
Proceedings of Machine Learning Research 246:427–437, 2024 Probabilistic Graphical Models (PGM)

An Adaptive Implicit Hitting Set Algorithm for MAP and
MPE Inference

Aleksandra Petrova apetrova@cs.upc.edu

Javier Larrosa larrosa@cs.upc.edu

Emma Rollon erollon@cs.upc.edu

Universitat Politècnica de Catalunya, Barcelona, Spain

Editors: J.H.P. Kwisthout & S. Renooij

Abstract

In this paper, we address the use of the implicit hitting set approach (HS) for MAP (Markov
Random Fields) and MPE (Bayesian Networks). Since the HS approach is quite general and
finding the best version is very problem-dependent, here we present an adaptive algorithm
that learns a reasonably good version for the instance being solved. The algorithm, which
follows a Multi-armed Bandit structure, explores the different alternatives as it iterates
and adapts their weights based on their performance. The weight is used to decide on the
probability of selecting a given alternative in the next iteration.

Keywords: MAP and MPE inference; Implicit Hitting Set Approach; Multi-armed Bandit.

1. Introduction

Probabilistic Graphical Models (PGM) such as Markov Random Fields (MRF) or Bayesian
Networks (BN) have been successfully used to model and solve a variety of problems in
image analysis, genetics, structural biology, and bioinformatics Koller and Friedman (2009).
Here we are concerned with one of the essential queries on MRF and BN which is to find
an optimal assignment to all variables. For MRF this problem is known as Maximum A
Posteriori (MAP-MRF). For BN it is known as Maximum Probability Explanation (MPE-
BN). We consider both MRF and BN under the unifying framework of Cost Networks where
potentials and conditional probability tables are log-transformed and either MRF-MAP or
BN-MPE correspond to finding an optimal assignment in the associated Cost Network.
This problem is usually known as the Weighted Constraint Satisfaction Problem (WCSP)
Allouche et al. (2015).

The topic of this paper is the application of the recently proposed Implicit Hitting Set
(HS) approach for WCSP. Roughly speaking, it consists of a loop such that at each iteration
an unsatisfiable piece of the problem (a.k.a. core) is uncovered. From the set of cores, the
algorithm computes an anytime lower bound of the optimum. From the process of growing
cores (i.e., increasing its components), the algorithm computes an anytime upper bound of
the optimum. The algorithm stops when both bounds meet. Note that this is an exact
approach, meaning that it returns the true optimum rather than an approximation. Since
the problem is NP-hard, it follows that the algorithm is worst-case time exponential.

Although the HS approach has been found effective in a variety of related discrete
optimization settings (Davies, 2014; Berg et al., 2020; Smirnov et al., 2021, 2022; Saikko
et al., 2018), its efficient application for WCSP remains an open challenge (Delisle and

© 2024 A. Petrova, J. Larrosa & E. Rollon.

Petrova Larrosa Rollon

Bacchus, 2013; Larrosa et al., 2024). One major difficulty is that HS is a relatively generic
framework. There are several ways to implement the body of the loop and different options
may have very different performances. Furthermore, there does not seem to be a dominant
option. On the contrary, the best option is highly domain-dependent.

The main contribution of this paper is a Multi-armed Bandit implementation of HS such
that each arm corresponds to one possible loop alternative. To the best of our knowledge,
no adaptive version of HS has been tried before. We observe on a number of benchmarks
that our approach consistently outperforms the average of the different alternatives which,
we believe, shows its promise.

2. Background

A graphical model (Dechter (2019)) is a tuple (X,F,⊕) where X are variables each one
taking values on a discrete domain. F is a set of local functions. Each function is defined on
a subset of the variables called its scope and maps each possible assignment to a value. The
use of the ⊕ operator (called combinator) is to combine the values of the local functions.
The graphical model represents a global function whose scope is X which is the combination
of all its local functions

⊕m
f∈F f

In this paper, we are concerned with two types of graphical models: Constraint Networks
and Cost Networks. In constraint networks the local functions are constraints (i.e., functions
that assign a Boolean value to any assignment in its domain) and the combination operator
is the boolean and ∧. The most usual task is called the Constraint Satisfaction Problem
(CSP) and consists of finding an assignment of the variables that satisfies all the constraints.

