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Abstract

Bayesian inference in nonconjugate models such as Bayesian Poisson regression often relies
on computationally expensive Monte Carlo methods. This paper introduces Q-conjugacy,
a generalization of classical conjugacy that enables efficient closed-form variational infer-
ence in certain nonconjugate models. Q-conjugacy is a condition in which a closed-form
update scheme expresses the solution minimizing the Kullback-Leibler divergence between
a variational distribution and the product of two potentially unnormalized distributions.
Leveraging Q-conjugacy within a local message passing framework allows deriving analytic
inference update equations for nonconjugate models. The effectiveness of this approach
is demonstrated on Bayesian Poisson regression and a model involving a hidden gamma-
distributed latent variable with Gaussian-corrupted logarithmic observations. Results show
that Q-conjugate triplets, such as (Gamma, LogNormal, Gamma), provide better speed-
accuracy trade-offs than Markov Chain Monte Carlo.

Keywords: Bayesian inference, conjugacy, message passing, natural gradient, Poisson
regression, variational inference

1. Introduction

Bayesian Poisson regression is a generalized linear model that links the logarithm of the
mean of a Poisson distribution to a linear combination of predictors through regression
coefficients. This model provides a way to describe the relationship between the expected
count of an event and a set of explanatory variables. In the Bayesian framework, the
goal is to obtain the posterior distribution of the regression coefficients, given the observed
predictors and the count observations. Bayesian Poisson regression has been applied in
various fields, including the analysis of kinematic driving events (Kim et al., 2013), crowd
counting (Chan and Vasconcelos, 2009), mortality analysis (Stamey et al., 2008), and has
been extensively discussed in the tutorial paper by Coxe et al. (2009).

Log-linear linking of the linear predictor and the regression coefficients with the Poisson
mean is the most common choice, as the logarithm is the canonical link for the Poisson
distribution family (Nelder and Wedderburn, 1972; D’Angelo and Canale, 2023). How-
ever, despite being a natural and plausible choice, a Bayesian Poisson regression model is
nonconjugate, meaning that the posterior distribution of the regression coefficients given
the observed data cannot be expressed in closed-form. As a result, researchers often em-
ploy Markov Chain Monte Carlo (MCMC) (FrüHwirth-Schnatter and Wagner, 2006) or
Metropolis-Hastings (D’Angelo and Canale, 2023) sampling schemes to carry out inference
by sampling from the posterior distribution of the coefficients. These methods may not
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be efficient enough for hypothesis testing with large datasets or for real-time applications.
This emphasizes the need for more efficient and scalable inference methods that can handle
the lack of conjugacy in Bayesian Poisson regression while providing reasonably accurate
posterior estimates.

Recent developments by Khan and Rue (2023) in the Bayesian learning rule (BLR) and
by Akbayrak et al. (2022) on its local application to factor graph-based inference offer a
promising approach to address this problem. The key BLR idea is to apply an iterative
gradient update scheme with respect to the variational Free Energy. However, both works
rely on approximation schemes or Monte Carlo-based estimators. We show that, with
knowledge of the probabilistic model and a specific choice of the variational family, the
gradient update can be expressed in closed-form.

We further extend the local BLR inference by introducing the concept of efficient vari-
ational inference triplets consisting of a prior, likelihood, and variational family, for which
the local BLR yields closed-form updates. We call such triplets “Q-conjugate.”

Our main contribution is that the BLR message passing scheme, detailed in Section 3,
can be efficiently solved under the Q-conjugancy condition introduced in Section 4. Ap-
plying the BLR scheme to these Q-conjugate triplets enables us to derive efficient and
closed-form update schemes for nonconjugate models. Specifically, in Section 5, we show
that triplets such as (Gamma, LogNormal, Gamma) and (Normal, LogGamma, Normal)
offer improved accuracy-power trade-offs compared to Stan MCMC (Carpenter et al., 2017)
and the No-U-Turn Sampler (Hoffman and Gelman, 2014).

