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Abstract

Supervised classification is one of the most ubiquitous tasks in machine learning. Genera-
tive classifiers based on Bayesian networks are often used because of their interpretability
and competitive accuracy. The widely used naive and TAN classifiers are specific instances
of Bayesian network classifiers with a constrained underlying graph. This paper introduces
novel classes of generative classifiers extending TAN and other famous types of Bayesian
network classifiers. Our approach is based on staged tree models, which extend Bayesian
networks by allowing for complex, context-specific patterns of dependence. We formally
study the relationship between our novel classes of classifiers and Bayesian networks. We
introduce and implement data-driven learning routines for our models and investigate their
accuracy in an extensive computational study. The study demonstrates that models em-
bedding asymmetric information can enhance classification accuracy.

Keywords: Classification; Bayesian networks; Staged trees; Structural learning.

1. Introduction

We consider the problem of supervised classification of a categorical class variable C given
a vector of categorical features X = (X1, . . . , Xp) using generative classifiers. Given a
training set of labeled observation D = {(x1, c1), . . . , (xn, cn)}, a generative classifier aims
to learn a joint probability P (c,x) and assign a non-labeled instance x to the most probable
a posteriori class, thus inducing the following decision rule

argmax
c∈C

P (c|x) = argmax
c∈C

P (c,x),

where xi ∈ X and ci ∈ C. With X = ×p
i=1Xi and C, we denote the sample spaces of the

feature and class variables, respectively.
Bayesian network classifiers (BNCs) (Bielza and Larrañaga, 2014; Friedman et al., 1997)

are the most widely-used class of generative classifiers which factorize P (c,x) according to a
Bayesian network over X and C. They have been shown to have competitive classification
performance with respect to black-box discriminative classifiers while being interpretable
and explainable since they explicitly describe the relationship between the features using a
simple graph. The famous naive Bayes classifier (Minsky, 1961) can be seen as a specific
instance of BNCs with a fixed graph structure where no edges between features are allowed.

The main limitation of BNCs is that they can only formally encode symmetric condi-
tional independence. However, there is now a growing amount of evidence that real-world
scenarios are better described by more generic, asymmetric types of relationships (e.g.
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Eggeling et al., 2019; Leonelli and Varando, 2023, 2024c; Rios et al., 2024), for instance,
context-specific ones (Boutilier et al., 1996). There have been limited attempts to extend
BNCs to embed asymmetric types of dependence, most notably Bayesian multinets (Geiger
and Heckerman, 1996), but their use in practice is limited.

Staged tree classifiers have been recently introduced by Carli et al. (2023). They have
been shown to extend the class of BNCs to embed complex patterns of asymmetric depen-
dence using staged tree models (Collazo et al., 2018; Smith and Anderson, 2008). Staged
trees are an explainable class of probabilistic graphical models that visually depict depen-
dence using a colored tree. A particular type of staged tree classifier is the naive staged
tree, which, while having the same complexity as naive Bayes, extends it to account for
asymmetric dependences.

In this paper, we introduce novel classes of staged tree classifiers, which can be seen
as refinements of famous sub-classes of BNCs, namely TAN (Friedman et al., 1997) and
k-DB (Sahami, 1996) classifiers. We formally investigate the relationship between our novel
staged tree classifiers and their BNCs’ counterparts. Data-driven learning routines for these
novel classes are discussed and implemented. An extensive experimental study compares
the classification performance of our novel classifiers to BNCs. The results highlight that
these novel classes can increase classification accuracy in some cases by explicitly modeling
asymmetric and flexible relationships between features.

2. Bayesian Network Classifiers

Let G = ([p], EG) be a directed acyclic graph (DAG) with vertex set [p] = {1, . . . , p} and
edge set EG. For A ⊂ [p], we letXA = (Xi)i∈A and xA = (xi)i∈A where xA ∈ XA = ×i∈AXi.
We say that P is Markov to G if, for x ∈ X,

P (x) =
∏
k∈[p]

P (xk|xΠk
),

where Πk is the parent set of k in G. Henceforth, we assume the existence of a linear
ordering σ of [p] for which only pairs (i, j) where i appears before j in the order can be in
the edge set.

