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Abstract

A common approach to learning Bayesian networks involves specifying an appropriately
chosen family of parameterized probability density such as Gaussian. However, the dis-
tribution of most real-life data is leptokurtic and may not necessarily be best described
by a Gaussian process. In this work we introduce Cauchy Graphical Models (CGM), a
class of multivariate Cauchy densities that can be represented as directed acyclic graphs
with arbitrary network topologies, the edges of which encode linear dependencies between
random variables. We develop CGLearn, the resultant algorithm for learning the structure
and Cauchy parameters based on Minimum Dispersion Criterion (MDC). Experiments us-
ing simulated datasets on benchmark network topologies demonstrate the efficacy of our
approach when compared to Gaussian Graphical Models (GGM).

Keywords: Cauchy distribution; probabilistic graphical models; Bayesian networks; heavy
tails.

1. Introduction

Bayesian networks are a class of graphical models that allow for a representation of the
probabilistic dependencies between a given set of random variables as directed acyclic graphs
(Nagarajan et al., 2013). A comprehensive introduction and notation to graphical models
can be found in Lauritzen (1996).

Definition 1 Given a set of finite random variables X = {X1, X2, ..., XN}, we define a
Bayesian network B(G,Ψ) specified by directed acyclic graph (DAG) G whose nodes denote
random variables in X and a set of parameters Ψ = {ψi|Xi ∈ X} that determine the con-
ditional probability distribution p(Xi|paG(Xi), ψ) for Xi ∈ X given the state of its parents
paG(Xi) ⊆ X \ {Xi} in G.

Bayesian networks allow for the factorization of joint probability density of random variables
as a product of the conditional probability distributions as follows:

PB(X ) =

|X |∏
i=1

p(Xi|paG(Xi), ψ) (1)
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To ensure that the factorization PB(X ) is well defined, DAGs do not have self-loops
and the dependence of p(Xi|paG(Xi), ψ) on ψi when learning Bayesian networks is usually
specified by an appropriately chosen family of parameterized probability densities such
as Gaussian. However, studies have shown that real-world data, for instance, microarray
intensities, functional MRI data and stock prices exhibit heavy tails that can not be best
described by a Gaussian process (Nolan, 2020). We solve this challenge by characterizing
the dependency structure of Bayesian networks with multivariate Cauchy densities.

The Cauchy density is specified as:

f(x) = 1/σπ

[
1 +

(
x− µ
σ

)2
]

for−∞ ≤ x ≤ ∞ (2)

and the distribution function is given by

F (x) =

∫ x

−∞
f(t)dt =

1

2
+

1

π
arctan

(
x− µ
σ

)
(3)

where µ and σ are the location and scale parameters, respectively (Bloch, 1966). The sim-
plicity offered by pedagogically attractive, tractable closed-form expressions make Cauchy
more effective to model heavy-tailed data. Our choice to model continuous random variables
with Cauchy is motivated by several theoretical guarantees which demonstrate that Cauchy
distribution possess optimality properties in handling impulsive noise (Verdú, 2023). Our
key contributions are summarized as follows:

1. We propose Cauchy Graphical Models (CGM) that can be represented as multivariate
DAGs with arbitrary network topologies to model impulsive noise in random variables.

2. We introduce Minimum Dispersion Criterion (MDC), a score-based method to select
the optimal DAG network of the CGM.

3. We conduct an extensive experimental campaign using synthetic data on benchmark
Bayesian networks to validate the efficacy of our approach.

2. Related Work

Graphical models can be grouped into directed and undirected graphs (Maathuis et al.,
2018). Mixed graphs are a special case of chain graphs that were introduced to unify the di-
rected and undirected edges by imposing DAG structure on a disjoint subset of vertices, (Ali
et al., 2009). Richardson et al. (2023) relaxed the conditional independence assumption and
proposed conditional acyclic directed mixed graphs with nested Markov by incorporating
inequality constraints that condition fixed vertices on variables that index the distribution.

