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Abstract

A frequent goal in healthcare is to estimate personalized causal effects in order to select
the best treatment for a patient from observational or experimental (RCT) data (or both),
where ”best” is defined in terms of maximizing the expectation of the desired outcome. The
first task in estimating personalized effects is selecting the optimal set of personalization
covariates (causal feature selection). This set of covariates is the Markov Boundary of
the outcome in the experimental distribution, also known as the Interventional Markov
Boundary (IMB), and can be identified from RCT data using methods for finding Markov
Boundaries. However, most RCT data are very limited in sample size and do not work well
with these methods. In this work, we develop methods that combine limited experimental
and large observational data to identify the IMB, and improve the estimation of conditional
(personalized) causal effects. These methods extend recent results (Triantafillou et al.,
2021), which were limited to discrete data, to mixed data with binary and ordinal outcomes.
The methods are based on Bayesian regression models. In simulated data, we show that
our methods identify the correct IMB and improve causal effect estimation.

Keywords: Causal prediction, causal graphical models, Bayesian causal effect estimation

1. Introduction

Feature selection is a fundamental problem in machine learning that aims to select the
minimal set of features that lead to the optimal prediction of a target variable Y . For
observational distributions, this set is the Markov Boundary (MB) of Y , MB(Y ), and can be
identified from data using statistical methods (Yu et al., 2018). Such methods are typically
based on conditional independence tests and require large sample sizes. If the causal graph
is known, the MB can be identified using graphical criteria (Pearl, 2000). For example, in a
causal Bayesian network G, the MB of a target variable Y is the set of parents, children, and
spouses of Y in G. This set exhausts the predictive information for the state of a variable
Y , and can be used to obtain the best (and minimal) predictive model P (Y |MB(Y )) for Y .

In healthcare, we are often interested in predicting the outcome O after we intervene on
a treatment T (post-intervention). For personalized post-intervention prediction, we also
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want to condition on a set of pre-treatment covariates V. If we have access to data from the
post-intervention distribution (i.e., RCT data De), we can estimate the post-intervention
distribution P (O|do(T ),V). To optimize our prediction1, we ideally want to condition for
the minimal set of covariates that provide maximal information of the post-intervention
outcome. These correspond to the covariates in the MB of O in the mutilated causal graph
GT . This graph has no incoming edges into T , and corresponds to the post-intervention
distribution. To differentiate from the original MB of Y in the observational distribution,
this set is called Interventional Markov Boundary (IMB) of O with respect to treatment T
(IMBO(T )). However, RCT data are typically limited in sample size, in which case IMBs
might not be found reliably using MB-learning algorithms.

Unlike RCT data, observational data are often plentiful, but may be biased for causal
estimation. Ideally, we would use Do to estimate P (O|do(T ), IMB(O)\T ). However, if there
are latent confounders, P (O|do(T ), IMB(O) \T ) may not be identifiable from observational
data (e.g., in Fig 1, P (O|do(T ), Z) cannot be identified from observational data if C is
unobserved). Triantafillou et al. (2021) showed that a minimal most informative set of
covariates for which the conditional post-intervention distribution is identifiable from Do is
the set of covariates in the Causal Markov Boundary (CMB) of O with respect to T . For
a causal Markov Boundary, P (O|do(T ),CMB(O) \ T ) = P (O|T,CMB(O) \ T ), so we can
just use the observational data for estimation of the post-intervention distribution. CMBs
can be identified using graphical criteria from a causal graph, but they are not unique, and
cannot always be identified solely from observational data with statistical methods.

To summarize, the best predictive model for O|do(T ) should include the pre-treatment
covariates in:

• The interventional MB IMBT (O) of the outcome with respect to the treatment, when
the prediction is based on experimental data De.

• A causal MB CMBT (O) of the outcome with respect to the treatment, when the
prediction is based only on observational data Do.

A very common scenario in healthcare is the following: Researchers have access to
large observational data Do (e.g., Electronic Health Records) and small experimental data
De (i.e., an RCT measuring the average treatment effect of T on O). The ground truth
causal graph is unknown. The researchers want to predict the post-intervention outcome
P (O|do(T ),V = v) for a patient with a set of pre-treatment covariates V = v, to optimize
their treatment assignment.