2. Background

2.1. Factor Graph Review

In this paper, we use a Forney-style factor graph (FFG) representation as the main com-
putational framework for probabilistic models. An FFG represents a factorized model as a
graph. Consider a factorized probabilistic model represented by a joint probability distri-
bution (potentially not normalized) f(x) that can be factorized into a product of positive
functions (factors), fa(xa), each defined over a subset of variables xa

f(x) =
∏
a∈V

fa(xa), (1)

where V is an indexed set of factors.
We can visualize this model as a Forney-style factor graph (FFG), which is a graphical

representation of the factorization. In an FFG, each factor fa is represented by a node a ∈ V.
The variables xa that are arguments for factor fa are represented by edges connected to
node a. The edges connected to node a are denoted as E(a).

The resulting FFG is a hypergraph G = (V, E), where V is the set of nodes representing
factors, and E is the set of edges representing variables. By convention, nodes are typically
indexed using letters such as a, b, c, while edges are denoted by i, j, k, unless otherwise
specified.

The framework of an FFG also includes various subgraph definitions. For example, an
edge-induced subgraph is defined as G(i) = (V(i), i), which includes all nodes connected by
edge i. In contrast, a node-induced subgraph is represented as G(a) = (a, E(a)), involving
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all edges connected to node a. Moreover, we introduce a local subgraph termed G(a, i) =
(V(i), E(a)), which collects all the local nodes and edges around a and i, respectively. We
follow the FFG framework presented in Şenöz et al. (2021), which requires that each edge
is terminated by exactly two nodes. This can be accomplished by terminating half-edges
with a ”dummy” factor that is proportional to 1.

The FFG framework is particularly useful for inference in probabilistic models, as it
is associated with an objective function called Bethe free energy (Yedidia et al., 2001).
The Bethe Free Energy serves as a variational objective, supporting the derivation of local
message-passing update rules that minimize this energy.

In particular, Şenöz et al. (2021) demonstrated that the marginal update rule for an
FFG representation of model (1) can be obtained as stationary solutions of Bethe free en-
ergy (BFE) augmented with marginalization constraints. The messages are derived as the
exponentiated Lagrange multipliers that enforce the marginalization constraints. Rigor-
ously, (Şenöz et al., 2021, Theorem 1) shows that, given a subgraph G(b, i) as displayed in
Fig. 1, the local stationary points of the minimization problem argminq L[q, f ], where the
Lagrangian L[q, f ] is

L[q, f ] =
∑
a∈V

DKL[qa||fa] +
∑
i∈E

H[qi] +
∑
a∈V

ψa

[∫
qa(xa)dxa − 1

]
+
∑
i∈E

ψi

[∫
qi(xi)dxi − 1

]
+
∑
a∈V

∑
i∈E(a)

∫
λia(xi)

[
qi(xi)−

∫
qa(xa)dxa\i

]
dxi (2)

are given by

µic(xi) =

∫
fb(xb)

∏
j∈E(b)
j ̸=i

µjb(xj)dxj (3a)

qi(xi) =
µib(xi)µic(xi)∫
µib(xi)µic(xi)dxi

. (3b)

The auxiliary variables µic(xi) (and µjb(xi)) in (3a) serve as messages transmitted from
node c (and b) to edge i (and j). For more information on factor graphs and message
passing-based inference, we refer to Loeliger (2007) and Şenöz et al. (2021).

2.2. The LogGamma Distribution

In this paper, we use the LogGamma distribution, which is a probability distribution defined
on the real line, with a probability density function given by

LG(x | a, b) = ebxe−ex/a

abΓ(b)
, −∞ < x <∞, (4)

where a > 0 is the scale parameter and b > 0 is the shape parameter.
We will also use an auxiliary unnormalized distribution on a multidimensional variable

β. This function is derived from the LogGamma distribution and is defined as

L̃G(β | a, b, x) ≜ LG(β⊤x | a, b), (5)
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where x is a fixed vector of covariates, and α and β are the scale and shape parameters of
the LogGamma distribution, respectively.

3. Problem Statement

To define a precise problem statement, we first follow the solution approach from Akbayrak
et al. (2022) for an elementary Poisson log-linear model

p(yi | λi) =
λi

yie−λi

yi!
, log(λi) = β⊤xi. (6)

To clarify the derivations, we will assume a Gaussian prior distribution for β. However,
regardless of the prior choice, the model would be non-conjugate.

