moreover, since the second element of the
sort key for a node compares the distribution of combinations of values of that node and
every other node, the intuition is that it is very unlikely that two variables will have the
same sort key unless they are indeed identical (duplicate). One situation where the first two
elements of the sort key are the same for non-identical variables is where the sequences of
values for them are isomorphic, e.g. a, a, a, c, c, a and c, c, c, b, b, c, but here the third element
of the sort key will differ. If two variables do have the same sort key, then they revert to
being ordered by variable order. This will most likely occur because the variables are indeed
identical, perhaps because of limited sample size. Thus, the whole algorithm retains some
unavoidable sensitivity to variable order when there are identical (or duplicate) variables.
This is explored in Subsection 5.2.

It is not expected that dec score order will necessarily be a good order, rather, only
that it will be insensitive to artefacts of the dataset such as row or column order. Kitson
and Constantinou (2024) show that if the node ordering is very different to the topological
ordering of the true graph, it will likely adversely affect the accuracy of the learnt graph. To
counter this, lines 12-19 of Algorithm 2 attempt to improve the accuracy of the learnt graph
by considering both dec score order and its reverse. It chooses between these two orders
by using HC to learn a graph with each order in lines 13 and 14, to test which results in the
higher-scoring DAG. The topological order of the higher-scoring learnt graph is returned as

153



Kitson Constantinou

stable order. The results in Subsection 5.1 show that this empirical approach both stabilises
hill-climbing search and improves the structural accuracy of the learnt graph.

4. Evaluation

The stability and accuracy of our approach is assessed using synthetic datasets generated
from the seventeen discrete variable networks shown in Table 3 of Appendix A. These have
between 8 and 109 nodes and are obtained from the Bayesys (Constantinou et al., 2024) and
bnlearn repositories (Scutari, 2021b). These networks are commonly used in the literature
to assess algorithms, and are largely expert-specified, generally representing causal networks
found in the real world. Sample sizes of 102, 103, 104 and 105 are used to cover a typical
range of sample sizes encountered in practical structure learning, including low-dimensional
settings. The BIC score is used throughout. Discrete variable datasets are used since a
wide variety of standard datasets are available, but the results here are expected to apply
to continuous variable datasets since hill-climbing makes arbitrary orientation choices in
that setting too. Further work to confirm this would be valuable.

Since observational data is being used, the CPDAG of the true graph and the learnt
graph are compared using the F1 metric, which has the advantage of being comparable
between networks of different sizes. The semantics used by the widely-used bnlearn package
(Scutari, 2021a) are adopted to compute F1, and are detailed in Appendix B. To assess the
stability of algorithms, each combination of sample size and network is repeated 25 times
with the variable order, variable names, and row order in the dataset all randomised. The
CPDAG F1 is computed for each of these 25 experiments, and the standard deviation
(S.D.) of the F1 value reported as an indicator of the sensitivity of the algorithm to these
randomised dataset artefacts.

5. Results

5.1. Comparison of Different Orderings

Tabu or HC variant Precision Recall F1 F1 S.D.
Normalised
BIC score

Relative
Execution

time

Tabu - variable order 0.4937 0.4169 0.4426 0.0828 -25.4818 1.00
Tabu - decreasing score order 0.4741 0.3993 0.4236 0.0035 -25.4844 1.16
Tabu - increasing score order 0.5329 0.4487 0.4776 0.0030 -25.4849 1.14
Tabu-Stable 0.5529 0.4670 0.4976 0.0035 -25.4630 1.42
HC - variable order 0.4281 0.3659 0.3844 0.0930 -25.5031 0.70
HC-Stable 0.5029 0.4248 0.4511 0.0032 -25.4684 1.03

Table 1: Mean value of Precision, Recall, F1, S.D. of F1, relative execution time, and BIC
score averaged across all networks and sample sizes for standard and stable variants of Tabu
and HC. Best values are shown in bold, and worst values in bold red text.
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Figure 2: A comparison of the F1 CPDAG of the graph learnt by Tabu using different
node orderings: a) variable order, b) simple increasing or c) decreasing score order, and
d) Tabu-Stable. 25 experiments with randomised variable names, variable order and row
order are conducted for each of the four sample sizes for each network. Shading around lines
indicates the standard deviation of F1 values. Note that lines are drawn on the chart in the
order shown in the key, so a particular line may be hidden where values are coincident.

This subsection reports the F1 achieved by Tabu using different orderings: a) the con-
ventional approach based on variable order, b) using an increasing or c) decreasing score
order, and d) Tabu-Stable incorporating Algorithm 2 which tries both increasing and de-
creasing score order. Figure 2 shows the F1 achieved with these different orderings, with
the shaded area around the lines indicating the S.D. of F1 values at each sample point.
This instability is most pronounced for variable order shown in green, being considerable
for most networks. The instability is substantially reduced with all three score-based order-
ings, although some instability is visible for the Hailfinder network which will be discussed
in Subsection 5.2.