Notice that, by definition, P (O|do(T ),V = v) = P (O|do(T ), IMBT (O) \ T ) 2. Condi-
tioning on the smaller set IMBT (O)\T instead of all the covariates improves our estimator,
so we ideally want to estimate P (O|do(T ), IMBT (O) \ T ) instead. However, IMBT (O) is
unknown. The RCT data are not powered to identify IMBT (O) or estimate P correctly,
and P (O|do(T ), IMBT (O) \ T ) may not be identifiable from Do. We present a method for
combining De and Do to (a) identify the IMBT (O) (b) decide if P (O|do(T ), IMBT (O) \ T )
is identifiable from Do and (c) get a Bayesian estimate for P (O|do(T ), IMBT (O) \ T ). Our
method extends the algorithm (FindIMB) proposed in Triantafillou et al. (2021), which is
limited to categorical data, where closed-form marginal likelihoods exist. Most applica-

1. get an unbiased, minimal variance estimator
2. To be consistent with the definitions of (Triantafillou et al., 2021), we include the treatment T in the

IMB and the CMB and assume that there is a causal effect of T on O
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tions in healthcare have mixed data, with the outcomes very commonly being binary (e.g.,
30-day mortality) or ordinal (e.g., hospital-free days). In this work, we use Bayesian regres-
sion models (Bayesian logistic and Bayesian ordinal regression) and approximate inference
methods (MCMC sampling) to extend findIMB to ordinal and binary outcomes, binary treat-
ments, and mixed covariates.

Our methods are heavily motivated by embedded clinical trials (Angus, 2015; Angus
et al., 2020), which take place within usual clinical care. In these trials, patients who agree
to participate are randomized to receive a treatment from a set of treatments considered ef-
fective for that patient. The electronic health records (EHRs) of the health system in which
the trial is being conducted contains both experimental data from the trial, and observa-
tional data obtained outside (e.g., before/after) the trial, all measuring the same variables.
We argue that combining observational and experimental data can improve prediction of
the most effective treatments for individual patients, than either type of data alone.

2. Methodology

2.1. Preliminaries

We use the framework of semi-Markovian causal models (SMCMs, Tian and Shpitser,
2003), and assume the reader is familiar with related terminology. Variables are denoted in
uppercase, their values in lowercase, and variable sets in bold. We use G to denote a causal
graph, and say G induces a probability distribution P if P factorizes according to G. We
use O|do(T ) to denote a variable O after the hard intervention on variable T . If we know
the SMCM G, a hard intervention in which a treatment T is set to t can be represented
with the do-operator, do(T=t). In the corresponding graph, this is equivalent to removing
all incoming edges into T , while keeping all other mechanisms intact(denoted by GT ).

A large body of work focuses on identifying if a post-intervention distribution can be
computed from observational probabilities (and hence, observational data). When the
causal graph is known, Shpitser and Pearl (2006a,b) and Tian and Shpitser (2003) pro-
vide sound and complete identifiability results. These methods take as input a causal graph
and a specific marginal or conditional post-intervention probability of interest p, and they
return a formula to derive p using only observational probabilities, if the query is identifi-
able, and N/A otherwise.

2.2. Markov Boundaries

Observational Markov Boundary: AMarkov blanket of a variable O in a set of variables
V is a subset Z ofV conditioned on which other variables are independent ofO: O⊥⊥V\Z|Z.
The Markov boundary of O is the Markov blanket that is also minimal (Pearl, 2000).
For faithful distributions, the Markov boundary of a variable O is unique (Pearl, 1988).
To distinguish from other types of Markov boundaries defined in this work, we use the
terminology observational Markov boundary (OMB) to denote the Markov boundary
of a variable. OMBs can be identified graphically for SMCMs(Richardson, 2003; Pellet
and Elisseeff, 2008). The OMB has been shown to be the minimal set of variables with
optimal predictive performance for a given distribution and response variable, given some
assumptions on the learner and the loss function (Tsamardinos and Aliferis, 2003). Knowing
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the OMB allows a more parsimonious representation of the conditional distribution of O
given V, since P (O|V) = P (O|MB(O)).