Bayesian networks are a class of graphical models that encode the joint probability dis-
tribution for a set of variables. Besides inferring causal relationships, Bayesian networks
provide a compact representation of high-dimensional data as a smaller subset of key de-
pendent random variables. Different probability distributions have been proposed to char-
acterize the dependency structure of DAGs. For instance, conditional Gaussian distribution
(Bottcher, 2001), mixtures of truncated exponentials (Cobb and Shenoy, 2005), Gaussian
distribution (Schmidt et al., 2007), copula (Elidan, 2010), mixture of Gaussians (Shenoy
and West, 2011) and pair-copula (Bauer and Czado, 2016). While these methods have
achieved significant performance, they heavily rely on the Guassianity assumption which
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is not only assumed for mathematical simplicity but also has maximum entropy among all
real-valued distributions specified by mean and covariance (Cover, 1999). In this work we
compare our approach to Gaussian Graphical Models (GGM) learned by Ordinary Least
Squares method as they are the most representative and commonly used form of Bayesian
networks.

Cauchy distribution has gained popularity across a wide range of applications due to
its ability to handle impulsive noise better than the Gaussian and Laplace models. For
example, it has been used to model gene expression data in computational biology (Khon-
doker et al., 2006). Besides, Hodge and Milligan (2011) found that Cauchy distribution
outperformed Gaussian, Beta and Weibull when modeling Wind Power Forecasting Er-
ror. Additionally, Cauchy distribution has profound applications in modeling stock returns
(Mahdizadeh and Zamanzade, 2019) and image denoising (Jiang et al., 2023). The Cauchy
probability distribution has peculiar features due to its heavy tails and the difficulty in
estimating its parameters (Johnson et al., 1995). A significant body of scholarship has been
devoted to estimating the parameters of a Cauchy process. Earlier works focused on the
estimation of scale and location parameters using maximum likelihood method (Antle and
Bain, 1969; Ferguson, 1978). Approximations of the parameters of Cauchy distribution,
albeit inefficient were also proposed earlier in literature. For example, Rothenberg et al.
(1964) suggested that the maximum likelihood is difficult to calculate and interpret, and
introduced the sample median as the simplest consistent estimator of the location param-
eter. Meanwhile, Blom (1958); Barnett (1966) considered linear estimation of the location
parameter based on sample order statistics, while Chan (1970) estimated both parameters
of the Cauchy distribution by considering quantiles of a small sample taken from a large
sample. Koutrouvelis (1982) proposed estimation method of the location and scale using
empirical characteristic function while Howlader and Weiss (1988) introduced a Bayesian
approach to estimate Cauchy parameters. A new method for parameter estimation based
on lp−norm was proposed for non-Gaussian data and distributions with unknown closed
form solutions (Rice and White, 1964). Ekblom and Henriksson (1969) were among the
first to use lp− norm to estimate the dispersion of a Cauchy density for different values
of p. Given an ordered sample of X = {X1, X2, X3, ..., Xn}, and a distribution function
characterised by F (X − a), where a is the location parameter, the lp estimate of the data
minimizes:

Lp(X) =
( 1

n− 1

n∑
i=1

|Xi − a|p
)1/p

for p ≥ 1 (4)

The lp− norm minimization has been extensively studied to address under-determined sys-
tems in signal processing and statistical estimation (Daubechies et al., 2010). However, its
application to multivariate graphical models remains notably scarce.

3. Methodology

Definition 2 We define a Cauchy Graphical Model (CGM) B(G,Ψ) as a probability dis-
tribution over X such that:

ξj = Xj −
∑

Xk∈paG(Xj)

wjkXk ∼ Cauchy(σj , µj) (5)
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ξ is a noise random variable independent of ξk if ξj 6= ξk, ∀Xj ∈ X , where paG(Xj) ⊆
X \ {Xj} are parent nodes of Xj in the directed acyclic graph G, and the distribution of
the parameters is represented as follows:

wjk ∈ R,Wj = {wjk|Xk ∈ paG(Xj)} (6)

ψj = {σj , µj} ∪Wj , (7)

Ψ = {ψi|Xi ∈ X} (8)

Lemma 3 Given the above conditions, B(G,Ψ) is a Bayesian network.