We factorize model (6) into a model of the form (1) by

p(y, x, β) = N (β|µ,Σ)
N∏
i=1

p(yi | λi)δ(β⊤xi − log λi). (7)

The FFG visualization of (7) is shown in Fig. 2. Applying the marginal update rules (3)
to our model, the posterior marginal of interest q(β) is obtained in the following form (the
derivation is provided in Appendix C)

µl(β) ∝
∏
i

L̃G(β|yi + 1, 1, xi) (8a)

µp(β) ∝ N (β|µ,Σ) (8b)

q(β) =
µp(β)µl(β)∫
µp(β)µl(β)dβ

. (8c)

The main challenge lies in the fact that (8c) involves the multiplication of an unnormal-
ized LogGamma distribution µl(β) and a normal distribution µp(β), which does not yield
a closed-form expression due to the nonconjugacy of these distributions.

The key idea of Akbayrak et al. (2022) is to substitute the exact marginal computation
with a parametric optimization. Consider a parametric family Q of distributions, defined
as

Q =

{
qθ(β)

∣∣∣∣ θ ∈ Θ,

∫
qθ(β)dβ = 1

}
, (9)

where Θ is a set of valid parameters for the distributions in Q. The parameters θ̂ of the
approximate marginal qθ̂(β) are obtained by minimizing the free energy:

θ̂ = argmin
θ∈Θ

(
Eqθ [log qθ]− Eqθ [logµl]− Eqθ [logµp]

)
. (10)

This approximation constitutes a local application of the BLR rule introduced by Khan
and Rue (2023). Essentially, Akbayrak et al. (2022) substitutes the exact marginal compu-
tation (8) with the parametric optimization problem (10). If we have an effective way to
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Figure 1: Visualization of a subgraph with indicated sum-product messages.

generate the solution θ̂ of the problem (10), we will obtain an efficient way to obtain the
posterior marginal.

Although Khan and Rue (2023) proposed the BLR rule as a generic approach to inference
in probabilistic models, the conditions to obtain a closed-form solution were not explicitly
formulated. Similarly, Akbayrak et al. (2022) showcased how the BLR can be used as a
generic tool to approximate inference algorithms on FFGs, but did not discuss the specific
conditions under which the scheme becomes computationally efficient or accepts closed-
form updates above the simple conjugacy. Identifying such conditions would enable the
derivation of tractable update rules for the approximate posterior distribution, leading to
more scalable and practical inference methods.

In view of the above, we define the following problem statement: Specify the conditions
under which the inference scheme (10) becomes efficient and tractable, providing closed-form
solutions or update rules for the approximate posterior distribution qθ̂(β).

4. Solution Proposal

4.1. Natural Gradient Optimization for Bayesian Poisson Regression

The problem (10) is essentially a parametric optimization problem, where the goal is to find
the stationary points of the following optimization problem

minimize F(θ) , (11)

where θ is constrained to be in Θ. To solve this optimization problem, we propose employing
natural gradient descent steps as introduced by the Bayesian Learning Rule (BLR) in Khan
and Rue (2023). The BLR suggests updating the parameters θ of the approximate marginal
using the following stationary point scheme with an update rule using a sequence of learning
rates ρt > 0:

L(θ) ≜ −Eqθ [logµl]− Eqθ [logµp] (12a)

θt+1 = argmin
θ∈Θ

(
⟨∇θL(θt), θ⟩+

1

ρt
DKL[qθ(β)||qθt(β)]

)
, (12b)

where θt represents the current estimate of the approximate marginal parameters at iteration
t.

To ensure the tractability of the scheme (12), the choice of the family Q is crucial. For
example, if Q is an exponential family of distributions,

qλ(β) = h(β) exp(λ⊤T (β)−A(λ)), (13)
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Figure 2: A Forney-style Factor Graph (FFG) representation of the Bayesian Poisson re-
gression model (7) visualizes the factorization of the joint distribution on the observed data
x1, . . . , xN ; y1, . . . , yN , and the model parameter β. The posterior marginal q(β) (8c) is obtained
as a result of the product of the prior message µp (prior) and the likelihood messages µ1, . . . , µn

originating from the likelihood factors. Each likelihood message can be expressed as an auxilary
distribution on β with parameters L̃G(β|yn + 1, 1, xi) defined in Equation (5). Note that these
likelihood messages are not normalized distributions over β. The combined likelihood message µl,
which is the product of all individual likelihood messages µi, represents the overall contribution of
the likelihood factors to the posterior. The main point of interest is the marginalization that occurs
at the edge β (top left corner). At this point, the product of the prior message µp and the likelihood
message µl is projected onto the normal family through a free energy minimization scheme (10).
This projection enables the computation of an approximate posterior marginal q(β) in a tractable
form, although the exact posterior does not belong to the normal family due to the nonconjugacy
of the likelihood with the normal prior.