In this work, we are interested in the model that gives the optimal prediction of the
post-intervention distribution, with the goal of optimizing treatment assignments. For this
reason, we make the following two assumptions: (a) The set of covariates V only includes
pre-treatment variables and (b) Treatment T has a causal effect on outcome O. The first
assumption reflects the fact that the values of post-treatment covariates are unknown prior
to the treatment, and cannot be used for deciding the optimal treatment. It also simplifies
the expressions for the Markov Boundaries, because we no longer need to consider children
of O and their districts. The second assumption is not really necessary, but the methods
presented here are only of interest when it holds (if a treatment has no effect, there is no
point in optimizing it).

Interventional Markov Boundary: Our goal is to identify the set of variables that
lead to the optimal model for the post-intervention distribution of an outcome O relative to
a specific treatment T . This set is the interventional Markov boundary (IMB) of O
relative to T , denoted IMBT (O). Obviously, IMBT (O) ⊆ MB(O). When we have data from
the post-intervention distribution, we can apply statistical methods for OMB identification
to obtain the IMB of Y relative to T . However, experimental data are often limited in
sample sizes, while OMB identification methods typically rely on conditional independence
tests and may require large sample sizes.

If we know the causal graph G, the post-intervention distribution with respect to T is
induced by the manipulated graph GT . The IMB of O is then the OMB of O in GT ,
and can be identified using the definition of the Markov boundary above. However, the
post-intervention distribution P (O|do(T ), IMBT (O) \ T ), may not be identifiable from the
observational distribution. We then want to answer the following question: What is the best
model for predicting O|do(T ) from the observational distribution?

Causal Markov Boundary: The answer to the question above is theCausal Markov
Boundary (CMB). Intuitively, a CMB is a minimal set of covariates that are maximally
informative for the post-intervention outcome, for which the post-intervention distribution
of T is identifiable from observational distributions. Formally, a CMB is defined as follows:

Definition 1 Let Z ⊆ (V ∪ T ), and Z∗ = Z \ T . Then Z is a causal Markov boundary
(CMB) for O relative to T iff:

1. P (O|do(T ),Z∗) is identifiable from P (T,O,V).

2. For every subset W of V \ Z∗ either P (O|do(T ),Z∗,W) = P (O|do(T ),Z∗), or
P (O|do(T ),Z∗,W) is not identifiable from P (T,O,V).

3. ∄Z′ ⊂ Z∗ s.t. P (O|do(T ),Z′)=P (O|do(T ),Z∗).

Condition (1) ensures identifiability. Condition (2) ensures that the set is maximally infor-
mative: any additional covariate that is informative for the post-intervention outcome leads
to non-identifiability. Condition (3) ensures minimality: No subset of a CMB is a CMB.
Further details and examples of causal Markov Boundaries can be found in Triantafillou
et al. (2021). A CMB is not necessarily unique; it is possible that multiple sets satisfy

315



Lelova Cooper Triantafillou

Definition 1. When V includes only pre-treatment covariates, CMBs have been shown to
satisfy the following properties:

1. CMBs satisfy the backdoor criterion.

2. CMBs, like IMBs, are subsets of the OMB.

3. If IMBT (O) is a CMB, then IMBT (O) = MB(O).

These results enable more efficient algorithms for finding CMBs, limiting the types of esti-
mators and the number of variable sets that we need to consider.

2.3. Algorithm FindIMB.

FindIMB is an algorithm that takes as input observational and experimental data (Do and
De, respectively) and outputs a Bayesian prediction model for O|do(T ). The main idea is
the following: The best prediction (asymptotically) for O|do(T ) is P (O|do(T ), IMBT (O)).
When the IMB is not a CMB, we should not useDo in the estimation of P (O|do(T ), IMBT (O)).
But when the IMB is a CMB, we can and should use both De and Do for this estimation.
In fact, based on property (3) above, P (O|do(T ), IMBT (O)\T ) = P (O|T,CMBT (O)\T ) =
P (O|do(T ),MB(O)).

This is expressed using binary variables, as follows: For every set Z which includes T ,
we can express the event in which Z = IMBT (O) as the disjunction of two complementary
binary variables: HZ = Hc

Z ∨H c̄
Z.