In Cost Networks the local functions are cost-functions (i.e, functions that assign a
natural number to any assignment in its domain) and the combination operator is the sum
+ (i.e, the global function is the sum of local costs). The most usual task is called Weighted
CSP (WCSP) and it consists of finding an assignment of the variables that minimizes the
sum of costs,

min
X

∑
f∈F

f(·)

It is well-known that Markov Random Fields and Bayesian Networks can be represented
as Cost Networks where the cost functions are log-transformations of potential and CPTs,
respectively Koller and Friedman (2009). In that case, the WCSP task corresponds to
MRF-MAP and BN-MPE, respectively.

As we will see next, HS algorithms solve WCSP problems by solving a sequence of CSP
problems.

3. Implicit Hitting Set

In this section, we briefly review the HS approach for WCSP solving. A more detailed
description can be found in Larrosa et al. (2024). Consider an arbitrary Cost Network
(X,F,+) with m cost functions F = {f1, f2, . . . , fm}. Remember that our goal is to obtain
the cost-optimal solution noted w∗. A cost vector v = (v1, v2, . . . , vm) is a vector where
each component vi is associated to cost function fi, and value vi must be a cost occurring

428

Adaptive HS for MAP and MPE Inference

in fi. Given a set of vectors K, a Hitting Vector h is a vector such that for each v ∈ K
the vector h is higher in at least one of its components. The Minimum Cost Hitting Vector
(noted MHV (K)) is a hitting vector of minimum cost where cost(h) =

∑
i hi

Given a Cost Network, a cost vector v induces a Constraint Network (X,Fv,∧) where
Fv denotes the set of constraints (fi ≤ vi) for 1 ≤ i ≤ m (namely, cost functions are replaced
by constraints). If the CSP induced by v is satisfiable we will say that v is a solution vector.
Otherwise, we will say that v is a core vector.

The IHS approach relies on the following observation that establish a lower bound and
an upper bound condition in terms of core and solution vectors,

Observation 1 Consider a solution vector h and a set of cores K. Then, MHV (K) ≤
w∗ ≤ cost(h).

HS algorithms aim at finding a solution vector h and a set of cores K such that the
two bounds meet (that is, MHV (K) = cost(h)). In the following, we enumerate four
different alternative ways to achieve this goal. The first one was first proposed in Delisle and
Bacchus (2013) and the other three have been adapted from MaxSAT and Pseudo-boolean
Optimization. All the algorithms consist of one loop whose body can be divided into two
parts. Firstly, they find a hitting vector h. Secondly, if it is a core, they obtain a larger1

(namely, improved) one k by increasing appropriately its components while preserving its
unsatisfiability.

1. HS-A (Algorithm 1 left). In this alternative, a minimum cost hitting vector MHV()
is computed. If it is a core it is improved. Otherwise, it is known that h is an optimal
solution and the algorithm can stop.

2. HS-B (Algorithm 1 right). In this alternative, a near-optimal hitting vector is com-
puted using a greedy algorithm HV greedy(). If it is a core, then it is improved. Else,
if it is a solution the upper bound is possibly updated. If the upper bound is not
updated, then the iteration has been wasted, which means that this algorithm is not
complete since it can iterate infinitely many times. This problem can be solved by
forcing the algorithm to iterate as in the other alternatives once in a while Davies
(2014).

3. HS-C (Algorithm 2 left). In this alternative, a hitting vector with a cost less than
the upper bound is computed. The idea is to emulate HS-B but disallow wasted
iterations.

4. HS-D (Algorithm 2 right). This alternative is similar to the previous one, but now
trying to behave closer to HS-A by forcing the hitting vector to be lower (that is,
closer to the optimum)

All four variations may follow different strategies for growing (namely, improving) the
core. The two possibilities that are explored in this paper are: Maximal cores and Partially
maximal cores. With Maximal cores, we achieve a cost vector h which cannot be increased

1. Recall the usual partial order among vectors where a < b if a ̸= b and b is larger than or equal to a in
every component

429

Petrova Larrosa Rollon

Function HS-A(X,C, F)

begin
K := ∅; lb := 0; ub :=∞
while lb < ub do

h :=MHV(K);
lb := cost(h);
if SolveCSP(X,C ∪ Fh) then

ub := cost(h)
end
else

k :=growCore(X,C, F, ub,h);
K := K ∪ {k};

end

end
return lb

end

Function HS-B(X,C, F)

begin
K := ∅; lb := 0; ub :=∞
while lb < ub do

h :=HVgreedy(K);
if SolveCSP(X,C ∪ Fh) then

ub := min(cost(h), ub);
end
else

k :=growCore(X,C, F, ub,h);
K := K ∪ {k};

end

end
return lb

end

Algorithm 1: Two alternative HS algorithms for solving WCSP. They receive as input
a WCSP (X,C, F) and return the cost of the optimal solution w∗. Function growCore()
receives as input a core h and returns a core k such that h ≤ k.