where h(β) is the base measure, λ is the natural parameter vector, T (β) is the sufficient
statistic vector, and A(λ) is the log-partition function, then the BLR update rule (12b)
simplifies to (Akbayrak et al., 2022, Appendix A)

λt+1 = (1− ρt)λt + ρt∇̃λL(λt), (14)

where ∇̃λ denotes the natural gradient (Amari, 1998), defined as

∇̃λL(λt) = F (λt)
−1∇λL(λt), (15)

with F (λt) being the Fisher information matrix at λt.

For this reason, in the next discussion, we will implicitly consider that we are dealing
with a subfamily of exponential distributions whenever we denote the parameters by λ.
When we are talking about any family, we will use θ.
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In the following subsections, we introduce the concept of Q-conjugacy, which provides
a principled way of selecting the family Q so that the expectations of the logarithms of
µl and µp have closed-form expressions. Using the Q-conjugacy, we can derive an efficient

gradient-based optimization scheme to find the optimal parameters θ̂.

4.2. Definition of Q-conjugacy

The choice of familyQ is crucial to ensure the tractability of the optimization scheme derived
from the BLR update rule, as shown in Equations (12) and (14). To make the scheme in
closed=form, it is natural to consider scenarios in which we can compute the expectations of
the logarithms of µl and µp under the variational distribution qθ. When these expectations
have closed-form expressions, the free energy gradient can be easily calculated, allowing
the direct optimization of the objective with respect to the variational parameters θ. This
condition can be summarized in the following definition 1.

Definition 1 (Q-conjugacy) Let f and g be two positive functions such that∫
f(x)g(x) dx

is finite, and let

Q =

{
qθ(β)

∣∣∣∣ θ ∈ Θ,

∫
qθ(β)dβ = 1

}
be a parametric family of distributions with a set of valid parameters Θ. Define the free
energy objective function as

F(θ) = Eqθ [log qθ]− Eqθ [log f ]− Eqθ [log g].

f and g are Q-conjugate if the following conditions are met:

1. F(θ) is a closed-form expression in terms of analytic functions of θ;

2. There exists a minimizer θ̂ of F(θ):

θ̂ = argmin
θ∈Θ

F(θ).

When a pair of functions are Q-conjugate, where Q is a subfamily of the exponential
family, we can obtain a cheap scheme to find the stationary point (14), mitigating the main
challenges faced by the BLR update scheme (12). The first condition of Q-conjugacy re-
quires that expectations Eqθ [log f ] and Eqθ [log g] can be expressed in closed-form as analytic
functions of θ. This condition has significant implications for the optimization of free energy
F(θ). When expectations are available in closed-form, we can directly compute the gradient
of L(θ) with respect to θ, allowing efficient optimization of the free energy.

To illustrate the richness of the Q-conjugacy definition, we provide an example showing
that classical conjugacy is a special case of Q-conjugacy.

Example 1 (Classical conjugacy as a special case of Q-conjugacy) Let Q be a para-
metric family consisting of distributions from the exponential family. If f(x) and g(x) are
two specific distributions within this family, then they are Q-conjugate.
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The detailed explanation of Example 1 is provided in Appendix A.
To further demonstrate that Q-conjugacy is a richer property than classical conjugacy,

we present the example 2, which shows that the exponential and LogNormal distributions
are Q-conjugate factors. The detailed derivation of this example is provided in Appendix
B.

Example 2 (Q-conjugacy of Exponential and LogNormal Distributions) Let f(x;κ)
be an exponential distribution with rate parameter κ > 0, and g(x;µ, σ) be a LogNormal dis-
tribution with parameters µ ∈ R and σ > 0. Define the exponential family Q as

Q =

{
e−λx

λ

∣∣∣∣ λ > 0

}
.

