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Abstract
Causal discovery amounts to learning a directed acyclic graph (DAG) that encodes a causal model.
This model selection problem can be challenging due to its large combinatorial search space, par-
ticularly when dealing with non-parametric causal models. Recent research has sought to bypass
the combinatorial search by reformulating causal discovery as a continuous optimization problem,
employing constraints that ensure the acyclicity of the graph. In non-parametric settings, existing
approaches typically rely on finite-dimensional approximations of the relationships between nodes,
resulting in a score-based continuous optimization problem with a smooth acyclicity constraint. In
this work, we develop an alternative approximation method by utilizing reproducing kernel Hilbert
spaces (RKHS) and applying general sparsity-inducing regularization terms based on partial deriva-
tives. Within this framework, we introduce an extended RKHS representer theorem. To enforce
acyclicity, we advocate the log-determinant formulation of the acyclicity constraint and show its
stability. Finally, we assess the performance of our proposed RKHS-DAGMA procedure through
simulations and illustrative data analyses.
Keywords: Causal discovery; graphical model; kernel methods; RKHS; structural equation model.

1. Introduction

Structural equation models (SEMs) based on directed acyclic graphs (DAGs) have found wide-
spread applications ranging from computational biology (Zhang et al., 2023) to manufacturing
(Göbler et al., 2024) and finance (Ji et al., 2018). To represent the joint dependence structure,
each variable is modeled as a function of a subset of the other variables and noise. In this setting,
DAG-based models assume the absence of causal feedback loops. Although this assumption can
be restrictive, it is crucial for defining non-linear models. Indeed, it is often unclear whether cyclic
systems of structural equations have a unique solution or if they admit a solution at all.

In many applications, the underlying DAG is unknown, and methods for causal discovery, which
learn the DAG from data, offer useful insights. Numerous algorithms have been proposed for
causal discovery; see, e.g., Drton and Maathuis (2017) or Spirtes and Zhang (2019). A classical
constraint-based approach relies on testing conditional independences (Spirtes and Glymour, 1991;
Tsamardinos et al., 2003; Margaritis and Thrun, 1999). Another prominent approach is score-based
algorithms (Heckerman et al., 1995; Chickering, 2002). In this work, we focus on a score-based
approach. Specifically, we will take up a recent theme that aims to find a DAG minimizing a model
selection score through a continuous optimization problem with a continuous acyclicity constraint
applied to a weighted adjacency matrix W . This approach was initiated in the NOTEARS algorithm
(Zheng et al., 2018), which assumes a linear SEM and uses an exponential acyclicity constraint
transforming the combinatorial optimization problem into a continuous one that is solved using an
augmented Lagrangian scheme. Several follow-up works have proposed alternative characteriza-
tions of acyclicity (Yu et al., 2019; Nazaret et al., 2023; Ng et al., 2020). One such work introduced
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the DAGMA algorithm (Bello et al., 2022), which is generally faster than NOTEARS. In line with
related literature, we refer to this broad approach as differentiable causal discovery.

Zheng et al. (2020) extended this methodology to non-parametric settings. Specifically, the au-
thors modeled each variable as a non-parametric function of the other variables and noise, proposing
to approximate the non-parametric functions by multi-layer perceptions or via a (truncated) basis
expansion in the original functional space—i.e., the space of functions whose derivatives are square-
integrable over the domain (an expansion is then possible via the trigonometric basis of functions).
They then minimize the corresponding residual loss subject to the exponential acyclicity constraint.
In our work, we build on this approach under additional assumptions that the non-parametric func-
tions are continuously differentiable, taking up a perspective of (Gaussian) RKHS.

In the MLP framework of Zheng et al. (2020), the entry Wkj of the weighted adjacency matrix
is defined as the L2 norm of the kth column of the weight matrix in the first hidden layer of the jth
MLP. When approximating by basis expansions, the general non-parametric model is assumed to be
an additive model. The entries of the weighted adjacency matrix are defined as the L2 norm of the
coefficients corresponding to the basis approximation.

Both the MLP and the basis expansion methods in Zheng et al. (2020) lead to finite-dimensional
optimization problems in terms of neural network weights or basis coefficients. The current MLP
approximation is sensitive to the number of hidden units: while increasing the size of the hidden
layers increases the flexibility of MLP functions, larger networks require more samples for accurate
estimation (Zheng et al., 2020). Moreover, the MLP approximation relies on random initialization
of weights, which introduces randomness in results (see Figure 2 in Waxman et al., 2024). Fine-
tuning the architecture of a neural network is, thus, a non-trivial task. On the other hand, the current
basis expansion approximations are restricted through a focus on additive models.

Contributions. In this work, we present a novel kernel-based methodology for differentiable
causal discovery in non-parametric settings. Our contributions can be summarized as follows:

• We approximate each non-parametric function that represents the dependency structure be-
tween random variables using an RKHS with a differentiable kernel k. We establish a version
of an RKHS Representer Theorem for an empirical acyclicity-constrained optimization prob-
lem, similar to that of Rosasco et al. 2013 in the statistical learning context. Given data
(xi)ni=1, this leads to optimizing functions that are combinations of evaluations of the kernel
and its partial derivatives:

n∑
i=1

αik(x, x
i) +

n∑
i=1

d∑
a=1

βai
∂k(x, s)

∂sa

∣∣∣∣
s=xi

. (1)

• Let fj represent the dependency structure between j-th random variable and the other random
variables. If x 7→ fj(x) is continuously differentiable for all x in a connected and compact
sample space X , then ∂fj

∂xk
= 0 implies that fj does not depend on xk. Thus, we define

the weighted adjacency matrix directly via the partial derivatives of the functions fj . This
approach is model-agnostic in the sense that the weights do not refer to approximations to fj .

• We base our optimization on the DAGMA method (Bello et al., 2022) and adopt the log-
determinant acyclicity constraint hldet, for which we demonstrate stable optimization behavior
on the boundary of the domain.