• Hc
Z is true if Z = IMBT (O) = CMBT (O), and false otherwise.

• H c̄
Z is true if Z = IMBT (O) ̸= CMBT (O), and false otherwise.

Hence, when HZ is true, Z \ T are the best conditioning covariates for predicting O|do(T ),
and we therefore want to estimate P (O|do(T ),Z \ T ). If Hc

Z is true, we can use both De

and Do to estimate P (O|do(T ),Z \ T ). Otherwise, if H c̄
Z is true, we only use De.

The algorithm works as follows: For each possible set Z that includes T , we compute (a)
the probability P (H c̄

Z |De, Do) that Z is the IMB but not a CMB, and the corresponding

estimator P̂ (O|do(T ),Z \ T,De) and (b) the probability P (Hc
Z |De, Do) that Z is the IMB

and a CMB, and the corresponding estimator P̂ (O|do(T ),Z \ T,De, Do). In the end, the
algorithm returns a Bayesian average of all the estimates, weighted by their probabilities
P (HC

Z |De, Do), C = c, c̄.
The estimation of P (Hc

Z |De, Do) is central to the method, as it quantifies our belief
that Z is the IMB and (not) a CMB. It is based on the following equation:

P (Hc
Z | De, Do) =

P (De | Do, H
c
Z)P (Do | Hc

Z)P (Hc
Z)∑

ZZZ

∑
C=c,c̄ P (De | Do, HC

Z )P (Do | HC
Z )P (HC

Z )
(1)

We can similarly derive P (H c̄
Z | De, Do) by replacing each appearance of c with c̄ in the

numerator. The denominator is the same for all sets. P (Hc
Z ) and P (Hc

Z ) are the priors
thatHc

Z andHc
Z hold, respectively, and can be set as uniform all Z and C (hence, P (Hc

Z )=
P (Hc

Z ) = 0.5). P (Do | Hc
Z), P (Do | H c̄

Z) quantify how well the observational data fit with
the hypotheses Hc

Z , Hc
Z . Triantafillou et al. (2021) showed that, based on property (3)

above, P (Do | H c̄
Z) is equal to the marginal likelihood of O in Do, in a model that uses

Z to predict O from the observational data. P (Do | Hc
Z) is the same marginal likelihood
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Algorithm 1: FindIMB

input : Do, De, treatment T , outcome O, pre-treatment covariates V, number of
samples N

output: Post-intervention distribution P (O|do(T ),V)
1 MB(O)← MarkovBoundary(O,Do);
2 foreach subset Z of MB(O) and C = c, c do
3 foreach s =1 to N do
4 Sample (θze)

s from a non informative prior f(θze) ;
5 Compute the likelihood Lc̄(s) = P (De|(θze)s);
6 Sample (θzo)

s from the observational posterior f(θzo|Do) using MCMC;
7 Compute the likelihood Lc(s) = P (De|(θzo)s);
8 end
9 P (De|Do, H

c̄
Z) ≈

∑
s Lc̄(s)/N ;

10 P (De|Do, H
c
Z) ≈

∑
s Lc(s)/N ;

11 Estimate P (HC
Z |De, Do) using Eq. 1;

12 Estimate P (O|do(T ),V, De, Do, H
C
Z ) using Eq. 9;

13 end

14 P (O|do(T ),V)←
∑
Z

∑
C=c,c

P (O|do(T ),V, De, Do, H
C
Z )P (HC

Z |De, Do);

for the OMB, and zero for all subsets of the OMB. For the models we use in this work,
this marginal likelihood cannot be computed in closed form, so we use a sampling-based
approximation.

2.3.1. Estimating P (De | Do, H
c
Z), P (De | Do, H

c̄
Z).

The core of the method is the computation of the probabilities P (De | Do, H
c
Z), P (De |

Do, H
c̄
Z). These probabilities quantify how likely we are to see the experimental data, given

the observational data and the fact that set Z is (or not) the IMB and the CMB. The
method builds two “priors” for predicting De: One based on the observational data Do,
and the other based on an uninformative prior. The idea is that the observational prior,
which is quite strong due to the large sample size of Do, will be a better prior for De only
if Hc

Z is true. Otherwise, the weak prior will be better.