Proof We let ξ obey Markovian property and infer a non-unique ordering, τ , that is
consistent with the DAG such that paG(Xj) ⊆ {X1...Xj − 1}. It suffices that B(G,Ψ) is
a Bayesian network since the transformation matrix Tξi→Xi

is lower triangular with each
diagonal entry equal to 1 ∀ξj independent noise variables and the Jacobian of Tξi→Xi

is also
equal to 1. Formally:

PB(ξ1, ...ξ|X |) =

|X |∏
j=1

f(ξj |σj , µj) (9)

p(Xj |paG(Xj), ψ) = f(ξj |σj , µj) (10)

PB(X ) = PB(ξ1, ..., ξ|X |) ·
∣∣∣∣ ∂(ξ1, ..., ξ|X |)

∂(X1, ..., X|X |)

∣∣∣∣ (11)

PB(X ) =

|X |∏
j=1

p(Xj |paG(Xj), ψ) ·
∣∣∣∣ ∂(ξ1, ..., ξ|X |)

∂(X1, ..., X|X |)

∣∣∣∣ (12)

PB(X ) =

|X |∏
j=1

p(Xj |paG(Xj), ψj) (13)

In (9), the probability distribution of noise variable ξ is expressed as a product of indi-
vidual probability density functions. The conditional probability of the observed variable
Xj given by p(Xj |paG(Xj), ψ) in (10) is equivalent to the distribution of the corresponding
noise variables ξj . We simplify this expression and show that it is equivalent to the joint
distribution in (1). The proof shows that a linear transformation of a Cauchy distributed
random variable is Cauchy distributed.

3.1. Learning Cauchy Graphical Models

We have developed CGLearn1 software to learn the parameters and structure of Cauchy
Graphical Models and the algorithm is shown in Algorithm 1. The graphical structure of
CGM is learned in an iterative process. We explore different non-unique variable orderings
using Ordering Based Search (OBS). For each ordering, we perform structure learning
using K2Search by greedily adding edges to the network that maximizes the MDC score
over the space of all directed acyclic graphs G and Ψ parameters. Once a structure is
proposed, we employ the Iterative Reweighted Least Squares (IRLS) to accurately estimate

1. The code, data and instructions to reproduce the results in this paper can be accessed from this
anonymized repository: CGLearn
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Algorithm 1 CGLearn //Structure and Parameter Learning Algorithm for CG

Models
Input: Data matrix DIN , number of random restarts Nreps
Output: Cauchy Graphical model B(G,Ψ) over X
1: Symmetrize input data matrix D ← DIN

2: Initialize B(G,Ψ) = ∅
3: for i = 1 to Nreps do
4: Initialize a random ordering σ
5: Bσ(G,Ψ) = OBS(D,σ) //Using Ordering-based search, Algorithm 4

6: if MDCs(Bσ|D) > MDCs(B|D) then
7: B = Bσ
8: end if
9: end for

the parameters using a connection between the lp−norm of the noise random variable ξ
and its p−th moment. This process of optimizing the ordering, learning the structure and
refining the parameters continues until the best network structure, characterized by the
highest MDC score, is identified.

3.1.1. Minimum Dispersion Criterion

Maximizing the DAG structure is complicated since the search space of the DAG increases
exponentially as the number of nodes increases. Algorithms to identify the graph structure
of Bayesian networks fall into three categories: score-based, constraint-based and hybrid
algorithms, and in this paper we focus on score-based methods as they offer significant
computational advantage when learning the structure of the network (Nagarajan et al.,
2013). Network scores are a goodness of fit test that measure how well the whole DAG
mirrors the dependence structure of the data. Notable examples of network scores include
the Bayesian Information Criterion (BIC) (Schwarz, 1978), Minimum Dispersion Criterion
(MDC) (Stuck, 1978) and Minimum Description Length (Rissanen et al., 2007).

While Gaussian-based models rely on BIC for model selection, part of our main contri-
bution lies in proposing the use of MDC to select the optimum DAG for CGM. We employ
MDC since it is shown to be an optimal and computationally efficient model selection
criterion for symmetric, heavy tailed noise (Cline and Brockwell, 1985).