• We explore the behavior of kernel-based differentiable causal discovery in simulation exper-
iments as well as the collection of cause-effect datasets from Mooij et al. (2016). The code
for our experiments is available on the first author’s GitHub site.1

1. https://github.com/yurou-liang/RKHS-DAGMA
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Outline. Section 2 sets up notation, reviews the DAG learning problem, and presents basic facts
about RKHS. Section 3 summarizes existing acyclicity constraints and discusses the stability of the
log-determinant acyclicity constraint, on which our work is based. Section 4 introduces the sparsity
regularizer and examines the extended RKHS representer theorem for the constrained optimization
problem with acyclicity constraint. Section 5 outlines the resulting constrained optimization prob-
lem and introduces the RKHS-DAGMA algorithm for learning sparse nonparametric graphs. In
Section 6, we compare the performance of RKHS-DAGMA with different versions of nonparamet-
ric NOTEARS (Zheng et al., 2020) in numerical experiments. Additional details on the experiments
and proofs are given in the Appendix.

2. Background
2.1. Structural Equation Model and Differentiable Causal Discovery

Let X = (X1, . . . , Xd) be a random vector taking values in X ⊂ Rd defined on some proba-
bility space (Ω,F ,P). We assume X is a bounded connected non-empty open set. Let [d] :=
{1, 2, . . . , d}. Consider a directed acyclic graph G = (V,E) with vertex set V = [d] and edge set
E ⊂ V × V . As usual, pa(i) = {j ∈ V : (j, i) ∈ E} is the set of parents of a vertex i ∈ V . For a
subset A ⊂ [d], let XA = (Xi)i∈A. When A = ∅, we set XA ≡ 0.

In a graphical model, each variable Xj exhibits a constrained stochastic relationship with the
other coordinates of random vector X := (Xj)

d
j=1 (Maathuis et al., 2019). Presenting the model

through structural equations and assuming additive noise, the model for DAG G postulates that

Xj = fj(X) + εj , j = 1, . . . , d, (2)

where each measurable function fj : Rd 7→ R depends only on the subvector Xpa(i), and (εj)j∈[d]
are mutually independent stochastic error terms. In this model, the conditional expectations are
E[Xj |Xpa(j)] = fj(X), where we note again that fj : X → R does not depend on Xk if k /∈ pa(j).

The DAG learning problem for the considered models may be formulated as follows. Let
X ∈ Rn×d be a data matrix whose rows (xi)ni=1 represent n i.i.d. observations. Let xij be the
j-th coordinate of the i-th observation. We denote the loss function by ℓ : X n × Yn 7→ R+,
where Y ⊂ R is the image space for predictions. The typical loss function is the least squares loss
ℓ(y, ŷ) = ∥y − ŷ∥22. The goal is to estimate f = (f1, . . . , fd) by minimizing the score function

L(f) :=
1

2n

d∑
j=1

ℓ(Xj , fj(X)) subject to the dependencies in f corresponding to a DAG, (3)

where, in slight abuse of notation, fj(X) =
(
fj
(
x1
)
, . . . , fj(x

n)
)
. We assume that each fj is con-

tinuously differentiable and that fj and its derivative are both square-integrable. As in Waxman et al.

(2024), we define the weighted adjacency matrix W ∈ Rd×d with entries W (f)kj :=
∥∥∥∂fj(·)

∂xk

∥∥∥
L2

.
This definition is model-agnostic in that it does not refer to any particular family of approximation
models for the function fj (as was done, e.g., in the MLP setup of Zheng et al., 2020).

In the sequel, PX denotes the joint distribution of the random vector X . We write C1(X ) for
the space of continuously differentiable functions over X and L2(X ) for the space of (equivalence
classes of) square-integrable functions on X , i.e., functions f : X → R with

∫
X f2(x)PX(dx) <

∞. We will mostly drop dependence on the domain and on the underlying distribution PX and sim-
ply write L2 := L2(X ) or L2 := L2(Rd) when the domain is clear from the context. Furthermore,
we use ∥·∥∞ to denote the essential supremum norm w.r.t. Lebesque measure λ on a (subset)X ⊂ R.
For g : X 7→ R in C1(X ), we write ∂

∂xk
g(x) for its partial derivative (as a map x 7→ ∂

∂xk
g(x)) and
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∂
∂xk

g(x)|x=s for the derivative’s value at point x = s. Finally, we denote the i−th smallest eigen-
value of a real matrix A ∈ Rd×d by λi(A); so, |λ1(A)| ≤ |λ2(A)| ≤ · · · ≤ |λd(A)|. The spectral
radius ρ(A) = |λd(A)| is the largest eigenvalue of A in magnitude.

2.2. Kernels and RKHS

To estimate the structural equation model in (2), we use the toolbox of kernel-based algorithms
(Steinwart and Christmann, 2008, Chap. 4). For a given vector space X , let k : X × X 7→ R
be a symmetric function such that for any n ∈ N, {xi}ni=1 ∈ X n, and c ∈ Rn, it holds that
c⊤Kc ≥ 0, where K =

(
k
(
xi, xj

))n
i,j=1

∈ Rn×n is the kernel matrix. Such a function k(·, ·)
is termed a kernel. Its values can be represented as an inner product in a Hilbert space H0, i.e.,
k
(
xi, xj

)
=
〈
ϕ(xi), ϕ(xj)

〉
H0

, where ϕ : X 7→ H0 is the feature map. To every kernel k, we can
associate a reproducing kernel Hilbert space (RKHS) H , which is a space of functions f : X 7→ R
for which the reproducing property holds: f(x) = ⟨f, k(·, x)⟩H for all x ∈ X , f ∈ H .

Let H be an RKHS, and let k being its correspondent reproducing kernel k : X × X 7→ R. Let
RE,D(fj) :=

1
n

∑n
i=1E(xij , fj(x

i)) be the empirical risk for convex loss-function E : R × Y 7→
R+. Consider the empirical risk with function complexity regularizer based on an arbitrary non-
decreasing function J : R 7→ R+:

RE,D(fj) + J
(
∥fj∥H

)
. (4)

Then (see, e.g. Schölkopf et al., 2001, Thm 1), the minimizer of (4) can be written as

f̂j(·) =
n∑

i=1

αj
ik(·, x

i),

where αj ∈ Rn. Furthermore, the reproducing property of the RKHS directly implies that f̂j(x) =∑n
i=1 α

j
ik(x, x

i) for all x ∈ X .