Function HS-C(X,C, F)

begin
K := ∅; lb := 0; ub :=∞
while lb < ub do

h :=HV(K, ub);
if h = NUL then lb := ub;
else

if SolveCSP(X,C ∪ Fh) then
ub := cost(h);

end
else

k :=growCore(X,C, F, ub,h);
K := K ∪ {k};

end

end

end
return lb

end

Function HS-D(X,C, F)

begin
K := ∅; lb := 0; ub :=∞
while lb < ub do

h :=HV(K, lb+ub
2);

if h = NUL then lb := lb+ub
2 ;

else
if SolveCSP(X,C ∪ Fh) then

ub := cost(h);
end
else

k :=growCore(X,C, F, ub,h);
K := K ∪ {k};

end

end

end
return lb

end

Algorithm 2: Two additional alternative HS algorithms for solving WCSP.

in any of its dimensions without losing the core condition. Our implementation is inspired in
Marques-Silva and Lynce (2011), where through a list of dimensions that can be increased,
we select a dimension and increase it until the vector no longer is a core, which then gets
reduced by 1. This is repeated until there are no dimensions to increase. The second

430

Adaptive HS for MAP and MPE Inference

possibility for growing cores is to increase components until at least in one dimension an
increment makes the vector a solution vector Delisle and Bacchus (2013).

By combining the four loop alternatives and the two ways to grow cores we obtain eight
different algorithms. We have seen in our experiments that there is no winning strategy
and the performance difference between the best and the worst alternative can be dramatic.
This is what motivates our adaptative approach, explained next.

4. Multi-armed Bandit

A multi-armed bandit (MAB) problem is defined by a set of slot machines (or arms), each
providing a random reward from an associated unknown probability distribution. A solution
or strategy decides which arm to play at each step. This solution has as a goal to balance
the exploration and exploitation to maximize cumulative rewards over time. Initially, when
the Reinforcement Learning agent is faced with the problem it does not have any knowledge
of the probabilities. It is through the process of exploration that it can slowly learn them,
so then the best ones can be exploited, providing high rewards Sutton and Barto (1998)
Slivkins (2019).

Many strategies exist for learning the distribution of arms. Each strategy follows a
similar framework shown in 3. At every step, the agent selects an arm a to be pulled which
is based on a decision to either explore or exploit. The action of the selected arm a is
then executed, upon which a reward r is received. This reward often depends on aspects of
the arms that are unique to the problem that is being solved. Using the reward obtained,
the agent updates the policy N [a], Q[a] which influences the selection of arms in the next
iteration. The policy often consists of aiming to minimize the regret, the difference between
the reward obtained and the reward that could have been r − Q[a]. The past choices
Q[a] of the agent can also be used to inform the policy. The policy should maximize the
accumulated reward over the horizon. Several strategies have been considered for MAB,
including ϵ-greedy, Softmax, or Upper Confidence Bound (UCB).

Function MAB(n, T)
begin

Q← array of zeros of size n
N ← array of zeros of size n
for t← 1 to T do

a← SelectArm(Q,N, t) // e.g., ϵ-greedy, Softmax, UCB

r ← PullArmAndGetReward(a)
N [a]← N [a] + 1
Q[a]← Q[a] + 1

N [a](r −Q[a])

end
return Q,N

end
Algorithm 3: Multi-armed Bandit Framework. Where n represents the number of arms,
T is the number of iterations, Q is the estimated value of each arm, and N counts for the
selection of each arm.