GGM-based BIC selects the Bayesian network that maximizes the score over the space
of all possible DAG G, and parameters Ψ. Given a data matrix D = {D1, D2, ..., DN} the
BIC score for a Bayesian network B(G,Ψ) is given by:

BICs(B|D) =
∑
Dj∈D

log[PB(Dj)]−
∑
Xi∈X

|paG(Xi)|
2

logN (14)

where PB(Dj) is the marginal likelihood estimator and
∑

Xi∈X
|paG(Xi)|

2 logN is the penalty
term.

Definition 4 We define Cauchy-based MDC score which selects the Bayesian network that
maximises the score MDCs over the space of all DAG G and Ψ parameters to be expressed
as:
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MDCs(B|D) = −
∑
Xi∈X

{
N logσi +

|paG(Xi)|
2

logN

}
(15)

Symmetrization. Because the Cauchy distribution is inherently symmetric, it is essential
to symmetrize the data to minimize the effects of skewness and ensure accurate, unbi-
ased parameter estimation. Therefore, every CGM can be associated with a symmetric
CGM with identical topological structure and regression parameters. Given a data set
D = {D1, D2, ..., DN} denoting a CGM B(G,Ψ), let D̂ = {D̂1, D̂2, ..., D̂Nd} represent boot-

strapped realizations specified as X̂i,λ = Xi,2λ −Xi,2λ−1,∀λ ∈ {1, 2, ..., Nd = [N/2]}
The new data samples D̂λ = {X̂i,λ|Xi ∈ X} represent independent realizations of ran-

dom variables X̂ ≡ {X̂i|Xi ∈ X}. The transformation halves the total number of samples
but does not change the distribution of the data. The resampled noise from the symmetrized
data is also Cauchy distributed and can be represented as:

ξ̂j ≡ X̂j −
∑

X̂k∈paG(Xj)

wjkX̂k ∼ Cauchy(σj , µj) (16)

where ξ̂j represent resampled independent noise variables. Learning CGM can be separated
into parameter and structure learning.

3.1.2. Parameter Learning

Estimating the parameters of the Cauchy distribution is a non-trivial task since the distri-
bution is so heavy that the mean and variance do not exist. We apply properties of lp−norm
minimization to solve this challenge.

Lemma 5 Given X = {X1, X2, ..., Xn}, as a sequence of independent Cauchy distributed
random variables, the sum of independent copies

∑N
i=1Xi also has the Cauchy distribution.

Given the above Lemma and assuming symmetric data with µ = 0 such that ξ ∼
Cauchy(σ, 0), we can invoke stable properties (Samoradnitsky, 2017) and express the ex-
pectation of ξ as:

E(|ξ|p) = C(p)σp,−1 < p < 1 (17)
Thus, the dispersion of a symmetrized Cauchy random variable ξ is associated with its
moments using the above equation. More specifically, if ξ represents noise random vari-
ables, then within a constant term C(p), minimizing the dispersion log σj is equivalent to
minimizing the lp−norm ‖ξj‖p as follows:

argmin log σj ≡ argmin‖ξj‖p

≡ (
N∑
λ=1

|ξj,λ|p)1/p,−1 < p < 1 (18)

Definition 6 Let Wj be the regression coefficients such that Wj = {wjk|Xk ∈ paG(Xj)}.
We define σj(Wj) to denote the dispersion parameter of the distribution of ξj = Xj −∑

Xk∈paG(Xj)
wjkXk. The MDC-based Cauchy then selects regression parameters:

W ∗j = argmin log σj(Wj)

W ∗j = argmin log
(
‖ξj‖p

)
≡ argmin log

(( N∑
λ=1

|ξj,λ|p
)1/p)

(19)
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Algorithm 2 IRLS //Find the least lp norm regression coefficients

Input: N dimensional vector for realizations of the child node Y,N × M matrix X of
realizations of the parent set paG(Y ).
Parameter: tolerance ε and p ∈ (0, 2]
Output: Vector of co-efficients W ∗ = argminW ‖Y −XW‖p
1: Initialize W with OLS coefficients W = (XTX)−1(XTY )
2: repeat
3: Initialize buffer for current regression coefficients β = W
4: Initialize a diagonal N ×N matrix Ω from β for weighted least squares regression