3. Acyclicity Constraints

The earliest work that transfers the discrete acyclicity constraint in Problem (3) to a continuous
differentiable constraint is NOTEARS (Zheng et al., 2018). It introduced the following acyclicity
constraint based on the trace-exponential of the weighted adjacency matrix W ∈ Rd×d:

hexp(W ) = Tr(exp(W ◦W ))− d,

where ◦ is the Hadamard product. Since W ◦W has nonnegative entries, we may consider hexp also
as a function of nonnegative matrices A ∈ Rd×d

≥0 , A = W ◦W . Using the fact that x 7→ exp(x) can
be represented by uniformly over R convergent power series and by the linearity of the trace one
can generalize the acyclicity constraint to the so-called Power Series Trace Family (PST) (see also
Nazaret et al., 2023, Def. 1). The members of the family can be expressed as follows:

h(A) =

∞∑
k=1

ak Tr[A
k],

where (ak)k∈N∗ ∈ RN∗
≥0, and A ∈ Rd×d

≥0 . Table 1 lists some examples.
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Name αk ha

hexpm
1
k! Tr exp(A)− d

hlog
1
k − log det(Id −A)

hinv 1 Tr(Id −A)−1

hbinom

(
d
k

)
Tr(Id +A)d − d

Table 1: PST acyclicity constraints

Name ha

hspectral |λd(A)|
hldet − log det(sId −A) + d log s

Table 2: Spectral-based acyclicity constraints

Another class of constraints, the spectral-based acyclicity constraints, was developed based on
the fact that the spectral radius of a non-negative weighted adjacency matrix A is zero if and only if
A corresponds to a DAG (Nazaret et al., 2023; Bello et al., 2022). Table 2 gives examples.

Nazaret et al. (2023) introduced three criteria for constraints to ensure stable optimization be-
havior and showed that the PTS acyclicity constraints are not stable during the optimization process.
Bello et al. (2022) studied the acyclicity constraint hldet, based on the log-determinant of the weight-
matrix A. More precisely, for s > 0, consider space of matrices Ws := {A ∈ Rd×d : s > ρ(A)}
and define hsldet : Ws → R as

hsldet(A) := − log det(sId −A) + d log s. (5)

Bello et al. (2022) show favorable performance of hldet in comparison to the constraints hexp and
hpoly. We will adopt the constraint hldet in the sequel. We explain our choice from the optimization
perspective in the following theorem.

Theorem 1 The constraint function hsldet(·) from (5) satisfies the following stability properties:
For all A ∈ Rd×d

≥0 it holds:

• V-stable If hsldet(A) ̸= 0, then for ε→ 0+, hsldet(εA) ≥ cε for some positive constant c.

• D-stable hsldet(A) and ∇hsldet(A) are well-defined where ▽hsldet(A) = (sId − A)−T , with
▽hsldet(A) = 0 if and only if A is a DAG.

Finally, hsldet is an acyclicity constraint in the sense that

hsldet(A) ≥ 0 , with hsldet(A) = 0 if and only if graph generated by matrixA is a DAG.

No PST constraint is V-stable for d ≥ 2, i.e., there exists A ∈ Rd×d, h(εA) = O
(
εd
)

as ε→ 0,
ε > 0 (Nazaret et al., 2023, Theorem 2). In contrast, V-stability ensures hsldet does not vanish
rapidly to 0, and D-stability ensures that hsldet and its gradient exists. Although hspectral is both V-
stable and D-stable (Nazaret et al., 2023), we observe that in practice, hspectral(W ) and hsldet(W )
operate on distinctly different scales, with hspectral(W ) being substantially larger than hsldet(W ).
This considerable difference in magnitude raises challenges in assessing whether hspectral(W ) can
be regarded as sufficiently small to be considered zero. Thus, we choose hsldet(W ).

4. Overall Learning Objective

4.1. Sparsity Regularizer

In applications, we often expect the random variables Xj to have only a few parent variables and,
thus, invoke a sparsity regularizer. Recall that we assume that the functions fj : X → R are in the
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class C1(X ), and the functions fj and their derivatives are both square-integrable. We consider the
regularizer (compare also Rosasco et al. 2013)

Ω1(fj) =
d∑

k=1

∥∥∥∥∂fj(·)∂xk

∥∥∥∥
L2

=
d∑

k=1

√∫
X

(
∂fj(x)

∂xk

)2

PX(dx). (6)

To develop a data-based decision rule we need to consider an empirical counterpart for the ∥·∥L2

norm of the derivative. Thus, we form an empirical estimate based on the data X = {xi}ni=1, by
setting ∥∥∥∥∂fj(·)∂xk

∥∥∥∥
n

:=

√√√√ 1

n

n∑
i=1

(
∂fj(xi)

∂xk

)2

.

Then the empirical estimate of (6) is

ΩD
1 (fj) =

d∑
k=1

∥∥∥∥∂fj(·)∂xk

∥∥∥∥
n

.

Similarly, the empirical estimate of the coefficient Wjk of the weighted adjacency matrix is

WD
kj =

∥∥∥∥∂fj(·)∂xk

∥∥∥∥
n

.

4.2. Constrained Empirical Optimization Problem Solved by Kernel Methods

For each j ∈ [d], we further assume fj : X → R, j ∈ [d] to be in a reproducing kernel Hilbert space
(RKHS) H generated by a bounded continuously-differentiable kernel k on X and use the term
λ∥fj∥2H to penalize function complexity. Then we aim to minimize the following loss function:

d∑
j=1

1

2n
ℓ(Xj , fj(X)) + τ(2ΩD

1 (fj) + λ∥fj∥2H) s.t. hsldet(W
D) = 0, (7)

where τ, λ are positive numbers and s > 0 is some fixed number (typically set to 1). Following
Rosasco et al. (2013), we show a version of the RKHS Representer Theorem for problem (7) with
the log-determinant acyclicity constraint. The main point of the result below is to show that the
solution of the log-determinant constrained empirical minimization problem (7) admits the form of
a finite linear combination, for which we may then optimize the weights.