Then f and g are Q-conjugate.

4.3. Q-conjugacy in Bayesian Poisson Regression

In the context of Bayesian Poisson regression (6), we can leverage the concept of Q-conjugacy
to derive an efficient gradient-based optimization scheme to find the approximate posterior
distribution. Recall that the exact posterior marginal q(β) in (8c) involves the product of
the likelihood message µl and the prior message µp (8).

The following lemma establishes the Q-conjugacy of the messages µl and µp when Q is
the family of normal distributions.

Example 3 (Q-conjugacy in Bayesian Poisson Regression) Consider the likelihood
message µl and the prior message µp defined in (8). Let Q be the family of normal distri-
butions. Then µl and µp are Q-conjugate.

Proof First, we compute the expectation of the log-density of the LogGamma distribution
over a univariate normal distribution with mean µ and variance σ2:

EN (x|µ,σ) [logLG(x|α, β)] = µβ −
exp(µ+ σ2

2 )

α
− β logα− log Γ(β) (16)

Next, we extend this result to the expectation over a multivariate normal distribution
with mean µ and covariance Σ

EN (β|µ,Σ)[log L̃G(β|a, 1, xi)] = µ⊤xi −
exp

(
µ⊤xi +

x⊤
i Σxi

2

)
a

− log a− log Γ(1) (17)

Using this result, we can show that the first condition of Q-conjugacy is satisfied:

1. The expectation of the log-likelihood message µl can be expressed as a closed-form
analytic expression of the natural parameters λ = (λ1, λ2) of the normal distribution:

Eqλ [logµl(β)] =
∑
i

−λ−1
2 λ⊤1 xi
2

−
exp

(
−λ−1

2 λ⊤
1 xi

2 − x⊤
i λ−1

2 xi

4

)
ai

− log ai− log Γ(1), (18)

where ai = yi + 1.

The expectation of logµp is trivially a closed-form analytic expression of λ, since they
are both normal distributions.
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2. The existence of the minimizer λ̂ of the free energy F(λ) can be established by noting
that F(λ) is a bounded, continuous function that diverges at the boundary.

4.4. Summary

The main observation of Q-conjugacy is that the free-energy objective is more frequently
known in closed-form than the marginal distribution. This enables efficient gradient-based
optimization schemes for a wider range of models, even when the marginal distribution is not
available in closed-form. Q-conjugacy allows deriving approximate posterior distributions
through gradient descent, as in Bayesian Poisson regression, or obtain approximate posterior
marginals in closed form, as for exponential and LogNormal distributions.

5. Numerical Illustrations

5.1. Experimental Scope

In this section, we evaluate the effectiveness and efficiency of our proposed closed-form
gradient update scheme. We compare our approach with state-of-the-art MCMC sampling
methods implemented in both Stan (Carpenter et al., 2017) and NumPyro (Phan et al.,
2019) probabilistic programming languages. The No-U-Turn-Sampler (NUTS) (Hoffman
and Gelman, 2014) implementation in Stan is selected for comparison due to its popularity.
NumPyro’s NUTS implementation is selected for its efficiency and widespread use. As
demonstrated in Phan et al. (2019), NumPyro’s adaptive variant of NUTS outperforms
Stan’s implementation on a wide range of models. Please keep in mind the following text:

The first experiment in Section 5.2 uses a Bayesian Poisson regression model (see Equa-
tion (6)) to examine the trade-offs between computational cost and accuracy when the
posterior distribution can be easily sampled using MCMC methods. The second experi-
ment in Section 5.3 illustrates the benefits of incorporating structural information through
the variational family. This is because sampling-based inference methods may converge to
an incorrect distribution form. This not only shows an improvement in effectiveness, but
also an enhancement in accuracy compared to the sampling methods mentioned earlier.

All experiments are conducted on a machine equipped with an Intel Core i7-10700K CPU
running at 3.80GHz and 64GB of RAM, ensuring consistent hardware performance across
the compared methods. Our proposed approach is implemented in Julia 1.10.3 (Bezanson
et al., 2017). For the MCMC sampling methods, we use Stan 2.32.2 through R language
4.4.0 (R Core Team, 2024) and NumPyro 0.15.0 with Python 3.10.3 (Van Rossum and
Drake, 2009).