431

Petrova Larrosa Rollon

5. Multi-armed Hitting Set

We formulate a Multi-armed Bandit Hitting Set for solving WCSPs with eight arms. The
given arms are created by combining previously discussed alternatives A-D, with Maximal
cores and Partially maximal cores. Each combination represents a unique arm that employs
a different strategy to reach the goal of the problem. At each iteration of the algorithm, the
agent selects an arm to pull, based on the Roulette Wheel strategy. The Roulette Wheel is
an MAB algorithm that selects an action (arm) based on the probabilistic value estimate of
each arm. The selection is made by picking first a random value in the range of (0,1) and
cumulatively augmenting the sum of the values of the arms (based on the estimates) until
we reach the randomly picked value. Once the arm has been picked, the agent receives a
reward which is then used to update the estimates for each arm. This process allows for a
good balance between exploration and exploitation, as the arms with higher probabilities
get better odds of being picked.

There are two main motivations as to why we picked the Roulette Wheel as our MAB
agent. Firstly, the alternatives of reaching our goal which also correspond to the arms that
we are using in the algorithm are not all equal when it comes to reaching the optimum. In
some of the alternatives, the algorithm can find itself looping for an infinite amount of time,
while in others due to how we increase the lower bound we cannot reach the case where it
is equal to the upper bound. Secondly, as previously stated there is no dominant option
among the alternatives, so if an agent were to converge too slowly to one alternative, it
would have a hard time ensuring efficiency. This is because once the agent has converged,
the policy takes some time to reduce the estimate of the winning arm and turn to another
option. Thus with the Roulette Wheel, the agent learns the probabilities of each arm as
it progresses through the algorithm reaching the optimum, allowing for switches to still
happen even if one arm is a dominant strategy.

At each iteration, the agent selects an arm which it then utilizes to obtain a cost vector
h, update the bounds, and grow it into cores in case the cost vector is not a solution.
The selection of each arm is done by computing the probabilities of each of the eight arms
and then following the aforementioned procedure of the Roulette Wheel. For the agent to
know the given probabilities and select the best arm given them, we need to provide it with
rewards. For this, we define a reward function,

r =
(|K|+

∑
k∈K cost(k)− cost(h))

T

where K is the set of cores that the selected arm produced in the iteration, h is the hitting
vector obtained in the iteration, and T is the time taken by the arm in seconds. This reward
encourages the agent to select arms that have been successfully producing cores, which have
as well a bigger difference in the cost from the initial cost vector, forcing the algorithm to
explore unreached regions.

To complete the agent we add the third element, the policy update. The policy update
is the formula used for the probabilities to be updated upon receiving a reward. We employ
the following formulas:

N [a]← N [a] + 1

432

Adaptive HS for MAP and MPE Inference

Q[a]← Q[a] +
1

N [a]
(r −Q[a])

. Through this policy, we prioritize the importance of the past decisions the algorithm has
taken relying on the overall performance of each arm, rather than the immediate reward.
The rewards are always positive, resulting in positive estimates. The final step before
selecting the arm is to turn the estimates into probabilities. For this, we use the simple
cumulative sum:

Pi =
Q[i]∑n
j=1Q[j]

6. Empirical Results

We conducted an assessment of our proposal by creating a benchmark of various WCSP
problems and utilizing them to evaluate our proposal. This benchmark consists of ran-
dom uniform problems, random scale-free problems, random grid problems, and pedigree
instances. Random uniform problems are characterized by 5 parameters: the number of
variables (n), domain size (d), number of binary cost functions (m), number of different
weights at each cost function (w), and number of tuples with the non-zero cost at each
cost function (t). The scope of cost functions and the actual cost of tuples are randomly
decided using a uniform distribution. In total, we created 9 groups with different parameter
combinations looking for a variety of problems with a reasonable level of difficulty. Each
group contains 20 or 50 instances. Random uniform problems are often criticized because
they lack the structure of real problems. To test our approach on more realistic types of
problems we generated scale-free networks using the Barabási-Albert model Ansótegui et al.
(2022). Scale-free graphs have been found in a number of real situations. Our instances
are also defined in terms of five parameters (n, d, m, w, t), with n and m being the two
parameters of the Barabási-Albert model and d, w, and t being the same as in the uniform
random instances. 4 groups of problems were created, each with 20 instances. Aiming at
even more structure, we generated random problems with the scope of cost functions form-
ing a n× n grid. Once again the instances are created using parameters: dimension of the
grid n, domain size (d), number of different weights at each cost function (w), and number
of tuples with the non-zero cost at each cost function (t), similarly to the random ones. In
total, we have 2 groups of 20 instances each. Our last set of problems are pedigree instances
from the genetic Linkage problem taken from a standard benchmark Allouche et al. (2015).