Theorem 2 Let X be a bounded connected non-empty open set in Rd, k(·, ·) be a bounded coun-
tiniously differentiable kernel. Then the constrained minimizer of (7) can be written as

f̂j
τ
(x) =

n∑
i=1

αj
ik(x, x

i) +

n∑
i=1

d∑
a=1

βj
ai

∂k(x, s)

∂sa

∣∣∣∣
s=xi

, x ∈ X , (8)

where αj , (βj
ai)

n
i=1 ∈ Rn and a, j ∈ [d]. Then,

∥∥∥f̂jτ∥∥∥2
H

=

n∑
i,l=1

αj
iα

j
l k(x

i, xl) + 2

n∑
i,l=1

d∑
a=1

αj
iβ

j
al

∂k(xi, xl)

∂xla
+

n∑
i,l=1

d∑
a,b=1

βj
aiβ

j
bl

∂k(xi, xl)

∂xia∂x
l
b

. (9)

258



LEARNING NON-PARAMETRIC DIRECTED ACYCLIC GRAPHICAL MODELS

Via Theorem 2, we may estimate every function fj by a kernel estimator. As no random variable
should cause itself, fj should not depend on xj as its input. Thus, to estimate fj we replace k in (8)
with a restricted kernel k−j that depends only on the subvector (xk)k ̸=j and use the representation

f̂j(x) =
n∑

i=1

αj
ik

−j(x, xi) +
n∑

i=1

d∑
a=1

βj
ai

∂k−j(x, s)

∂sa

∣∣∣∣
s=xi

.

Let θj = {αj , βj
ai : a ∈ [d], i ∈ [n]} denote the parameters for each fj , and let θ = (θ1, . . . , θd).

Then the loss function is constructed as follows:

d∑
j=1

1

2n
ℓ(Xj , f̂j

θ
(X)) + τ [2ΩD

1 (f̂j
θ
) + λ

∥∥f̂jθ∥∥2H ]. (10)

To evaluate the acyclicity constraint on the dataset, using the Representer Theorem for the function
f̂j , we consequently obtain for every k, j ∈ [d]:

WD
kj(f̂j

θ
) = WD(θ)kj =

∥∥∥∥∥∂f̂j
θ
(x)

∂xk

∥∥∥∥∥
n

=

{
1

n

n∑
i=1

[
n∑

l=1

αj
l

∂k−j(xi, xl)

∂xik
+

n∑
l=1

d∑
a=1

βj
al

∂k−j(xi, xl)

∂xik∂x
l
a

]2} 1
2

, (11)

and consequently

ΩD
1 (f̂j

θ
) =

d∑
k=1

√√√√ 1

n

n∑
i=1

(
∂f̂j

θ
(xi)

∂xk

)2

=
d∑

k=1

WD(θ)kj . (12)

As a default, we base our algorithm on the Gaussian kernel kγ
(
x, x′

)
= exp(− 1

γ2 ∥x − x′∥2),
based on the Euclidean distance between x and x′. For γ > 0, j ∈ [d], we define the restricted
Gaussian kernel k−j

γ : Rd−1 7→ R as

k−j
γ (x, x′) := exp

(
− 1

γ2

d∑
i ̸=j

(xi − x′i)
2

)
. (13)

It corresponds to the Gaussian kernel kγ
(
x, x′

)
when fixing the j-th coordinate to a constant.

Remark 3 We want the decision rule returned by our estimation algorithm to belong to the space of
continuously differentiable functions, as this guarantees that a vanishing partial derivative implies
that the function does not depend on the considered coordinate. To this end, we claim that any
function that belongs to Gaussian RKHS Hγ(X ) also belongs to C1(X ). To see this, let Hγ be the
RKHS of the real-valued Gaussian RBF kernel kγ for γ > 0. Since kγ(·, ·) is (infinitely many times)
differentiable, Theorem 10.45 in Wendland (2004) implies that the associated RKHS Hγ(X ) is a
subset of the space of continuously differentiable functions. Therefore, Hγ(X ) ⊂ C1(X ), which
implies that ∥f∥C1(X ) <∞ for every f ∈ Hγ .
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5. Optimization
Combining Equations (10), (11), (12) together with least squares loss and log-determinant acyclicity
constraint, we obtain the following constrained empirical optimization problem:

min
θ

d∑
j=1

{
1

2n

∥∥∥Xj − f̂j
θ
(X)
∥∥∥2
2
+ τ [2ΩD

1 (f̂j
θ
) + λ

∥∥f̂jθ∥∥2H ]

}
s.t. − log det(sId −WD(θ) ◦WD(θ)) + d log(s) = 0.

As in DAGMA, we use a central path method to solve the constrained optimization problem. We
give our method in Algorithm 1 and refer to it as RKHS-DAGMA. Note that line 3 of Algorithm 1
means that starting at θ = θ(t), θ(t+1) is obtained by the ADAM optimizer (Kingma and Ba, 2015).

Algorithm 1: RKHS-DAGMA

Input: Data matrix X, initial coefficient (learning step) µ(0) (e.g., 1), decay factor
α ∈ (0, 1)(e.g., 0.1), sparsity parameter τ (e.g., 1× 10−4), function complexity
parameter λ (e.g., 1× 10−3), log-det parameter s > 0 (e.g., 1), number of iterations
T (e.g., 6), threshold ω (e.g., 0.1).

Output: Ŵ , the estimated weighted adjacency matrix.

1 Initialize θ(0) so that WD(θ(0)) ∈Ws.
2 for t← 0 to T − 1 do
3 Starting at θ(t), solve θ(t+1) =

argminθ µ
(t)(
∑d

j=1{
1
2n

∥∥Xj− f̂j
θ
(X)
∥∥2
2
+τ [2ΩD

1 (f̂j
θ
)+λ

∥∥f̂jθ∥∥2H ]})+hsldet(W
D(θ)).

4 Set µ(t+1) = αµ(t).
5 end
6 Threshold matrix Ŵ = WD(θ(T )) · 1(WD(θ(T )) > ω).

6. Experiments
This section is divided into three parts. First, we analyze the performance of RKHS-DAGMA in
a simple bivariate prediction setting, distinguishing cause-effect within artificially constructed toy
models. Second, we evaluate and compare the properties of RKHS-DAGMA with non-parametric
NOTEARS algorithms, including NOTEARS-MLP and NOTEARS-SOB, as well as the score-
based FGES algorithm (Ramsey, 2015) on sampled directed Erdős-Rényi graphs of growing dimen-
sion. Finally, we assess the performance of RKHS-DAGMA against NOTEARS-MLP, NOTEARS-
SOB, and FGES on real-world bivariate datasets (Mooij et al., 2016).