We use θze to denote the parameters of the interventional distributions P (O | do(T ),Z\
T ), and θzo to denote the observational distributions P (O | T,Z\T ). Overall, for any given
Z and C = c, c̄, we can obtain P

(
De | Do, H

C
Z

)
as the marginal likelihood, marginalizing

over the experimental parameters:

P
(
De | Do, H

C
Z

)
=

∫
θze

P (De | θze) f
(
θze | Do, H

C
Z

)
dθze, (2)

Under Hc
Z, the observational and post-interventional distributions are the same, hence

θze=θzo and f (θze | Do, H
c
Z) = f (θzo | Do), i.e., the posterior of the observational parameters,

based on observational data. In contrast, under H c̄
Z, the post-intervention and observational
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parameters are not the same, and the observational data may not be informative 3 for the
post-intervention parameters, hence f (θze | Do, H

c
Z) = f (θze).

Triantafillou et al. (2021) computes Eq. 2 in closed form for discrete data using Multino-
mial distributions with Dirichlet priors. In this work, we extend the method to mixed data,
so no closed-form solution is available. In the sections below, we describe the statistical
models and approximate inference methods we use.

Once we have computed Eq. 2, we can use it in Eq. 1 to estimate the probability that
Z is an IMB and (not) a CMB. In the end, the algorithm returns a Bayesian weighted
average over all sets Z and all C = c, c̄. Obviously, computing over all subsets of a large
set of covariates would not be feasible. Based on property (2) described above, we only
need to look into the subsets of covariates in the OMB, which can be identified with an
asymptotically correct method from the large observational data. This is implemented in
line 1 of Algorithm 1.

2.3.2. Implementation for binary outcomes.

To model the relationship of a binary outcome to a binary treatment and mixed covariates,
we use a Bayesian logistic regression model. Let O, T , Z ={Z1, . . . , Zk} be the outcome,
treatment, and covariates of the model. Then for each patient i, Oi ∼ Bernoulli(πi), with

πi =
eb0+b1Zi1+...+bkZik+bk+1Ti

1 + eb0+b1Zi1+...+bkZik+bk+1Ti
(3)

ForN experimental samples, the likelihood ofDe given a set of parameters θze = (b0, . . . , bk+1)
is:

P (De|θze) =
N∏
i=1

πOi
i (1− πi)

(1−Oi) (4)

where π can be computed for sample i using Eq. 3.
Our goal is to compute the marginal likelihood of De under the two complementary

hypotheses Hc
Z and H c̄

Z (Eq.2).
Case 1: Computing the marginal likelihood P (De|Do, H

c̄
Z ). Under H c̄

Z , the obser-
vational data are not informative for the post-intervention distribution, so Eq. 2 becomes

P
(
De | Do, H

C
Z

)
=

∫
θze

P (De | θze) f (θze) dθ
z
e. (5)

Since we do not have information about θze, we can simply use an uninformative prior f(bi)
for each coefficient in θze. Choosing uninformative priors for logistic regression is not straight-
forward. A popular choice for uninformative priors is a uniform distribution, or a Normal
distribution with large variance (e.g., N (0, 1000).) However, these priors are not invariant
under parameterization, so even if a prior is uninformative for π, it may not be uninformative
for other parameters of interest, such as the log odds log( π

1−π ) (Wasserman and Kass, 1996;
Seaman and Stamey, 2012). We therefore used a Cauchy distribution as a weakly informa-
tive default prior distribution as proposed by Gelman et al. (2008). The authors propose

3. This claim is not absolutely accurate, since it is possible that we can derive bounds for θze based on θzo
with some additional assumptions; however, we cannot get derive estimates.
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that this distribution is a good choice since actual effects fall within a limited range. For
example, a typical change in an input variable would be unlikely to correspond to a change
as large as 5 on the logistic scale (which would move the probability from 0.01 to 0.50 or
from 0.50 to 0.99). Hence, we use bν ∼ Cauchy(0, 2.5), ν = 1, .., k + 1, b0 ∼ Cauchy(0, 10)
as weakly informative priors. This implies that we expect the success probability for an
average case to be between 10−9 and 1− 10−9 (for standardized covariates).