All of the instances are pre-processed using virtually arc consistent (VAC) Cooper et al.
(2010). In our implementation, we used cost-function merging as proposed in Larrosa et al.
(2024), which (virtually) merges the clusters of cost functions through a tree decomposition
into a single cost function. The implementation may compute some disjunctive cores in
the same iteration as seen in Delisle and Bacchus (2013). The experiments reported ran
on nodes with 4 cores 16Gb Dell PowerEdge R240 with Intel193 Xeon E-2124 of 3.3Ghz.
MHV() and HV() were modeled as 0-1 integer programs and solved with CPLEX Cplex
(2009). Induced CSPs were encoded as CNF SAT formulas and solved with CaDiCaL Biere
et al. (2020). Each execution had a time out of 1 hour.

433

Petrova Larrosa Rollon

Problem Class Best alt. HS (best) HS (avg.) HS (worst) MAB

Random-15-35-70-700-7 C with 2 237.65 484.87 613.85 438.33
Random-25-30-50-750-5 C with 2 17.43 39.97 53.01 34.77
Random-25-5-50-20-1000 A with 1 875.00 2309.33 3219.27 1439.53
Random-30-8-100-32-150 A with 1 772.37 2050.04 3003.98 862.45
Random-35-6-75-30-12 B/C with 1 144.23 1559.66 3435.64 565.71
Random-40-3-150-3-5 B/C with 1 38.14 581.14 1663.92 104.11
Random-50-5-100-20-5 B/C with 1 20.15 569.65 1979.94 170.99
Random-70-4-175-12-4 B/C with 1 1777.80 2814.29 3600 2802.14
Random-100-4-250-6-15 B with 1 15.85 520.78 1711.57 41.05
Scale-free-4-25-5-20-5 C with 1 36.55 1282.37 3264.93 300.53
Scale-free-4-50-6-15-10 B/C with 1 2045.26 3014.28 3600 2390.68
Scale-free-5-25-5-20-5 B/C with 1 283.73 2108.85 3471.02 1555.46
Scale-free-7-20-3-7-10 C with 1 1.66 33.19 138.19 4.24
Grid-30-4-8-5 B with 1 155.19 843.93 1860.37 450.40
Grid-50-3-5-5 B with 1 93.36 519.26 1192.53 199.85
Pedigree B/C with 1 27.81 101.08 253.16 71.19

Table 1: Performance of the different HS algorithms and the MAB agent given as average
running time (in seconds). The first column shows the different groups of instances. The
second column tells the HS alternative providing the best performance. The letter indicates
how the hitting vector is computed and the number indicates if it is augmented until it
becomes maximal (1), or until it partially grows (2). In the initial implementation of HS,
variation D was not created, hence why it does not show up in the column.

Table 1 shows the results of our experiments. Looking at column Best alt. we can see
that there is no winning version among the different alternatives that we are considering.
Looking at column HS (best) and HS (worst), we can see that there is a significant difference
between the best-performing alternative of the IHS compared to the worst. This means that
if the user were to simply select an alternative from the 8, it could result in a very slow
performance. Thus motivating the idea behind using a MAB bandit as a solution. Column
HS (average) reports the average performance among all the tested HS alternatives. It can
be seen that the average is often much higher than the best.

Column MAB shows the result of our MAB implementation. the first thing we can
see is that in all of the cases, it performs better than the worst IHS for the given problem
group, which means that the overhead of the MAB variables maintenance is not a problem.
Next we can also see that it performs quite similarly to the average performance of the
8 algorithms for the given problem, and in some cases faster. This shows that we have a
reliable agent which given any WCSP instance, can guarantee that it will solve it within an
efficient time. Although the MAB is not able to outperform the best for none of the groups,
in some of the cases where we have difficult instances, we can see that it performs twice as
fast as the average.

434

Adaptive HS for MAP and MPE Inference

7. Conclusions and Future Work

This paper presents the original idea of using a Multi-armed Bandit with the Implicit Hitting
Set algorithm to apply it to Markov Random Fields and Bayesian networks. We present
eight alternative implementations of the HS algorithm that can be used to construct the
MAB. We see from the results that there is no winning strategy when it comes to only using
the HS algorithm. Furthermore, when looking at the results we can conclude that the MAB
agent performs better than the average over the eight HS alternatives, on different types
of problems, including real ones. Through our work, we can ensure that given a WCSP
instance, the agent can solve the problem efficiently.