6.1. Toy Example

We illustrate the performance of RKHS-DAGMA by two simple simulations with d = 2 nodes and
n = 100 data points. Figure 1 plots the ground truth data points (blue) and estimated function values
obtained by RKHS-DAGMA (red) in the bivariate causal models (a) Y = X2 + ε, X ∼ U [0, 10]
and (b) Y = 10 sin(X) + ε, X ∼ U [−3, 3]. Let West be the estimated weighted adjacency matrix
without any thresholding. The results of Figure 1(a) and Figure 1(b) correspond to the estimated
matrices

West =
(

0 10.35
6.22× 10−4 0

)
, West =

(
0 4.91

8.49× 10−4 0

)
,
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(a) quadratic relationship (b) sine relationship

Figure 1: Illustrations of RKHS-DAGMA by toy examples with two nodes.

respectively. In both cases, W12 is large, whereas W21 is small enough to be ignored after thresh-
olding, indicating that RKHS-DAGMA finds correct causal relationships.

6.2. Structure Learning

Next, we compare RKHS-DAGMA to non-parametric NOTEARS methods by comparing the es-
timated DAG with the ground truth, generated as Erdős-Rényi (ER) directed graphs with given
topological ordering. Zheng et al. (2020) consider several graph models, including ER and scale-
free graphs. As one of the hardest settings (Zheng et al., 2020, Fig. 4), we take up ER4 graphs for
which NOTEARS algorithms are less competitive compared to algorithms like fast greedy equiva-
lence search (Ramsey et al., 2017), DAG-GNN (Yu et al., 2019), or greedy equivalence search with
generalized scores (Huang et al., 2018). ERm (m = 4) denotes an ER graph with m× d edges.

Given the ground truth, we simulate from an SEM with Xj = gj(Xpa(j)) + εj with εj ∼
N (0, 1). We consider the following functional relationships for gj : Additive models with Gaus-
sian processes, Gaussian processes, and MLPs according to the procedure of Zheng et al. (2020).
We also add a simulation type called the combinatorial model, which is an additive model with
non-linear relationships random picked from the following common non-linear functions: g(x) =
exp(−|x|), g(x) = 0.05 · x2, g(x) = sin(x). We refer to Appendix B for comprehensive details
on the simulations.

As noted in Bello et al. (2022), the initial point W (θ(0)) is required to be inside Ws. Since
the zero matrix is always inside Ws for any s > 0, we set the parameters θ(0) be 0. Given that
our approximation method and sparsity regularizer fundamentally differ from those in NOTEARS
algorithms, the hyperparameters λ and τ are tuned via grid search. In RKHS-DAGMA, we take
sparsity parameter τ = 1 × 10−4, function complexity parameter λ = 1 × 10−3, and threshold
ω = 0.1. Additionally, we take µ(0) = 1 and the default value T = 6; if the resulting weighted
adjacency matrix is not a DAG, we enhance T to 7. We set γ = 0.4d for the Gaussian kernel (see
Appendix B.2 for an explanation of this choice). Due to the explicit computation of derivatives
and the Hessian of the kernel function, we limit the maximum number of iterations of the ADAM
optimizer to 10% of corresponding values in DAGMA to compensate for the additional cost. For
the NOTEARS algorithms, we choose the default hyperparameters as described in Waxman et al.
(2024) and Zheng et al. (2020).

To evaluate model performance, we use the structural Hamming distance (SHD), which mea-
sures the total number of edge additions, deletions, and reversals needed to convert the estimated
graph into the true graph. A lower SHD indicates better model performance.
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(a) (b)

(c) (d)

Figure 2: Comparison between RKHS-DAGMA and NOTEARS-MLP by SHD (lower is better) for
random data generated from 2(a) the ER-4 GP model, 2(b) the ER-4 GP-additive model, 2(c) the
ER-4 MLP model, 2(d) the model with combination of functions. Boxplots show the median and
quartiles across 10 different simulations for each simulation model.

Our results indicate that RKHS-DAGMA consistently outperforms NOTEARS-SOB in terms of
structured Hamming distance (SHD). Additionally, compared to NOTEARS-MLP, RKHS-DAGMA
shows superior performance in simulations based on Gaussian processes (GP), additive GP, and
combinatorial models, while maintaining competitive results in MLP experiments (see Figure 2-3).

We also conduct a comparative analysis between RKHS-DAGMA and the FGES algorithm,
implemented through the py-causal package 2. Figure 4 indicates that RKHS-DAGMA signifi-
cantly outperforms the FGES algorithm in simulations based on GP, additive GP, and combinatorial
models for d = 10. It achieves comparable performance d ≥ 20. However, in the MLP simulations,
the performance of RKHS-DAGMA clearly falls behind for d ≥ 20.

6.3. Real Data

Finally, we compare the performance of RKHS-DAGMA with NOTEARS-MLP, NOTEARS-SOB,
and the FGES on a benchmark collection of datasets featuring cause-effect pairs (Mooij et al., 2016).
These datasets are bivariate, each consisting of one pair of statistically dependent variables. We ex-
cluded six datasets containing multi-dimensional random variables and standardized the remaining

2. https://github.com/bd2kccd/py-causal
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(a) (b)

(c) (d)

Figure 3: Comparison between RKHS-DAGMA and NOTEARS-SOB by SHD (lower is better) for
random data generated from 3(a) the ER-4 GP model, 3(b) the ER-4 GP-additive model, 3(c) the
ER-4 MLP model, 3(d) the model with combination of functions. Boxplots show the median and
quartiles across 10 different simulations for each simulation model.

datasets. To reduce computational costs, datasets with more than 400 samples were organized in
ascending order according to the first variable. These datasets were then partitioned into 300 grids
according to the first variable, with the median value of the first variable in each grid and the corre-
sponding value of the second variable used for model evaluation.

RKHS-DAGMA achieves the best accuracy of 55.88% among the remaining 102 datasets, while
NOTEARS-SOB and NOTEARS-MLP achieve an accuracy of 45.10% and 0.98% correspondingly.
We attribute the bad performance of NOTEARS-MLP to the small sample size with a relatively
large number of hidden units compared to the number of nodes, and to the specific definition of the
weighted adjacency matrix, which depends on the weights of the first hidden layer and may differ
significantly from those defined by derivatives (Waxman et al., 2024). Furthermore, the FGES
algorithm yields only undirected edges across all bivariate datasets, as it employs a conditional
independence test to eliminate unnecessary edges. In the context of bivariate data, where each
variable pair lacks additional conditioning variables, the algorithm’s capacity to extract information
is inherently limited.
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(a) (b)

(c) (d)

Figure 4: Comparison between RKHS-DAGMA and FGES by SHD (lower is better) for random
data generated from 4(a) the ER-4 GP model, 4(b) the ER-4 GP-additive model, 4(c) the ER-4 MLP
model, 4(d) the model with combination of functions. Boxplots show the median and quartiles
across 10 different simulations for each simulation model.