5.2. Poisson Regression

We generated synthetic data for a Poisson log-linear model (6) with sample sizes of 250, 2500,
5000, and 10000, and 5 covariates. The common parameter β is generated by independently
sampling its components from a standard normal distribution, that is, βj ∼ N (0, 1) for
j = 1, . . . , 5. For each sample size n, we generate n independent samples yi (i = 1, . . . , n)
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Figure 3: Comparison of inference time and KL divergence for QMP vs NUTS in NumPyro and
Stan on synthetic data generated from a Poisson log-linear model with varying sample sizes (250,
2500, 5000, and 10000) and 5 covariates. The left subplot shows the inference time, while the
right subplot displays the Kullback-Leibler (KL) divergence between the inferred posterior and the
generative distribution of β, which we want to recover. QMP is significantly faster than NUTS in
both NumPyro and Stan, requiring only 80 seconds for inference with 10,000 samples, compared
to 175 and 275 seconds, respectively. This demonstrates QMP’s scalability and efficiency for larger
datasets. In terms of posterior quality, NUTS in NumPyro and Stan converge rapidly toward the
generative distribution of β as the sample size increases, with KL decreasing from around 6 and 3
(for 250 samples) to 0.175 and 0.275 (for 10,000 samples). QMP shows a more gradual improvement,
with the KL divergence reducing from 5 (for 250 samples) to 0.8 (for 10,000 samples).

from a Poisson distribution with mean λi = exp(β⊤xi), where xi represents the predictors
for the i-th sample, with only one constraint: λi ⩽ 100 to ensure numerical stability for all
algorithms.

The goal of the inference task is to estimate the posterior distribution of the regression
coefficients q(β), given the observed predictors xi and counts yi. We compare the perfor-
mance of our proposed Q-conjugate Message Passing (QMP) algorithm with the NUTS
implementations in NumPyro (N-NUTS) and Stan (S-NUTS).

The results are presented in Figure 3. Although N-NUTS and S-NUTS provide more
accurate posterior estimates, especially for larger sample sizes, QMP offers a significant
advantage in computational efficiency, making it suitable for large-scale or time-sensitive
applications. The choice of inference framework depends on the specific requirements of the
problem, such as computational resources, desired accuracy, and data scale.

5.3. Inference over a Positive Variable

We next consider a generative model with a Gamma-distributed latent variable and log-
normal observations to evaluate QMP’s inference performance in terms of accuracy and
efficiency. The key difference from the previous experiment is that we infer the posterior
over positive real numbers and have access to the true Bayesian posterior due to the one-
dimensional nature of the problem, allowing assessment of the methods’ accuracy. This
model, using the (Gamma, Log-normal, Gamma) triplet, demonstrates the flexibility of the
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Figure 4: Inference results for the latent variable γ (the
model (19)) inferred by NUTS, and the proposed QMP
method. QMP more accurately captures the true posterior
compared to NUTS, measured by a substantially lower KL
divergence (see Table 1) to the true distribution, demon-
strating its ability to better estimate uncertainty.

Table 1: We perform inference
on the latent variable γ using
the model specified in (19) with
two different methods: NUTS
(NumPyro) and the proposed Q-
conjugate message passing. We
compare the results of NUTS and
Q-conjugate message passing in
terms of average KL over 1000
generated points divergence from
ground truth and inference execu-
tion time.

Method KL Time

QMP 0.03 87.242 µs
NUTS 0.35 5 s

QMP-based inference framework. In this triplet, the last Gamma specifies that we use a
Gamma distribution as our variational family to approximate the posterior.

The model is specified as

p(x, γ) = N (x | log γ, 2)Γ(γ | 2, 2) . (19)

Our goal is to infer a posterior q(γ) given an observation x. We generate 1, 000 samples
of the latent variable γ from Γ(3, 1). We selected this distribution to be highly skewed and
challenging to approximate using a normal distribution. This allows us to evaluate how well
inference methods can handle cases where using the correct distributional form is essential
for accurately estimating uncertainty. Next, for each γ sample, we generate an observation
x from the normal distribution N (log γ, 2). The large variance introduces significant noise,
making an exact inversion for accurate estimation impossible.