Eq. 5 cannot be computed in closed form, so we approximate it with a sampling sum.
Specifically, we sample 1000 samples θze = (b0, . . . bk+1) from the Cauchy prior, compute the
likelihoods using Eq. 4, and then sum over them to get the marginal likelihood.
Case 2: Computing the marginal likelihood P (De|Do, H

c
Z ). Under Hc

Z , θze = θzo
and Eq. 2 becomes

P
(
De | Do, H

C
Z

)
=

∫
θzo

P (De | θzo) f (θzo|Do) dθ
z
o. (6)

f (θzo|Do) is the posterior of the observational parameters θzo = θze = (b0, b1, . . . , bk+1) given
the observational data. Eq. 6 cannot be computed in closed form, so we approximate it with
a sampling sum, but this time we sample 1000 samples from the posterior f (θzo|Do). We use
the same Cauchy priors for the model parameters θzo, and sample from the posterior using
Markov Chain Monte Carlo (MCMC) sampling. For each posterior sample (b0, . . . , bk+1|Do),
we then compute the likelihood of the experimental data using Eq. 4. The marginal
likelihood in Eq. 6 is then approximated as the average likelihood for all samples.

2.3.3. Implementation for ordinal outcomes.

For an ordinal outcome, binary treatment, and mixed covariates, we use a Bayesian ordinal
regression model. Let O be the ordinal outcome with J ordered categories, T be the
treatment, and Z ={Z1, . . . , Zk} be the covariates of the model. Then for each patient i,
Oi ∼ Categorical(πiπiπi), where πiπiπi = (πi0, πi1, ..., πiJ) are the probabilities for each of the J
ordered categories. The cumulative probability of the outcome being less than or equal to
a specific category, j, is:

P (Oi ≤ j) =
ebj0+b1Zi1+...+bkZik+bk+1Ti

1 + ebj0+b1Zi1+...+bkZik+bk+1Ti
(7)

and the probability of the outcome being in a j category is: πi0 = P (Oi ≤ 0), πij = P (Oi ≤
j) − P (Oi ≤ j − 1) and πiJ = 1 − P (Oi ≤ J − 1). The proportional odds assumption
requires that slopes remain constant across categories, while intercepts may vary. For N
experimental samples, the likelihood of De given parameters θze = (bj0, . . . , bk+1) is:

P (De|θze) =
N∏
i=1

J∏
j=1

π
[Oi=j]
ij (8)

where [Oi = j] evaluates to 1 if Oi = j , and 0 otherwise. πij can be computed for a sample
i using Eq. 7. As with logistic regression, we use a sampling-based approach to compute
the marginal likelihoods under the two competing hypotheses:

319



Lelova Cooper Triantafillou

Case 1: Computing the marginal likelihood P (De|Do, H
c̄
Z ). Under H c̄

Z , the obser-
vational data are not informative and we approximate Eq. 1 using uninformative priors.
For the slopes, we use similar Cauchy priors described above bν ∼ Cauchy(0, 2.5), ν =
1, .., k + 1. For the intercepts, we use a Symmetric Dirichlet distribution with concentra-
tion parameter vector a=1, which is essentially a uniform prior. We then follow the same
sampling procedure described for binary outcomes.
Case 2: Computing the marginal likelihood P (De|Do, H

c
Z ). Under Hc

Z we can
approximate Eq. 6 by sampling from the posterior of θzo given the observational data. We
use the same Cauchy and Dirichlet priors for the model parameters θzo, and follow the same
procedure described for binary outcomes.

2.3.4. Estimating P
(
HC

Z | De, Do,
)
.

Once we have estimated the marginal likelihoods of the experimental data using both the
weak prior and the strong observational prior, we can use Eq. 1 to estimate P (H c̄

Z | De, Do)
and P (Hc

Z | De, Do). These probabilities tell how likely it is that Z is an IMB, and if we
can include observational data in the estimation of P (O | do(T ),V).