7. Conclusion
In this work, we addressed the non-parametric DAG learning problem using a procedure that ex-
ploits the machinery of infinite-dimensional (Gaussian) RKHS. We showed in Theorem 2 that the
RKHS-DAGMA Algorithm, which solves a (combined) constrained empirical optimization prob-
lem with log-determinant acyclicity constraint, admits an explicit solution as a finite-dimensional
representation of the kernel elements of the data and their derivatives. Furthermore, this solution can
be computed using central path methods similar to those in the DAGMA algorithm. We compared
the accuracy of RKHS-DAGMA with the known baselines under non-parametric structural equation
modeling, such as NOTEARS-MLP and NOTEARS-SOB (see ex. Zheng et al., 2020), as well as
the score-based FGES algorithm (Ramsey, 2015) under settings comparable to those in Zheng et al.
(2020). The RKHS-DAGMA Algorithm demonstrates utility across both simulated and empirical
datasets.
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Appendix A. Detailed Proofs
A.1. Proof of Theorem 1

• D-stable: Follows from Theorem 1 in Bello et al. (2022).

• V-stable: Note that

log det(sI −A)− d log s = log(sd det(I − s−1A))− d log s = log det(I − s−1A).

Since s > ρ(A) is equivalent to 1 > ρ(s−1A), we consider the case s = 1 w.l.o.g. For any
ε > 0 with ε|ρ(A)| ≤ 1, it holds that

hsldet(εA) = − log det(I − εA) = − log(

d∏
i=1

λi(I − εA)) =

d∑
i=1

− log(1− ελi(A)).

We prove the statement of the Theorem under the assumption that the eigenvalues {λi(A)}i∈[d]
of A are complex numbers and under the additional assumption that

∑d
i=1 λi(A) ̸= 0.

Applying the Cauchy-integral formula to the principal branch of the complex logarithm func-
tion z 7→ log(1− z), which is analytic within domain |z| < 1, we get:

− log(1− ελi(A)) = ελi(A) +
ε2λ2

i (A)

2πi

∫
η0

log(1− w)

(ελi(A)− w)w2
dw,

where η0 is any closed circle of radius r0 with ε|λi(A)| < r0 < 1. Therefore, summing over
all complex values λi(A) and using triangle inequality |a− b| ≥ |a| − |b| for a, b ∈ C, we
deduce that∣∣∣∣∣

d∑
i=1

− log(1− ελi(A))

∣∣∣∣∣ ≥ ε

∣∣∣∣∣
d∑

i=1

λi(A)

∣∣∣∣∣− 1

2π

∣∣∣∣∣
d∑

i=1

ε2λ2
i (A)

∫
η0

log(1− w)

(w − ελi(A))w2
dw

∣∣∣∣∣.
Since w 7→ log(1−w)

w−ελi(A) is continuous, Weierstrass Theorem implies that the function is bounded

on the bounded domain η0, yielding that
∣∣∣ log(1−w)
w−ελi(A)

∣∣∣ ≤ K for some K > 0. Since ε|λi(A)|
r0

< 1

and η0 is a circle of radius r0, the ML inequality for the complex integral gives∣∣∣∣ε2λ2
i (A)

∫
η0

log(1− w)

w − ελi(A)w2
dw

∣∣∣∣ ≤ 2πε2λ2
i (A)

K

r0
,

which in turn implies that∣∣∣∣∣
d∑

i=1

− log(1− ελi(A))

∣∣∣∣∣ ≥ ε

∣∣∣∣∣
d∑

i=1

λi(A)

∣∣∣∣∣− K

r0
ε2

∣∣∣∣∣
d∑

i=1

λ2
i (A)

∣∣∣∣∣
= ε

∣∣∣∣∣
d∑

i=1

λi(A)

∣∣∣∣∣− K

r0
ε2

d∑
i=1

λ2
i (A)

= ε

∣∣∣∣∣
d∑

i=1

λi(A)

∣∣∣∣∣− Kε2∥A∥22
r0

≥ ε

∣∣∣∑d
i=1 λi(A)

∣∣∣
2

,
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where the last inequality holds provided ε is chosen small enough, with

ε ≤ min

{
1

|ρ(A)|
,
r0

∣∣∣∑d
i=1 λi(A)

∣∣∣
2K∥A∥22

}
.

Thus, we proved the claim.

Finally, notice that Bello et al. (2022) showed that hsldet is an acyclicity constraint and the instability
of PST acyclicity constraint is shown in Nazaret et al. (2023).

A.2. Proof of Theorem 2

Proof (8): Consider arbitrary elements f, g ∈ H . Since H is complete, there exists a sequence
(g)∞n=1, gn ∈ H , that converges to g in the norm of Hilbert space H . Furthermore, for any n ∈ N,

⟨f, gn⟩H − ⟨f, g⟩H ≤ |⟨f, gn⟩H − ⟨f, g⟩H | = |⟨f, gn − g⟩H |
Cauchy-Schwarz

≤ ∥f∥H · ∥gn − g∥H .

Since the kernel k is bounded, elements f ∈ H are bounded (Steinwart and Christmann, 2008,
Lemma 4.23). Furthermore, since gn → g in the norm of the space H we have that

lim
n→∞

⟨f, gn⟩H − ⟨f, g⟩ = 0,

which implies that map x 7→ ⟨·, x⟩H is continuous. Similarly, one can prove that the scalar product
is continuous in the first coordinate.

For coherence of the remainder of the proof, we first refine the proof that for the open set
X ⊂ Rd, we have that ∂

∂xa
k(·, x) ∈ H for every a ∈ [d] and x ∈ X , and that a “differential

reproducing property” holds, which states that

∂

∂xa
f(x) =

〈
f,

∂

∂sa
k(·, s)

∣∣∣∣
s=x

〉
H

, ∀x ∈ X , f ∈ H.

Specifically, we refine the proof of Theorem 1 a)-b) in Zhou (2008) in case α = 0 to show that
the “derivative element” exists in H . We deviate from that proof in the part that establishes the
differential reproducing property, the difference being the use of completeness of H and the fact
that weak convergence and pointwise convergence are equivalent in RKHS H .