The ordered Markov condition implies conditional independences of the form

Xi ⊥⊥X[i−1] |XΠi .

Let G be a DAG and P Markov to G. The Bayesian network model (associated to G) is

MG = {P ∈ ∆|X|−1 |P is Markov to G},

where ∆|X|−1 is the (|X| − 1)-dimensional probability simplex.
Let G be the set of DAGs with vertex set [p] and ordering σ. We define the space of

Bayesian network models over X asMG = ∪G∈GMG.

2.1. Classes of Bayesian Network Classifiers

BNCs are DAGs with vertices X and C. Although any Bayesian network could be, in
principle, used for classification, most commonly, the space of considered DAGs is restricted
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Figure 1: Examples of BNCs with three features and one class.

to those where C has no parents and there is an edge from C to Xi for every i ∈ [p] (this
class is sometimes referred to as Bayesian network-augmented naive Bayes, Friedman et al.,
1997). By BNCs, we henceforth refer to such classifiers.

Subclasses of BNCs entertaining specific properties in the underlying DAG have been
defined. The simplest possible model is the so-called naive Bayes classifier (Minsky, 1961),
which assumes that the features are conditionally independent, given the class (Figure 1(a)).
BNCs of increasing complexity can then be defined by adding dependencies between the
feature variables. Another commonly used classifier is the TAN BNC (Friedman et al.,
1997), for which each feature has at most two parents: the class and possibly another
feature (Figure 1(b)). The more generic k-DB BNCs (Sahami, 1996) assume that each
feature can have at most k feature parents (Figure 1(c)). Naive and TAN classifiers are
k-DB BNCs for k = 0 and k = 1, respectively.

Although BNCs of any complexity can be learned and used in practice, empirical evi-
dence demonstrates that model complexity does not necessarily imply better classification
accuracy (Bielza and Larrañaga, 2014). Despite their simplicity, naive and TAN BNCs have
been shown to lead to good accuracy in classification problems.

3. Staged Tree Classifiers

As before, consider a p-dimensional categorical random vector X taking values in the prod-
uct sample space X. Let (V,E) be a directed, finite, rooted tree with vertex set V , root
node v0, and edge set E. For each v ∈ V , let E(v) = {(v, w) ∈ E} be the set of edges
emanating from v and L be a set of labels.

An X-compatible staged tree is a triple (V,E, θ), where (V,E) is a rooted directed tree
and:

1. V = v0 ∪
⋃

i∈[p]X[i];

2. For all v, w ∈ V , (v, w) ∈ E if and only if w = x[i] ∈ X[i] and v = x[i−1], or v = v0
and w = x1 for some x1 ∈ X1;

3. θ : E → L∗ = L×∪i∈[p]Xi is an edge labeling such that θ(v,x[i]) = (κ(v), xi) for some
function κ : V → L. The function κ is called the coloring of the staged tree T .

If θ(E(v)) = θ(E(w)) then v and w are said to be in the same stage. Therefore, the
equivalence classes induced by θ(E(v)) form a partition of the internal vertices of the tree
in stages.
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Figure 2: Examples of X-compatible staged trees

Points 1 and 2 above construct a rooted tree where each root-to-leaf path, or equivalently
each leaf, is associated with an element of the sample space X; similarly, each internal vertex
of the tree is associated with an element of the sample space of the X[i] = ×j∈[i]Xj . Then a
labeling of the edges of such a tree is defined where labels are pairs with one element from
a set L and the other from the sample space Xi of the corresponding variable Xi in the
tree. By construction, X-compatible staged trees are such that two vertices can be in the
same stage if and only if they correspond to the same sample space. Figure 2(a) reports an
(X1, X2, X3)-compatible staged tree over three binary variables. The coloring given by the
function κ is shown in the vertices and each edge (·, (x1, . . . , xi)) is labeled with Xi = xi.
The edge labeling θ can be read from the graph by combining the text label and the color of
the emanating vertex. The staging of the staged tree in Figure 2(a) is given by the partition
{v0}, {v1}, {v2}, {v3, v4} and {v5, v6}.