Ωij = δij(Yi − (XW )i)
p−2 ∀i, j ∈ {1, ...N}

5: Update regression coefficients vector W = (XTΩX)−1(XTΩY )
6: until Change in regression coefficients is within tolerance ‖β −W‖2 < ε

We estimate the dispersion parameter log σj after structure learning by computing the
lp−norm and using the connection between the lp−norm of the Cauchy random variable
ξj and its p−th moment. When estimating log σ, we generalize the formula logC(p)σp

by ignoring the constant logC(p) since it is common to all candidate structures. In our
experiments, regression coefficients are learned using Iterative Reweighted Least Squares
(IRLS) algorithm with p = 1 (Daubechies et al., 2010) as shown in Algorithm 2. While
IRLS is non-convex for p < 1, convergence proofs have been provided for 1 < p < 3 and p = 1
in Osborne (1985) and Daubechies et al. (2010), respectively. We consider l1 minimization
on CGM since it is robust to outliers, computationally efficient and yields sparse solutions
Daubechies et al. (2010). Furthermore, Rice and White (1964) and Ekblom and Henriksson
(1969) studied the lp−norm of several symmetrical distributions, for −∞ < p < +∞, and
showed that l1 is the best lp estimate for the Cauchy distribution.

3.1.3. Structure Learning

The main goal of learning DAG structure is to determine which nodes should be included
in the network generally by using an algorithm that searches the DAG space to maximize a
given network score. We search for the local optimum in the search space of all DAGs using
the Ordering based Search (OBS) (Teyssier and Koller, 2012) as shown in Algorithm 4. The
algorithm takes an initial ordering, τ , and learns a directed acyclic graph that is consistent
with τ using K2Search (Cooper and Herskovits, 1992).

The principle of K2Search algorithm is to assume that each node lacks parents firstly
and then to search for them in the preceding nodes by greedily adding edges until the MDC
score reaches a local optimum as illustrated in Algorithm 3. Gaussian based graphical
models (Schmidt et al., 2007) use linear regression to find a set of potential neighbors. On
the contrary, our modified version of hill-climbing based K2Search uses lp−norm instead.
We compare our method to GGM learned with OLS since they are the most representative
and commonly used form of Bayesian networks.
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Algorithm 3 K2Search //Perform structure learning of the DAG

Input: Symmetrized Data matrix D and fixed ordering τ
Output: Cauchy Graphical Model B(G,Ψ) given τ

1: Initialize B(G,Ψ) = ∅
2: for i = 2 to |X | do
3: //Find the optimal parent set paG(τi)
4: //by greedily adding edges starting from paG(τi) = ∅
5: repeat
6: Initialize noChange = true
7: Initialize best = FS(τi,paG(τi)|D)
8: AddpaG = ∅ //Search for a potential parent

9: for Xj ∈ {τ1, ...τi−1} \ paG(τi) do
10: Estimate regression weights Wτi for parent set paG(τi) ∪Xj using IRLS
11: if FS(τi,paG(τi) ∪Xj |D) > best then
12: best = FS(τi,paG(τi) ∪Xj |D) //Update best score

13: AddpaG = Xj //Possible new parent

14: noChange = false
15: end if
16: end for
17: paG(τi) = paG(τi) ∪AddpaG //Add the new parent

18: until noChange is true //Repeat until local optimum

19: end for

4. Empirical Validation

To validate our model, we conduct extensive experiments on synthetic and genetic datasets.
We discuss the experiments and results in the following sections.