Consider arbitrary x ∈ X . As X is open, there exists r > 0 such that the ball {x + y, y ∈
Rd, ∥y∥2 ≤ r} ⊂ X . For a ∈ [d], let ea be the a-th orthonormal vector in the standard Euclidean
basis in Rd. Let h̃x,a : X 7→ R be the function given by h̃x,a(y) =

∂
∂sa

k(s, y)|s=x for all y ∈ X .
By definition of the RKHS, k(·, x) ∈ H , and the set of functions H 7→ R given by{

1

t
(k(·, x+ tea)− k(·, x)) : |t| ≤ r

}
(14)

satisfies that for every t, |t| ≤ r:∥∥∥∥k(·, x+ tea)− k(·, x)
t

∥∥∥∥2
H

=
1

t2

(
k(x+ tea, x+ tea)− k(x, x+ tea)− k(x+ tea, x) + k(x, x)

)
≤
∥∥∥∥ ∂2

∂xa∂xa
k(·, ·)

∥∥∥∥2
∞
,
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where the last inequality follows from the fact that k(·, ·) is a continuously differentiable function
in every coordinate and an application of the Mean Value Theorem (twice, once in every coordi-
nate). The latter inequality implies that set (14) lies within a ball of radius

∥∥∥ ∂2

∂xa∂xa
k(·, ·)

∥∥∥
∞

in
Hilbert space H . It is known (since ∗-weak convergence is equivalent to weak convergence in
Hilbert spaces) that the ball in the Hilbert space is weakly sequentially compact; see, e.g., (Rudin,
1991, Chap. 3). Thus, there exists a sequence (tn) such that limn→∞ tn = 0 and the sequence
1
tn
(k(·, x+ tnea)− k(·, x)) converges weakly to an element hx ∈ H . The latter means that

lim
n→∞

〈
1

tn
(k(·, x+ tnea)− k(·, x)), f

〉
H

= ⟨hx, f⟩H ∀f ∈ H. (15)

Consider f(·) = k(·, y), where y ∈ X is arbitrary. Since k(·, y) is differentiable (as a function
of the first coordinate), the left-hand side of (15) satisfies

lim
n→∞

〈
1

tn
(k(·, x+ tnea)− k(·, x)), k(·, y)

〉
H

= lim
n→∞

1

tn
(k(x+ tnea, y)− k(x, y))

=
∂

∂sa
k(s, y)

∣∣∣∣
s=x

= h̃x,a(y).

But for the right-hand side of (15), it holds that

lim
n→∞

〈
1

tn
(k(·, x+ tnea)− k(·, x)), k(·, y)

〉
H

= ⟨hx, k(y, ·)⟩ = hx(y) ∀y ∈ X .

We conclude that h̃x,a = hx as a map X 7→ R, and since hx is in H , so is h̃x. By identifying
∂

∂xa
k(·, x) := hx, the existence of an element y with ∂

∂xa
k(x, y) =

〈
∂

∂xa
k(x, ·), k(·, y)

〉
follows.

Now we show the differentiable reproducing property, that is, the convergence to the limit
∂

∂xa
(k(·, x)) is pointwise (and not only as a weak limit) and we can exchange the differential and

inner product sign. The latter is equivalent to the folklore fact that weak convergence is equivalent to
pointwise convergence when the underlying space is RKHS. Indeed, consider any sequence gn that
converges weakly to an element g ∈ H , which means that limn→∞⟨gn, f⟩ = ⟨g, f⟩ for all f ∈ H .
In particular, the latter holds for all k(x, ·), x ∈ X yielding the necessity. To show the sufficiency,
if limn→∞ gn(x) = g(x) for all x ∈ X then limn→∞⟨gn, f⟩ = ⟨g, f⟩ for all f ∈ span{k(x, ·)}, by
linearity of the inner product and its continuity. The claim then follows since H is complete. From
this statement, we deduce that the limit in (15) is actually a pointwise limit. Thus, for every x ∈ X ,
we have limt→0

1
t (k(·, x+ tea)− k(·, x)) = ∂

∂xa
k(·, x) and, moreover, it holds for every f ∈ H

that〈
∂

∂xa
k(·, x), f

〉
H

=

〈
lim
t→0

1

t
(k(·, x+ tea)− k(·, x)), f

〉
= lim

t→0

f(x+ tea)− f(x)

t
=

∂f(x)

∂xa
,

where we used continuity of inner product and the reproducing property in the second equality.
Hence, the derivative exists, and the differential reproducing property holds.

Let X ′ := {xi : i = 1, . . . , n}, and let

H|X′ := span
{
k(·, xi), ∂k(·, s)

∂sa
|s=xi : i = 1, . . . , n, a = 1, . . . , d

}
.

Furthermore, let H⊥
|X′ be the orthogonal complement of H|X′ in H; it exists and is well-defined

as every element in the span exists and is well-defined. By the Hilbert Projection Theorem, every
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fj ∈ H , j ∈ [d] can be uniquely decomposed as fj = f
∥
j + f⊥

j , where f
∥
j ∈ H|X′ and f⊥

j ∈ H⊥
|X′ .

Let ea ∈ Rd be the a-th vector of the standard Euclidean basis in Rd. By the reproducing property
and the definition of H⊥

|X′ in H , it holds that

f⊥
j (xi) =

〈
f⊥
j , k(·, xi)

〉
H

= 0.

Using the fact (proved above) that the differentiation reproducing property holds for fj ∈ H , to-
gether with the orthogonal property we get:

∂f⊥
j

∂xa

(
xi
)
=

〈
f⊥
j ,

∂k(·, s)
∂sa

|s=xi

〉
H

f⊥
j ∈H⊥

|X′
= 0.