Table 1 summarises the results from Figure 2 by averaging the F1 and F1 S.D. over all
networks and sample sizes, and additionally includes results for HC and HC-Stable, and
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Precision and Recall values. The score-based ordering approaches in both HC and Tabu
reduces mean F1 S.D. by around thirty and twenty five times respectively, indicating that
using a stable order does indeed improve the stability of the learnt graph. Tabu with a
decreasing score order worsens the mean F1 value by 0.0190 whereas using an increasing
score order improves it by 0.0350 over Tabu using variable order. However, Tabu-Stable
produces the largest improvement in F1 of 0.0550, as well as offering the best Precision and
Recall values, suggesting that choosing the better of the decreasing and increasing score
orders does improve overall accuracy. HC using variable order is more unstable than Tabu,
but HC-Stable, again, reduces this instability considerably and increases mean F1 by 0.0667
over conventional HC. However, Tabu-Stable retains most of the accuracy improvement over
HC-Stable that Tabu has over HC, suggesting that the accuracy improvement due to Tabu
and that using a stable node order are additive in Tabu-Stable. These results confirm the
benefits of using Algorithm 2 to determine a stable order.

The penultimate column in Table 1 shows the normalised BIC score averaged across all
networks and sample sizes. BIC scales with sample size, so normalised scores obtained by
dividing BIC by the sample size are used. The normalised BIC score is characteristic for
each network, but this column serves to indicate the overall effect on the BIC score of each
approach. It shows that using a simple decreasing or increasing score order tends to worsen
the score, whereas Tabu-Stable and HC-Stable which use Algorithm 2 tend to improve the
BIC score.

The final column in Table 1 reports the mean execution time relative to Tabu using vari-
able order. HC is substantially quicker than Tabu, since it does not attempt to escape local
maxima and generally performs fewer iterations. For Tabu, the increasing and decreasing
score orders increase the runtime by around 15%. Tabu-Stable is, on average, 42% slower
than conventional Tabu since it performs two additional HC-Stable runs to determine the
node order before the final structure-learning process starts. However, we suggest that the
benefits of improved accuracy and stability outweigh the increased runtime of this relatively
fast algorithm.

5.2. Analysis of the Residual Instability in Tabu-Stable

Sample size
hailfinder win95pts formed pathfinder hailfinder2 win95pts2

102 0.0301 0.0081 0.0041 0.0093 0.0000 0.0077
103 0.0081 0.0135 0.0000 0.0000 0.0000 0.0000
104 0.0157 0.0123 0.0000 0.0000 0.0000 0.0000
105 0.1245 0.0120 0.0000 0.0000 0.0000 0.0000

Table 2: F1 S.D. over 25 random orderings at different sample sizes using Tabu-Stable for
the four networks with residual sensitivity to variable order, and for modified versions of
Hailfinder and Win95pts where identical (or duplicate) variables are prevented.

Tabu-Stable returns a F1 S.D. of 0.000 at all sample sizes in 13 out of the 17 networks
listed in Table 3. Table 2 provides a breakdown of the F1 S.D. by sample size using Tabu-
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Stable for the four networks where some instability remains. Formed and Pathfinder only
have residual instability at a sample size of 100. However, Hailfinder and Win95pts retain
some instability at all sample sizes. This is because both networks have some local structures
and CPT values that deterministically create identical values for pairs of variables at all
sample sizes. The last two columns in Table 2 show results for versions of these networks
that are modified slightly to remove these deterministic relationships. Hailfinder2 and
Win95pts2 have had one node and two arcs removed respectively to achieve this. Table 2
shows that instability has been removed completely for Hailfinder2 and only remains at the
smallest sample size for Win95pts2.

5.3. Comparing Tabu-Stable and HC-Stable with other algorithms

Figure 3: Mean values of F1, F1 S.D., Precision and Recall across networks and sample
sizes which do not contain identical (or duplicate) or single-valued variables for different
algorithms.

Figure 3 compares the mean F1, F1 S.D., Precision and Recall achieved by different
algorithms against HC-Stable and Tabu-Stable. The implementation of FGES from the
Tetrad package (Ramsey et al., 2018), and MMHC, H2PC, PC-Stable, GS and Inter-IAMB
from the bnlearn package (Scutari, 2021a) are used. Results for Tabu and HC using variable
order are also included. The results use the variants of Hailfinder and Win95pts discussed in
Subsection 5.2 which avoid identical variables. Additionally, the bnlearn algorithms reject
datasets which contain any variable that has the same value for all rows, so the cases where
this occurs are also excluded from this comparison. These are the datasets with 100 rows
for the Insurance, Water, Barley, Hailfinder, Win95pts, Formed and Pathfinder networks.
Excluding experiments where datasets contain identical or single-valued variables means
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that the algorithms have potential to achieve full stability, provided they are truly stable.
Thus, all algorithms are compared across the same experiments, with the exception that
FGES failed to complete within 3 hours for sample sizes of 104 and 105 for Hailfinder and
Pathfinder - the mean of the F1s achieved by all the other algorithms is assumed for these
cases when computing the mean F1 for FGES.