2.3.5. Estimating P (O|do(T ),V, De, Do).

Having quantified the probability that each subset of the OMB is an IMB and a CMB, we
can average overall all subsets Z and hypotheses, HC

Z , to compute P (O|do(T ),VVV ). Let t,o,
V=v, denote given instances of T, O, and V, respectively. When V= v, we use ZZZ = zvzvzv to
denote the corresponding values of the variables of Z that are in V. Under both Hc

Z and
H c̄

Z, P (O|do(T ),VVV ) = P (O|do(T ),Z \ T ). Hence, for an instance of V=v, we have:

P (o | do(t),v, De,Do) =
∑
ZZZ⊂VVV

∑
C=c,c̄

P (o | do(t), zvzvzv \ t,De, Do, H
C
Z )P (HC

Z | De, Do). (9)

The individual probabilities P (o | do(t), zvzvzv \ t,De, Do, H
C
Z ) can be estimated as posterior

expectations of P (O | do(T ),ZZZ) from the data. Specifically, under Hc
Z, we use the empirical

posterior expectation of the parameters E(θze|De, Do) using both experimental and obser-
vational data in our computation. In contrast, under H c̄

Z, we use the empirical posterior
expectation of the parameters E(θze|De) using only experimental data.

3. Related Work

Causal and Interventional Markov Boundaries were introduced in Triantafillou et al. (2021).
We extend their work for mixed data, using Bayesian regression models and MCMC infer-
ence. We briefly present other works that estimate post-intervention distributions in the
presence of latent confounders. Markov boundaries: Several algorithms learn OMBs
from data under causal insufficiency (Yu et al., 2018, 2020). These methods can be used
to identify the IMBs from the experimental data, but require large sample sizes. Iden-
tifiability: When the causal graph is unknown, Hyttinen et al. (2015) and Jaber et al.
(2019) provide identifiability results using the Markov equivalence class of graphs that are
consistent with the observational data. Hyttinen et al. (2015) can provide identifiability
results for graphs that are consistent with conditional independencies in both De and Do.
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However, the method is not proven to be complete for these settings. These methods are
not directly comparable with our method because they do not select features for optimal
prediction. Moreover, they provide expressions for the post-intervention distributions that
are based on observational data alone, not by combining Do and De like FindIMB. Com-
bining observational and experimental data to learn causal graphs: Several causal
discovery methods combine observational and experimental data to learn causal structure
(Triantafillou and Tsamardinos, 2015; Hyttinen et al., 2014; Mooij et al., 2020; Andrews
et al., 2020). These methods return a summarized version of all the causal graphs that
are consistent with all the independence constraints in all the data sets, observational and
experimental. While these methods can be used to improve the estimation of IMBs, it is
not clear that they can always provide a unique solution in this setting. Two additional
drawbacks they have for the purpose of optimized target prediction are that (a) they rely
on conditional independence tests that are unreliable when Ne is low, and (b) they learn the
entire graph and do not focus on finding the neighborhood of the target variable. This can
result in unreliable orientations due to error propagation. The FCItiers method introduced
by Andrews et al. (2020) is closest to FindIMB (Mooij et al. (2020) is also related, but more
general, and the two are equivalent for our setting). FCItiers can learn a family of SMCMs
from De and Do when (a) the target of the intervention is known and (b) we specify ”tiered
knowledge” on the variables (e.g., we know which variables are pre-treatment). The method
is complete in these settings. None of these methods are implemented for mixed data.
Selecting optimal adjustment sets: Some methods seek to select optimal adjustment
sets for efficient average treatment effect estimation. Given a graph (DAG/PDAG or
SMCM), these methods apply a graphical adjustment criterion to identify a set of valid
adjustment sets for estimating the average treatment effect of T on O. Then, they try to
identify the set that leads to the estimator with the smallest asymptotic variance among
all the valid adjustment sets (Perkovic et al., 2017; Rotnitzky and Smucler, 2019, 2020;
Smucler et al., 2020; Witte et al., 2020). These methods are not directly comparable to
ours since they focus on identifying average treatment effects while our method focuses on
conditional effects and combines observational with experimental data when the graph is
unknown.
Potential outcomes approaches: Kallus et al. (2018) present a method for estimating
conditional average treatment effects (CATEs) by combining Do and De. The method as-
sumes a binary treatment and uses the experimental data to model the effect of possibly
unmeasured confounders as a function of the measured covariates. The CATE is obtained
from the Do by adding the modeled correction. The method assumes that the hidden con-
founding has a linear parametric structure, and is implemented for continuous variables.
Extending it to binary/ordinal outcomes is not straightforward.