By the reproducing property in H , we deduce that for every j ∈ [d], it holds

1

n
ℓ
(
Xj , fj(X)

)2
=

1

n
ℓ
(
Xj , fj

∥(X)
)2

,

whereas the differential reproducing property implies that it holds that

WD
aj(f) =

1

n

n∑
i=1

∂f2
j (x

i)

∂xia
=

1

n

n∑
i=1

(
∂f

∥
j (x

i)
)2

∂xia
= WD

aj(f
∥)

Notice further that ∥∥∥∥∂fj(x)∂xa

∥∥∥∥
n

=

∥∥∥∥∥∂f
∥
j (x)

∂xa

∥∥∥∥∥
n

,

which in turn implies that ΩD
1 (fj) = ΩD

1 (f
∥
j ). Thus, by denoting

RL,D(f) + τ(2ΩD
1 (f) + λ∥f∥2Hd) =

d∑
j=1

{
1

2n

∥∥Xj − fj(X)
∥∥2 + τ [2ΩD

1 (fj) + λ
∥∥fj∥∥2H ]

}
,

for f = (f1, . . . , fd) ∈ H⊗d, where H⊗d denotes the direct product of d copies of H , we get that
over the acyclicity constraint the following chain of the equalities holds:

inf
f∈Hd,hs

ldet(W
D(f))=0

RL,D(f) + τ(2ΩD
1 (f) + λ∥f∥2Hd)

= inf
f∈Hd,f=f∥+f⊥,

f∥∈H|d
X′ ,h

s
ldet(W

D(f∥))=0

RL,D(f
∥) + τ(2ΩD

1 (f
∥) + λ

∥∥f∥∥∥2
Hd + λ

∥∥f⊥∥∥2
Hd)

= inf
f∈Hd,f=f∥+f⊥,f∥∈H|d

X′ ,

∥f⊥∥
Hd=0,hs

ldet(W
D(f∥))=0

RL,D(f
∥) + τ(2ΩD

1 (f
∥) + λ

∥∥f∥∥∥2
Hd)

= inf
f∈H|d

X′ ,h
s
ldet(W

D(f))=0
RL,D(f) + τ(2ΩD

1 (f) + λ∥f∥2Hd).

Thus, we showed that

inf
f∈Hd,

hs
ldet(W

D(f))=0

RL,D(f)+τ(2ΩD
1 (f)+λ∥f∥2Hd) = inf

f∈H|d
X′ ,

hs
ldet(W

D(f))=0

RL,D(f)+τ(2ΩD
1 (f)+λ∥f∥2Hd),
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establishing the first claim of the Theorem holds.

To prove (9), we first note that, by the differential reproducing property,

⟨∂k(·, x)
∂xa

,
∂k(·, y)
∂yb

⟩H =
∂2k(x, y)

∂xa∂yb
. (16)

Plugging in the formula for the solution of the constrained minimization problem and using repro-
ducing and differential reproducing properties we obtain:∥∥∥f̂jτ∥∥∥2

H
=

〈
n∑

i=1

αj
ik
(
·, xi

)
+

n∑
i=1

d∑
a=1

βj
ai

∂k(·, xi)
∂xia

,
n∑

i=1

αj
ik
(
·, xi

)
+

n∑
i=1

d∑
a=1

βj
ai

∂k(·, xi)
∂xia

〉
H

=
n∑

i,l=1

αj
iα

j
l k
(
xi, xl

)
+ 2

n∑
i,l=1

d∑
a=1

αj
iβ

j
al

〈
∂k
(
·, xl
)

∂xla
, k
(
·, xi

)〉
H

+

n∑
i,l=1

d∑
a,b=1

βj
aiβ

j
bl

〈
∂k
(
·, xi

)
∂xia

,
∂k
(
·, xl
)

∂xlb

〉
H

=

n∑
i,l=1

αj
iα

j
l k
(
xi, xl

)
+ 2

n∑
i,l=1

d∑
a=1

αj
iβ

j
al

∂k
(
xi, xl

)
∂xla

+

n∑
i,l=1

d∑
a,b=1

βj
aiβ

j
bl

∂k
(
xi, xl

)
∂xia∂x

l
b

,

(17)

which finalizes the proof.

Appendix B. Details of Numerical Experiments and Intuition for the Choice of the
Bandwidth of the Gaussian Kernel γ.

B.1. Simulations.

We simulate ER4 DAGs following the procedure outlined by Zheng et al. (2020) with the functional
relationship established in three distinct ways and add an additional simulation type.

1. The first way employs the Gaussian process:

fj(X) = gj(Xpa(j)) + εj ∀ j ∈ [d],

where gj is sampled from RBF GP with lengthscale 1. In detail, for the sub-data matrix
Xpa(j) ∈ Rn×p where p ≤ d, we have gj(Xpa(j)) ∼ N (0,K(Xpa(j),Xpa(j))) with

K(Xpa(j),Xpa(j))a,b = exp

(
−
∥∥xa − xb

∥∥2
2

2l2

)
.

Here, xa,xb denote the a-th and b-th row of Xpa(j), respectively, and the lengthscale is l = 1.
Moreover, εj ∼ N (0, In) is a standard Gaussian noise.

2. The second way is referred to as the additive Gaussian process (additive GP). It sets

fj(X) =
∑

k∈pa(j)

gkj(Xk) + εj ,

where each gkj is sampled from RBF GP with lengthscale 1.
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3. The third way involves using an MLP network with a hidden layer size of 100 and a sigmoid
activation function, where all weights are sampled from U((−2.0,−0.5) ∪ (0.5, 2.0)).

4. Moreover, we introduce an additional simulation type called the combinatorial model, where
the non-linear relationship is a linear combination of various common non-linear functions:

fj(X) =
∑

k∈pa(j)

gkj(Xk) + εj ,

where gkj is randomly picked from following non-linear functions:

g(x) = exp(−|x|), g(x) = 0.05x2, g(x) = sin(x).

B.2. Hyperparameter choice

While considering the experimental setting with different dimensions of the underlying Erdős-Rényi
graphs, we notice that the the complexity of the decision rule increases with the grows of the di-
mension. Thus, one observes a “classical” phenomenon of the curse of dimensionality (see for
example Giraud, 2021; Györfi et al., 2002). In a nutshell, high-dimensional i.i.d. observations are
“essentially” equidistant from each other, while the distance between the points grows with the
growing dimension, which poses a problem for high-dimensional metric-based methods. To handle
this problem, we seek to reduce the estimation error for the signal by decision rules with higher
regularity.

In our case, we employ the machinery of RKHS rules based on the Gaussian kernel (13) with
parameter γ. Let Hγ be the Gaussian RKHS with reproducing kernel k(x, ·) := kγ(x, ·) =

exp
(
−∥x−·∥2

γ2

)
. It then holds that Hγ2 ⊂ Hγ1 for γ2 > γ1 > 0 (see Steinwart and Christmann,

2008, Proposition 4.46). Hence, higher regularity results from a larger choice of γ. Notice that for
bounded domains X , the same effect (i.e., restricting to the spaces of larger smoothness) can be
ensured by considering the re-scaled domain with parameter 1

γ .
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