Tabu-Stable and HC-Stable are the only algorithms to produce a mean F1 S.D. of zero,
by completely eliminating instability. FGES is found to be almost stable with a mean F1
S.D. of 0.0018. The other algorithms, including PC-Stable which has a mean F1 S.D. of
0.0367, all exhibit considerable instability. Moreover, Tabu-Stable also offers the highest
mean F1 of 0.5341 - this value is higher than that quoted in Table 1 because the datasets
not considered in this set of experiments, due to duplicate or single-valued variables, tend
to be those with lowest sample sizes that also tend to produce lower F1 scores. FGES
produces the second highest mean F1 of 0.5188, and would have been 0.5278 had its failure
cases been ignored rather than being assigned an average F1 over the other algorithms.
FGES provides the best Precision, 0.0129 better than Tabu-Stable, but the latter provides
the best Recall, 0.0269 better than FGES.

6. Concluding Remarks

We present a new hill-climbing approach which eliminates instability as long as the datasets
do not contain identical (or duplicate) variables. This is in contrast to many well-known
algorithms that produce results that are sensitive to arbitrary artefacts of the dataset,
typically the order in which columns appear in the dataset.

To achieve stability, an initial phase is used to first determine a stable node order based
on the objective function scores of each node. This stable node ordering is then used in
subsequent hill-climbing to orientate arcs in iterations where the two highest-scoring changes
to the DAG are the addition of an arc with opposing orientations and which have the same
score improvement. We describe two implementations that use this approach, HC-Stable
and Tabu-Stable.

As well as being completely stable, these algorithms are found to increase the accuracy
of the learnt graph considerably. HC-Stable improves mean F1 by around 16% over conven-
tional HC, and Tabu-Stable by 10% over Tabu across a range of commonly-used networks.
In particular, Tabu-Stable achieves higher accuracy than eight other well-known hybrid,
constraint and score-based algorithms that we compare it to, whilst avoiding the instability
that they all, including PC-Stable, demonstrate to some degree.

The methodology allows for alternative ways of determining a node order to be incorpo-
rated. For example, that of Behjati and Beigy (2020) which aims to generate the topological
order of the true graph. Care would need to be taken that any such method does not use any
dataset artefacts to determine part of the ordering, if the resulting algorithm is to be sta-
ble.We suggest that Tabu-Stable be considered for practical applications and in algorithm
comparisons given its stability, performance, simplicity and robustness. More generally,
stability aspects should be considered when designing and evaluating algorithms because
instability can bias comparative benchmarks and practical results. Moreover, as we see
here, investigating the causes of instability can inform the development of new algorithms.
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Appendix A. Properties of networks used in this study

This appendix provided details of the seventeen discrete variable networks used for eval-
uation in this study. Sports, Covid, Diarrhoea, Property and Formed are obtained from
the Bayesys repository (Constantinou et al., 2024) and the remainder from the bnlearn
repository (Scutari, 2021b)
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Network
Number of
variables

Number
of arcs

Mean
in-degree

Maximum
in-degree

Mean
degree

Maximum
degree

asia 8 8 1 2 2 4
sports 9 15 1.67 2 3.33 7
sachs 11 17 1.55 3 3.09 7
covid 17 37 2.18 5 4.35 10
child 20 25 1.25 2 2.5 8
insurance 27 52 1.93 3 3.85 9
property 27 31 1.15 3 2.3 6
diarrhoea 28 68 2.43 8 4.86 17
water 32 66 2.06 5 4.12 8
mildew 35 46 1.31 3 2.63 5
alarm 37 46 1.24 4 2.49 6
barley 48 84 1.75 4 3.5 8
hailfinder 56 66 1.18 4 2.36 17
hepar2 70 123 1.76 6 3.51 19
win95pts 76 112 1.47 7 2.95 10
formed 88 138 1.57 6 3.14 11
pathfinder 109 195 1.79 5 3.58 106

Table 3: Properties of networks used in this study

Appendix B. Derivation of F1 used

This appendix explains how the F1 metric used to compare the learnt graph with the
data-generating is derived because different authors use slightly different methodologies for
calculating the arc differences which underlie the F1 metric. F1 is defined as

F1 =
2× Precision×Recall

Precision+Recall
(4)

where Precision and Recall are defined as

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(5)

and TP is the number of True Positives, FP is False Positives and FN is False Negatives.
We follow the approach adopted in the bnlearn package (Scutari, 2021a) to compute these
counts as shown in Table 4.
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Learnt
graph

Data-generating
graph

True Positive
(TP)

False positive
(FP)

False Negative
(FN)

−→ −→ 1 0 0
— — 1 0 0
−→ no edge 0 1 0
— no edge 0 1 0

no edge −→ 0 0 1
no edge — 0 0 1
−→ ←− 0 1 1
−→ — 0 1 1
— −→ 0 1 1

Table 4: The contribution to the True Positive, False Positive, False Negative counts (and
hence F1) and SHD resulting from different combinations of edges in the learnt and data-
generating graph used in this study.
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