4. Experiments

In this section, we show that FindIMB can improve causal effect estimation in the case
of mixed data, using Bayesian regression models and approximate inference. Specifically,
we show that FindIMB can detect the presence of latent confounders, and can improve
causal effect estimation by including observational data when the added bias is small. The
implementation codes are available at https://github.com/n-magot/PGM_2024.
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Figure 1: Causal graphs for the experimental (left) and observational (right) data, showing
the causal structure among treatment T , outcome O, and pre-treatment covariates Z, C.

We compared FindIMB to the following approaches: (a) Experimental: using only
experimental data and the ground-truth IMB. We use the posterior expectation of
P (O|do(T ), IMBT (O) \T,De) as the estimator for P (O|do(T ),V). This estimator is always
unbiased, but has a large variance due to low sample sizes. (b) Observational: using
only observational data and the ground-truth IMB. We use the posterior expectation of
P (O|do(T ), IMBT (O) \ T,Do) as the estimator for P (O|do(T ),V). Other methods using
only experimental or only observational data would at best perform as (a) and (b) above,
respectively. Other methods that combine observational and experimental data are not
currently implemented for mixed data.

To illustrate the behavior of FindIMB, we used two scenarios: One with latent con-
founder, and one without. We simulated Do from the DAG on Fig. 1 (right), and De from
the corresponding manipulated DAG, shown in Fig. 1 (left). Do is much larger in size
than De, and the coefficients in the regression models are the same for both data sets. We
simulated Ne experimental samples and 1000 observational samples. We used constant co-
efficients (b1, b2, b3, b5) = (1.5, 0.2, 0.3, 0.4). We used b4 = 0.2 for Scenario 1, and varied it to
control confounding effect in Scenario 2. We evaluate our methods in how well they predict
the outcome in a new experimental data set with 1000 samples, using binary cross-entropy
for binary outcomes and root mean squared error for ordinal outcomes.

(a) Binary outcome (b) Ordinal outcome

Figure 2: Comparative performance for FindIMB and using only observational or experi-
mental data, when there is no latent confounder, for increasing experimental sample size.
y-axis measures prediction error (lower is better). FindIMB performs on par with observa-
tional data. Experimental data perform worse for small sample sizes.
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(a) Binary outcome (b) Ordinal outcome

Figure 3: Comparative performance for FindIMB, observational and experimental, when
there is a latent confounder, for increasing confounding (coefficient b4). y-axis measures
prediction error (lower is better). FindIMB performs similar to experimental data for most
cases; observational data perform worse as confounding increases.

Scenario 1: No latent confounding: In this scenario, Do and De include Z and C.
Due to a much larger sample size and the lack of confounding, using Do should improve
causal prediction of the outcome, compared to De. Results are shown in Fig. 2. FindIMB

performs on par with the observational data, as expected, while the experimental data
perform much worse for small sample sizes. Scenario 2: Latent confounding: In this
scenario, C is unmeasured. By varying the coefficient of C → T , we examine the behavior
of FindIMB for increasing confounding. In this case, using Do should lead to biased causal
prediction, and using De only is preferable. Results for 20 repetitions can be shown in Fig.
3. Observational data lead to worse causal prediction of the outcome, compared to the
experimental. The FindIMB performs only slightly worse than the experimental data, and
both outperform the observational data. In summary, FindIMB can successfully identify if
the IMB is also the CMB, and improve causal estimation when possible.

5. Conclusions

We present an extension of FindIMB, an algorithm that combines observational and ex-
perimental data to learn interventional Markov boundaries and improve causal estimation.
Using Bayesian regression models and approximate inference, we show that the method
improves causal estimation for ordinal/binary outcomes and mixed data. In the future, we
plan to explore greedy strategies for scaling up the method to allow for more conditioning
covariates, and explore non-parametric Bayesian approaches to increase model flexibility.
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