4.1. Empirical Validation on Synthetic Data

We present the findings of CGM using benchmark network topologies from the Bayesian net-
work repository2: (number of nodes, number of edges), ALARM(37,46) and CHILD
(20,25) networks. ALARM is a Bayesian network designed to provide an alarm message
system for patient monitoring (Beinlich et al., 1989). The aim of the CHILD network is to
provide clinical experts with a mechanism to diagnose the type of disease that a child has
(Spiegelhalter et al., 1993)

Synthetic data was generated from a Cauchy distribution, Cauchy(1, 0). We assigned
Cauchy additive noise to every node Xi ∈ X with the same Cauchy parameters while
regression coefficients sampled uniformly at random from [−ρ

2 ,+
ρ
2 ] were assigned on each

edge. We fixed the network topology and noise parameters, and performed experiments
using 100 simulated datasets, each containing 2000 samples from CGM with randomly
chosen regression weights. We fixed ρ = 1.

Moreover, to test the robustness of CGM’s performance, we varied the dispersion σ
from 1 to 10 in steps of 1. This approach also evaluates our model’s sensitivity to learning

2. https://www.bnlearn.com/bnrepository/
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Algorithm 4 OBS. //Searches for a local optimum in the space of all DAGs

Input: Symmetrized Data matrix D and initial ordering τ
Output: Cauchy Graphical Model B(G,Ψ) over X
1: Initialize Cauchy Graphical Model B =K2Search(D, τ)
2: for i = 1 to |X | − 1 do
3: Initialize Tiτ = Twiddle(i, τ) //New ordering Tiτ by swapping τi and τi+1

4: B̃ = K2Search(D,Tiτ) //Compute the optimum B̃ given Tiτ
5: DS(i) = MDCs(B̃|D)−MDCs(B|D) //Set Delta score for the twiddle

6: end for
7: repeat
8: Initialize noChange = true
9: Find a =argmax DS(i) //Find the best twiddle Taτ

10: B̃ =K2Search(D,Taτ) //Compute the optimum given Taτ
11: if MDCs(B̃|D) > MDCs(B|D) then
12: τ = Taτ,B = B̃ //Accept the swap and update τ,B
13: DS(a − 1) if (a > 1) //Update the delta scores for

neighbors a− 1
14: DS(a+ 1) if (a < |X | − 1 //and a+ 1, if valid

15: noChange = false
16: end if
17: until noChange is true //Repeat until local optimum

(a) ALARM (b) CHILD

Figure 1: True Positives for ALARM and CHILD networks. The vertical axis denotes the
number of edges in the network and horizontal axis represents the percentage of simulated
data sets where the directed edge was learned.

difficult problems. We compare our method to GGM and report results for True/False
Positives (TP/FP) which denotes the number of bootstrap replicates where each true/false
positive edge was found for structure learning, Mean Regression Coefficients (MRC) and
Variance of MRC (VMRC) which represent the mean regression-coefficient of each edge and
the variance about mean regression coefficients for true positives, respectively.

For brevity, Figure 1 measures the frequency of correctly inferred edges that consistently
appear in multiple simulated datasets. Overall, results for ALARM and CHILD networks
show that CGM outperformed GGM as it inferred a higher number of edges. Meanwhile,
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(a) True Positives (b) False Positives

Figure 2: True and False Positives for different values of σ. CGM inferred a higher number
of TP than GGM in most cases (a). In (b), CGM is better than GGM at not inferring
incorrect edges (Type 1 errors).

a well-performing model should typically yield a higher sum of accurately inferred edges
across all datasets. We note that in total, CGM inferred 192 correct edges on ALARM
network, while GGM had 169. On the CHILD network, CGM learned 83 correct edges and
GGM inferred only 69 edges in total.

CGM’s robustness to changes in dispersion, σ. To validate our model’s performance
in learning complex problems, we show results for different values of σ. For each value of
σ, we performed ten experiments and summed the number of consistently inferred edges
across many datasets. Figure 2 displays the comparative performance of CGM (blue) and
GGM (yellow) on CHILD network.

The number of correctly inferred direct edges was higher for CGM compared to GGM.
CGM inferred 908 correct direct edges in total, which is 10.67% more than the 822 edges
learned by GGM. The consistent performance of CGM given different values of σ demon-
strates the robustness of our approach against GGM.

With regards to FP, GGM incorrectly inferred 10 256 edges which is 5.65% more than
the 9 677 inferred by CGM. Although both methods are quite competitive, results show
that CGM is better at not inferring incorrect edges while GGM continuously display poor
performance on TP (Type II errors) and FP (Type I errors).