The parameter space associated to an X-compatible staged tree T = (V,E, θ) with
labeling θ : E → L∗ is defined as

ΘT =
{
y ∈ R|θ(E)| | ∀ e ∈ E, yθ(e) ∈ (0, 1) and

∑
e∈E(v)

yθ(e) = 1
}

(1)

Equation (1) defines a class of probability mass functions over the edges emanating from any
internal vertex coinciding with conditional distributions P (xi|x[i−1]), x ∈ X and i ∈ [p]. In
the staged tree in Figure 2(a) the staging {v3, v4} implies that the conditional distribution
of X3 given X1 = 0, and X2 = 0, represented by the edges emanating from v3, is equal to
the conditional distribution of X3 given X1 = 0 and X2 = 1. A similar interpretation holds
for the staging {v5, v6}. This in turn implies that X3 ⊥⊥ X2|X1, thus illustrating that the
staging of a tree is associated with conditional independence statements.

Let lT denote the leaves of a staged tree T . Given a vertex v ∈ V , there is a unique
path in T from the root v0 to v, denoted as λ(v). The number of edges in λ(v) is called the
distance of v, and the set of vertices at distance k is denoted by Vk. For any path λ in T ,
let E(λ) = {e ∈ E : e ∈ λ} denote the set of edges in the path λ.
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The staged tree model MT,θ associated to the X-compatible staged tree (V,E, θ) is the
image of the map

ϕT : ΘT → ∆|lT |−1;

y 7→
( ∏

e∈E(λ(l))

yθ(e)

)
l∈lT

(2)

Therefore, staged tree models are such that atomic probabilities are equal to the product
of the edge labels in root-to-leaf paths and coincide with the usual factorization of mass
functions via recursive conditioning. Let Θ be the set of functions θ from E to L∗, that is
all possible partitions, or staging, of the staged tree. We define MT = ∪θ∈ΘMT,θ. So as
MG is the union of all possible BN models given a specific ordering,MT is the union of all
possible staged tree models, that is of all possible stagings, given a specific ordering of the
variables.

3.1. Staged Trees and Bayesian Networks

Although the relationship between Bayesian networks and staged trees was already formal-
ized by Smith and Anderson (2008), a formal procedure to represent a Bayesian network as
a staged tree has been only recently introduced (e.g. Varando et al., 2024). Assume X is
topologically ordered with respect to a DAG G and consider an X-compatible staged tree
with vertex set V , edge set E and labeling θ defined via the coloring κ(x[i]) = xΠi of the
vertices. The staged tree TG, with vertex set V , edge set E and labeling θ so constructed,
is called the staged tree model of G. Importantly, MG = MTG

, i.e. the two models are
exactly the same, since they entail exactly the same factorization of the joint probability
(Smith and Anderson, 2008). Clearly, the staging of TG represents the Markov conditions
associated with the graph G.

Varando et al. (2024) approached the reverse problem of transforming a staged tree
into a Bayesian network. Of course, since staged trees represent more general asymmetric
conditional independences, given a staged tree T most often there is no Bayesian network
with DAG GT such that MT =MGT

. However, Varando et al. (2024) introduced an al-
gorithm that, given an X-compatible staged tree T , finds the minimal DAG GT such that
MT ⊆MGT

. Minimal means that such a DAG GT embeds all symmetric conditional inde-
pendences that are inMT and that there are no DAGs with less edges than GT embedding
the same conditional independences.