We then performed inference for γ using both NumPyro’s NUTS and QMP. The true
posterior distribution for each data point was computed in quadratures, taking advantage
of the one-dimensional nature of the problem. This allows us to assess the accuracy of the
inference methods by comparing their results with the ground truth.

To compare the performance of NUTS and QMP, we calculated the Kullback-Leibler
(KL) divergence between the inferred posterior and the true Bayesian posterior for each
data point. Table 1 reports the average KL divergence, demonstrating the superior ac-
curacy of QMP in capturing the true posterior distribution. Figure 4 shows the inferred
posteriors for one of the 1, 000 runs, demonstrating the ability of QMP to approximate the
true posterior more closely than NUTS. This example demonstrates how adding additional
structure through the variational family can lead to improved accuracy compared to the
MCMC methods.
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6. Discussion

The work of Ranganath et al. (2014) has shown that stochastic gradient methods can
efficiently solve the ELBO maximization problem, motivating the use of gradient-based
approaches to solve (10). Following Khan and Rue (2023), we propose using natural gradient
descent methods when the family is a parametric subfamily of the exponential distribution
family. However, the success of these methods depends on the existence and computability
of the free energy objective’s gradient with respect to the variational parameters.

The BLR-based message passing scheme, as described in (10), suffers from high variance
and convergence difficulties when applied with noisy natural gradients Akbayrak et al.
(2022). To address this issue, we introduced the Q-conjugacy condition, under which the
BLR message passing transforms into a closed-form update scheme over the parameters
of the posterior marginal. As demonstrated by the numerical illustrations in Section 5,
when the Q-conjugacy condition is satisfied, the BLR-based inference outperforms sampling
methods, not only in terms of efficiency but also in terms of precision, particularly when
the ability to select the structure of the marginal is leveraged.

It should be noted that D’Angelo and Canale (2023) proposed an effective Metropolis-
Hastings method that relies on specific priors, such as horseshoe priors (Carvalho et al.,
2010), to sample from posterior q(β) (the model (6)). Although a direct comparison is
not possible because the current Q-conjugate approach is not formulated for these priors,
incorporating them into the message passing framework and comparing performance with
specific inference schemes utilizing the posterior marginal form could be an interesting future
research direction.

Moreover, recent work Kiral et al. (2023), which modifies the BLR rule to different forms
of update steps beyond Euclidean geometry, could potentially yield significant performance
improvements under the Q-conjugacy condition, as it transforms the Euclidean gradient
into a Riemannian one for specific types of exponential family distributions, because Kiral
et al. (2023) also for their approach to stay generic employ a noisy gradient estimator.

7. Conclusion

Our numerical experiments demonstrate that Q-conjugate triplets (Normal, LogGamma,
Normal) and (Gamma, LogNormal, Gamma) offer improved accuracy-power trade-offs over
MCMC methods, as shown in Sections 5.2 and 5.3, respectively. These findings enable effi-
cient variational inference for real-world applications. Although based on carefully selected
triplets, this work motivates research to discover additional triplets and develop generic,
computationally efficient natural gradient-based inference methods.
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Appendix A. Proof of Classical Conjugacy as a Special Case of
Q-conjugacy

Here we provide a proof that classical conjugacy is a special case of Q-conjugacy (Example
1)
Proof Consider a parametric family Q consisting of distributions from the exponential
family, where each member can be expressed in the following form

q(x; θ) = exp(η(θ)⊤T (x)−A(θ)),

with η(θ) as the vector of natural parameters, T (x) as the vector of sufficient statistics, and
A(θ) as the logarithmic partition function that ensures normalization.

Let f(x) and g(x) be two specific distributions within this family, defined by

f(x) = q(x; θf ) = exp(η(θf )
⊤T (x)−A(θf )),

g(x) = q(x; θg) = exp(η(θg)
⊤T (x)−A(θg)).

These distributions, by their parameterization and the inherent properties of the expo-
nential family, meet the conditions for Q-Conjugacy:

1. The expectations of the logarithms of f(x) and g(x), under any distribution q(x; θ)
in Q, are given by

Eqθ [log f(x)] = η⊤f ∇θA(θ)−A(θf ) (20)

Eqθ [log g(x)] = η⊤g ∇θA(θ)−A(θg) . (21)

These expressions demonstrate the analytic tractability required by Q-Conjugacy.