Mean and Variance of regression coefficients. For MRC and VMRC, we averaged
the results of ten experiments and computed the mean and variance across all nodes for
each value of σ. Figure 3 shows the comparative performance of both approaches. Results
show that GGM is generally characterized by larger deviations in mean and variance, as
shown in Figures 3 and 4, respectively. This shows that for heavy tailed data, GGM is not
reliable at estimating the regression coefficients, while CGM remains robust in sensitivity
to changes in the distribution of data. Overally, the node-specific variance obtained using
CGM is lower and concentrated around zero while GGM exhibits larger variance as shown
in Figure 4(b).

Dispersion parameter log σ. We assessed the accuracy and robustness of CGM in
estimating the dispersion parameter of the noise variables. GGM is not considered in
this experiment since it assumes Gaussian noise. We present results of log σ calculated as
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(a) MRC (b) MRC at node level

Figure 3: MRC for different values of σ. On average, GGM yields higher MRC compared
to CGM. Node-specific MRC is also higher for GGM in (b).

(a) VMRC (b) VMRC at node level

Figure 4: VMRC for different values of σ. CGM shows a lower VMRC demonstrating the
reliability of the model in estimating MRC. Node-specific VMRC is also lower for CGM
compared to GGM as shown in the box plot.

(a) log σ (b) LFLOM Cross Validation

Figure 5: Estimates of log σ for different values of σ are shown in (a). Cross validation
results in terms of LFLOM in (b) show that there is a clear departure of the data from the
Gaussian process
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log σ = 1/|X |
∑

i log σi for different values of σ in Figure 5. The results show relatively
large variability as σ increases, indicating the difficulty in estimating the dispersion. It is
important to note that estimating the dispersion of Cauchy noise random variables is a
challenging parameter domain for most existing methods (Johnson et al., 1995).

4.2. Empirical Validation on Genetic Data

Analysis of gene differentiation show that microarrays contain a number of error sources
and while the measurement errors remain unknown, they are generally believed to follow
a Cauchy process (Vetterling, 2002). We perform cross validation on real world genetic
dataset. The data consist of 21 800 gene probes of 1 240 individuals from 7 population
groups. Although the dataset was later expanded, details of the preliminary version can be
accessed in Stranger et al. (2012). The data was processed by taking the log intensities and
centering them around the median. The median-centred probes were ranked in decreasing
order of variance and we selected the top 100 probes and performed cross validation on
them.

We compared CGM and GGM by reporting the goodness of fit in terms of Log Fractional
Lower Order Moments (LFLOM) for a graphical model B on the test set T = {T1; ...TN}
as follows:

LFLOM(T |B, p) =
∑
Xi∈X

[
1

p

(
logE[|ξi|p]

)]
=
∑
Xi∈X

[
1

p

(
logE|Xi −

∑
Xj∈paG(Xi)

wijXj |p
)]

(20)

where wij denotes the regression coefficients learned by CGM or GGM. Our cross validation
tests whether the variation in a child node Xi can be explained by the set of its parents
paG(Xi). In that case we expect LFLOM to be small. In our analysis, we are interested in
assessing the performance of each approach by considering each gene as a random variable.
We performed a ten-fold cross validation of LFLOM for CGM and GGM and the averaged
results in Figure 5(b) show the difference between optimal network for each of the approaches
and an empty network without edges (NULL).

The results demonstrate a clear departure of the noise variable ξi from Gaussian, with
both approaches showing a narrower difference as p approaches 2. This is along expected
lines since LFLOM is identical to the negative log-likelihood of GGM as the noise variable
ξi is symmetrized before cross validation.

5. Conclusions

We proposed CGM that can be represented as DAGs with arbitrary network topologies.
We introduced MDC score to select the optimal DAG network of the CGM. We empirically
validate the resultant algorithm, CGLearn on synthetic and gene expression data. Cross
validation results and experiments on benchmark Bayesian networks demonstrate the effi-
cacy of our approach compared to Gaussian-based graphical models. In the future, we hope
to build dynamic CGM to cater for more complex application scenarios.
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