As an illustration, the staged tree in Figure 2(a) can be constructed as the TG from
the Bayesian network with DAG X2 ← X1 → X3, embedding the conditional independence
X3 ⊥⊥ X2 | X1. Conversely, consider the staged tree T in Figure 2(b). Such a staged tree
does not embed any symmetric conditional independence, only non-symmetric ones, and
therefore there is no DAG GT such that MGT

= MT . Furthermore, the minimal DAG
GT such thatMT ⊆ MGT

is the complete one since the staging of the tree implies direct
dependence between every pair of variables.

Leonelli and Varando (2022) introduced a subclass of staged trees based on the topol-
ogy of the associated minimal DAG, which will be relevant for the definition of the novel
classifiers below. A staged tree T is said to be in the class of k-parents staged trees if the
maximum in-degree in GT is less or equal to k. For instance, the staged tree in Figure 2(a) is
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Figure 3: Staged tree representation of the BNCs in Figure 1.

in the class of 1-parent staged trees, whilst the one in Figure 2(b) is not, since its associated
minimal DAG is such that X3 has two parents.

3.2. Staged Trees for Classification

Carli et al. (2023) discussed how staged tree models can be used for classification purposes.
As in Section 1, suppose X is a vector of features and C is the class variable. A staged
tree classifier for the class C and features X is a (C,X)-compatible staged tree. The
requirement of C being the root of the tree follows from the idea that in most BNCs the
class has no parents, to maximize the information provided by the features for classification.
All BNCs reviewed in Section 2 can therefore be represented as staged tree classifiers, by
constructing the equivalent TG. Figure 3 shows the staged trees equivalent to the BNCs in
Figure 1. However, Carli et al. (2023) demonstrated that the class of staged tree classifiers
is much larger than that of BNCs. Formally, letting MC

G be the space of BNCs and MC
T

the space of (C,X)-compatible staged trees, thenMC
G ⊂MC

T .

Since the class of staged tree classifiers is extremely rich, Carli et al. (2023) introduced
a subclass of staged tree classifiers termed naive. Let Vk be the set of nodes of a tree at
distance k from the root. Formally, a (C,X)-compatible staged tree classifiers such that
for every k ≤ p, the set Vk is partitioned into |C| stages is called naive. The name naive
comes from these classifiers having

∑p
j=1 |C|(|Xj | − 1) + |C| − 1 free parameters that need

to be learned, the same number as for the standard naive Bayes model. An example of a
naive staged tree is given in Figure 4(a). Notice that unlike naive BNCs, which have a fixed
DAG structure, the coloring of the vertices must also be learned from data for naive staged
trees. Carli et al. (2023) proposed using k-means and hierarchical clustering algorithms
for this task. Just as for generic staged tree classifiers, naive staged trees generalize naive
BNCs. Letting Mnaive

G and Mnaive
T be the space of naive BNCs and naive staged tree

classifiers, respectively, we have that Mnaive
G ⊂ Mnaive

T . Importantly, Carli et al. (2023)
showed via simulation experiments that naive staged tree classifiers can correctly classify
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Figure 4: Examples of subclasses of staged tree classifiers.

parity functions (or 2-XORs), which cannot be captured by naive Bayes models (Varando
et al., 2015).

4. Context-Specific Classifiers as Refinements of BNCs

Next, we introduce novel subclasses of staged tree classifiers that are different from naive
staged tree classifiers. These subclasses are inspired by subclasses of BNCs, and they are
refined to embed asymmetric patterns of dependence.

Definition 1 A staged tree classifier T is said to be a TAN (or generally k-DB) refinement
if its minimal DAG GT is a TAN (or k-DB) BNC.

Examples of TAN and k-DB staged tree classifiers are given in Figure 4. The coloring of the
tree is much more flexible than for BNCs, embedding asymmetric patterns of dependence.
It can be shown that for these staged tree classifiers T (except for the naive staged tree
classifier) their associated GT are the ones in Figure 1. The following simple result links
our new classes of classifiers to k-parents staged trees. Although straightforward, this
result guides the learning algorithms for the new classes of classifiers since routines already
established for k-parents staged trees can be simply adapted to our classifiers.