2. The unique stationary point of the free energy objective is given by

η(θ∗) = η(θf ) + η(θg).

To demonstrate that θ∗ is the global minimizer of the free energy F(θ), we analyze
the change in free energy from any point θ to θ∗. This change is given by:

F(θ)−F(θ∗) = A(θf + θg)−A(θ)− (ηf + ηg − η(θ))⊤∇θA(θ) ⩾ 0. (22)

The fact that this change is always positive establishes that θ∗ is a global minimizer.
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Appendix B. Q-conjugate triplets

Here we provide a proof that exponential distribution and LogNormal distribution form a
Q-conjugate triplet with exponential family (Example 2)
Proof Consider the following factors:

f(x;κ) =
e−κx

κ
, κ > 0,

g(x;µ, σ) =
1

x
√
2πσ2

exp

(
−(log x− µ)2

2σ2

)
, µ ∈ R, σ > 0,

where f is the exponential distribution and g is the LogNormal distribution. Let Q be the
exponential family defined by:

Q =

{
e−λx

λ

∣∣∣∣ λ > 0

}
.

1. For any q(x;λ) ∈ Q, the expectations of log f(x) and log g(x) are

Eqλ[log f(x)] = log λ− log κ,

Eqλ[log g(x)] = −
−2(γ + µ) log(λ) + (γ + µ)2 + log2(λ) + π2

6

2σ2

+ γ − log(λ)− 1

2
log(2π)− log(σ),

where γ is the Euler-Mascheroni constant (Weisstein, 2002).These expressions are
analytic functions of λ.

2. The free energy function F(λ) has a unique global minimum at λ∗, given by

λ∗ = κσ2W

(
−γ − µ− 1

σ2

κσ2

)
, (23)

where W is the Lambert W function (Lambert, 1758).

Therefore, f and g are Q-conjugate factors, where Q =
{

e−λx

λ

∣∣∣ λ > 0
}
.

Appendix C. Derivation of the Posterior Marginal in Bayesian Poisson
Regression

This appendix provides a detailed derivation of the posterior marginal (8)

q(β) ∝ N (β|µ,Σ)
∏
i

L̃G(β|yi + 1, 1, xi)

in the Bayesian Poisson regression model defined in the factorized form in the equation
(7). The derivation process involves applying the marginal update rules (3) to the model
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(7), which essentially reduces to the application of the Sum-Product algorithm (Korl, 2005,
Equations 2.6 and 2.7).

First, applying the Sum-Product rule (Korl, 2005, Equations 2.6 and 2.7) to the factor-
ized representation (7), we obtain the following expression (note that the observed values
for x1:N and y1:N are denoted as x̂1:N and ŷ1:N , respectively)

q(β) = N (β|µ,Σ)
∫ N∏

i=1

p(yi, xi, β)δ(xi − x̂i)δ(yi − ŷi)dx1:Ndλ1:Ndy1:N , (24a)

p(yi, xi, β) = p(yi | λi)δ(β⊤xi − log λi). (24b)

We can rewrite equation (24a) as a product of integrals, as each term depends only on
variables with index i

q(β) = N (β|µ,Σ)
N∏
i=1

∫
δ(x− x̂i)δ(y − ŷi)p(yi | λi)δ(β⊤xi − log λi)dxidλidyi (24c)

Then, we note that the following equality holds∫
p(yi|λi)δ(yi − ŷi)dyi =

e−λiλŷii
ŷi!

∝ Γ(λi | ŷi + 1, 1) (25)

Next, using the definition of the LogGamma distribution (equation (4)) and applying a
change of variable υi = log λi, we obtain∫

Γ(λi | ŷi + 1, 1)δ(β⊤xi − log λi)dλi =

∫
LG(υi | ŷi + 1, 1)δ(β⊤xi − υi)dυi (26)

Finally, applying equations (25) and (26) to (24c) and the definition of the auxiliary
distribution (5), we obtain the desired form of q(β)

q(β) ∝ N (β|µ,Σ)
∏
i

L̃G(β|ŷi + 1, 1, x̂i), (27)

note that in equation (8), we are using a slight abuse of notation by referring to x̂i as xi
and ŷi as yi.
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