Proposition 2 If a staged tree classifier is a k-DB refinement, then it is in the class of
(k + 1)-parents staged trees.

Notice that naive staged tree classifiers are not necessarily 1-parent staged trees since they
are defined differently from k-DB refinements. The latter are defined through the minimal
DAG, while naive staged trees are defined based on the number of parameters of the model.
The naive staged tree in Figure 4 is such that its minimal DAG is complete and different from
the DAG of a naive Bayes model. Conversely to naive and generic staged tree classifiers,
our novel classes of classifiers are refinements of their DAG equivalent. Let Mk

G and Mk
T

be the space of k-DB BNCs and staged tree classifiers.
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Proposition 3 Mk
T ⊆Mk

G.

An analogous result can be stated for TAN classifiers. This means that our classifiers may
represent a subset of the decision rules that their BNC counterparts can. However, having a
smaller number of parameters that can thus be better estimated from data, our refinements
may provide better performance than BNCs when they represent the true data-generating
system.

5. Learning Staged Tree Classifiers

Learning the structure of a staged tree from data is challenging due to the fast increase in
the size of the tree with the number of the considered random variables. The first learning
algorithm used for this purpose was the agglomerative hierarchical clustering (AHC) pro-
posed by Freeman and Smith (2011). This starts from a staged tree where each vertex is in
its own stage and joins the two stages at each iteration leading to the highest increase in a
model score until no improvement is found. Initially, AHC considered only a Bayesian score,
but the stagedtrees implementation contains a backward hill-climbing method, which is
similar in the optimization technique, and allows using arbitrary scores such as BIC and
AIC. Since then, other learning algorithms have been proposed, most often by considering
some restricted space of staged trees (e.g. Leonelli and Varando, 2024a,b; Rios et al., 2024),
just as in this paper. The novel learning algorithms we introduce follow three steps: (i)
an initial, appropriate BNC is learned from data; (ii) the DAG associated with the learned
BNC is transformed into its equivalent staged tree; (iii) the AHC algorithm is run start-
ing from the equivalent staged tree from (ii). We give details of these phases and their
implementation in the following sections.

5.1. Step (i): Learning a BNC

To learn BNCs we employ the routines implemented in the bnclassify R package (Mi-
haljević et al., 2018). In particular, we consider the following algorithms and bnclassify

corresponding implementations:

• TAN BNCs obtained by either optimizing the log-likelihood with the Chow-Liu al-
gorithm (tan cl, Chow and Liu, 1968) or maximizing the cross-validated estimated
accuracy (tan hc).

• k-DB BNCs obtained by greedy optimization of the cross-validated estimated accuracy
(kdb).

5.2. Step (ii): Transforming a DAG into a Staged Tree

Varando et al. (2024) defined a conversion algorithm to transform any Bayesian network
G into its equivalent staged tree TG. In our routines, we use the implementation provided
in the stagedtrees R package (Carli et al., 2022) by the functions as sevt and sevt fit.
Notice that by construction the resulting staged tree is a (k + 1)-parents staged tree.
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5.3. Step (iii): Refining the Staged Tree

Starting from the staged tree obtained in the previous step, we run the AHC algorithm
which only joins stages together (no splitting of stages). We use the stages bhc function
from the stagedtrees package based on the minimization of the model BIC (Görgen et al.,
2022). This step learns asymmetric dependencies between the features that were joined by
an edge in step (i) without adding any new dependence between the features and the class.
Therefore the resulting staged tree classifier is in the appropriate k-DB class.

For parameter estimation (i.e. the conditional probabilities of the stages) we use the
state-of-the-art maximum likelihood estimation method, possibly with a smoothing param-
eter to avoid zero probabilities which could harm classification for unseen instances (Bielza
and Larrañaga, 2014). Under the assumption of the correct stage structures, this method
corresponds to the Bayes classifier rule, which minimizes the probability of misclassifica-
tion (Devroye et al., 2013).

6. Experiments

We compare different instantiations of the novel paradigm for staged tree classifiers in com-
putational experiments. Specifically, we consider staged tree classifiers refined from TAN
BNCs (sevt tan cl and sevt tan hc) and k-DB (for k = 3, 5; sevt 3db and sevt 5db). We
compare their performance to the corresponding BNC classifiers (bnc tan cl, bnc tan hc,
bnc 3db, and bnc 5db). We also consider the naive staged tree classifier (sevt kmeans cmi)
obtained with the k-means clustering of probabilities as proposed by Carli et al. (2023)
and implemented in the stages kmeans function of stagedtrees. For completeness, we
also report results for a random forest (Breiman, 2001) classifier (rf 1) learned with the
randomForest R package (Liaw and Wiener, 2002).

6.1. Benchmarks

We compare the considered classifiers across various benchmark datasets, similarly to Carli
et al. (2023) but also including some additional datasets with a larger number of features.
Details about the datasets are given in Table 1, which also includes the normalized entropy
of the class variable as a measure of dataset imbalance. For each dataset, we repeat 10 times
an 80% - 20% train-test split, and we report (Figures 5, 6, 7) median accuracies and elapsed
times. Median F1 scores, balanced accuracies, and precisions are reported in Appendix B.
In Figure 5 we compare all considered staged tree classifiers and a random forest classifier.
While TAN and k-DB classifiers have comparable accuracy across all datasets, the naive
staged tree is more variable, in some cases outperforming the others and in others having
lower accuracy. All staged tree classifiers require a similar training time. In Figure 6 we
compare staged trees k-DB classifiers with their corresponding k-DB BNCs and in Figure 7
we similarly compare TAN staged trees with corresponding TAN BNCs. It can be observed
that overall the accuracy of all approaches is similar. In some instances, BNCs outperform
staged tree refinements, while in others the reverse can be observed. Considering TAN
classifiers only, the st bhc tan cl often outperforms the others. As expected, staged tree
refinements require more training time, but can still be learned in short time frames.
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Figure 5: Comparison of median accuracies and elapsed time (in seconds) for all the staged
tree classifiers considered. Additionally, results for random forest classifiers are reported.
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Figure 6: Comparison of median accuracies and elapsed time (in seconds) between k-DB
BNCs and k-DB staged tree classifiers (k = 3, 5).
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Figure 7: Comparison of median accuracies and elapsed time (in seconds) between TAN
BNCs and TAN staged tree classifiers.

Furthermore, we report in Figure 11 a measure of asymmetric independence in the learned
classifiers, showcasing that the learned models actually include asymmetric information.

6.2. Simulations

We perform a simulation study to explore how the classifiers behave under different scenar-
ios. We consider three different data-generating processes:

• random sevt: generates a random staged tree model over binary variables, with the
ordering C,X1, X2, . . . , Xp and then samples from its induced joint distribution. Ran-
dom staged trees are generated with the random sevt function in the stagedtrees

package. The function randomly joins stages starting from the full staged tree and
assigns random conditional probabilities uniformly from the probability simplex.

• linear: samples independent binary predictors as Bernulli(q) where q ∼ Unif([0, 1]).
The class variable C is then obtained as C = sign (

∑p
i=1 αiXi + γ + ε), where αi, γ ∼

Unif([−p, p]) and ε ∼ Unif([−1.2, 1.2]).

• xor: similar to the linear case, but with C = sign (
∏p

i=1Xi + ε).

We vary the number of predictors (p) ranging from 2 to 15. For each case, we generate
100 repetitions of 1000 training and 1000 test samples generated with the above three
processes. In Figure 8 we report median accuracies, F1 scores, and elapsed times (in seconds)
across repetitions. The naive staged tree outperforms all other approaches for all values of p
under the random sevt and xor simulation scenarios, while it has a decrease of performance
in the linear data-generating scenario for large values of p. The other algorithms have
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Figure 8: Median accuracy, F1, and elapsed time (in seconds) in the simulation study.

comparable performance except for the xor data generating scenario. The results in the
xor scenario are partially to be expected: TAN and kDB BNC, as well as the staged
tree refinements, cannot represent complex functions (Varando et al., 2015), and thus, as
the number of predictors increases, their performance decrease drastically. As partially
anticipated in Carli et al. (2023), the naive staged tree classifiers, here implemented with
k-means clustering, can estimate optimal decision functions across a diverse range of data-
generating processes, while only slightly worsening the sample-efficiency for larger p.

7. Discussion

The paper introduced novel learning routines for subclasses of staged tree classifiers, which
enhance BNCs with context-specific patterns of dependence. Experimental studies showed
that in some scenarios they can outperform BNCs, although the difference in accuracy
appears to be only marginal. As with BNCs, different and specific parameter estimation
techniques could be envisioned, such as discriminative learning (e.g. Pernkopf et al., 2011)
and weighted schemes (e.g. Frank et al., 2002). Furthermore, adjusted class prior probabili-
ties could be used to address imbalanced datasets, when different classification errors entail
distinct costs (Wong and Tsai, 2021). The simulation study suggests that naive staged tree
classifiers are highly expressive, with high accuracy in the xor data generating scenario,
where all other classifiers perform poorly. This fact led us to believe that naive staged
trees may be able to theoretically represent any decision rule, or at least a set of decision
rules much larger than those expressible by subclasses of BNCs. A formalization of this
statement and its associated proof is currently being developed.
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Appendix A. Benchmark Datasets Details

Dataset # observations # variables |X| imbalance measure Source

breast cancer 277 10 332640 0.872 Zwitter and Soklic (1988)
credit card 30000 12 18432 0.762 Yeh (2016)

eeg 14979 15 32768 0.992 Roesler (2013)
energy1 768 9 1728 1.000 Tsanas and Xifara (2012)
energy2 768 9 1728 1.000 Tsanas and Xifara (2012)
fallEld 5000 4 64 0.888 Shenvi et al. (2019)
fertility 100 10 15552 0.529 Gil and Girela (2013)
house votes 232 17 131072 0.997 UCI ML repository (1987)
indian liver 579 11 15552 0.862 Ramana and Venkateswarlu (2012)

magic04 19020 11 118098 0.936 Bock (2007)
monks1 432 7 864 1.000 Wnek (1992)
monks2 432 7 864 0.914 Wnek (1992)
monks3 432 7 864 0.998 Wnek (1992)
puffin 69 6 768 0.999 Bouveyron et al. (2019)
reinis 1841 6 64 0.587 Højsgaard et al. (2012)

ticTacToe 958 10 39366 0.931 Aha (1991)
titanic 2201 4 32 0.908 Dawson (1995)
wisconsin 683 10 1024 0.934 Wolberg (1992)

Table 1: Details about the 19 datasets included in the experimental study.

Appendix B. Additional Results
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Figure 9: Median F1 scores, balanced accuracies and precisions for k-DB BN and staged
tree classifiers.
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Figure 10: Median F1 scores, balanced accuracies and precisions for TAN BN and staged
tree classifiers.
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Figure 11: Measure of asymmetric conditional independence learned by refining the corre-
sponding BN classifier (bnc tan cl or bnc 5db) to a staged event tree (with the stages bhc

method). The values reported are 1− (#params st)
(#params bnc) , where (#params bnc) is the number of

free parameters in the BN classifier and (#params st) is the number of parameters in the
refined staged event tree classifier. Values close to 0 indicate that the stages bhc algorithm
was not able to find additional asymmetric relationships, while values close to 1 hint at the
presence of a large number of asymmetric independences.
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