We believe that with the results being positive and competitive with the HS approach
there is quite some potential in using Reinforcement Learning for solving Graphical Models.
To achieve better results, we would like to consider expanding the implementation to contain
more arms. These arms would be based on other alternatives that the HS algorithm can
contain. Such alternatives could provide the agent with additional possibilities of reaching
the optimum. Based on the results, we can see that variation has been positive in ensuring
the minimization of the overall time needed to solve the instance on average.

Another line of work can include shifting towards using Contextual bandits. From the
results, we could see some patterns emerging on some types of instances performing better
with a specific alternative of the HS algorithm. Although these might not always apply,
providing the agent with more context about the instances instead of simply relying on the
reward could lead to speeding up the time needed to solve it. This idea is motivated further
by the fact that often an arm may not produce a core, which would result in gaining no
reward, however, it has been crucial to reducing the gap between the bounds, putting the
agent a step closer to solving the instance.

References

D. Allouche, S. de Givry, G. Katsirelos, T. Schiex, and M. Zytnicki. Anytime hybrid best-
first search with tree decomposition for weighted CSP. In G. Pesant, editor, Principles
and Practice of Constraint Programming - 21st International Conference, CP 2015, Cork,
Ireland, August 31 - September 4, 2015, Proceedings, volume 9255 of Lecture Notes in
Computer Science, pages 12–29. Springer, 2015. doi: 10.1007/978-3-319-23219-5\ 2. URL
https://doi.org/10.1007/978-3-319-23219-5_2.

C. Ansótegui, M. L. Bonet, and J. Levy. Scale-free random SAT instances. Algorithms, 15
(6):219, 2022. doi: 10.3390/A15060219. URL https://doi.org/10.3390/a15060219.

J. Berg, F. Bacchus, and A. Poole. Abstract cores in implicit hitting set maxsat
solving. In L. Pulina and M. Seidl, editors, Theory and Applications of Satisfiabil-
ity Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10,
2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294.
Springer, 2020. doi: 10.1007/978-3-030-51825-7\ 20. URL https://doi.org/10.1007/

978-3-030-51825-7_20.

A. Biere, K. Fazekas, M. Fleury, and M. Heisinger. CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT Competition 2020. In T. Balyo, N. Froleyks, M. Heule,

435

https://doi.org/10.1007/978-3-319-23219-5_2
https://doi.org/10.3390/a15060219
https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1007/978-3-030-51825-7_20

Petrova Larrosa Rollon

M. Iser, M. Järvisalo, and M. Suda, editors, Proc. of SAT Competition 2020 – Solver and
Benchmark Descriptions, volume B-2020-1 of Department of Computer Science Report
Series B, pages 51–53. University of Helsinki, 2020.

M. C. Cooper, S. de Givry, M. Sánchez-Fibla, T. Schiex, M. Zytnicki, and T. Werner. Soft
arc consistency revisited. Artif. Intell., 174(7-8):449–478, 2010. doi: 10.1016/j.artint.
2010.02.001. URL https://doi.org/10.1016/j.artint.2010.02.001.

I. I. Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation,
46(53):157, 2009.

J. Davies. Solving MAXSAT by Decoupling Optimization and Satisfaction. PhD thesis,
University of Toronto, Canada, 2014. URL http://hdl.handle.net/1807/43539.

R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algo-
rithms, Second Edition. Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers, 2019. doi: 10.2200/S00893ED2V01Y201901AIM041.
URL https://doi.org/10.2200/S00893ED2V01Y201901AIM041.

E. Delisle and F. Bacchus. Solving weighted csps by successive relaxations. In C. Schulte,
editor, Principles and Practice of Constraint Programming - 19th International Con-
ference, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, volume 8124
of Lecture Notes in Computer Science, pages 273–281. Springer, 2013. doi: 10.1007/
978-3-642-40627-0\ 23. URL https://doi.org/10.1007/978-3-642-40627-0_23.

D. Koller and N. Friedman. Probabilistic Graphical Models - Principles and Techniques.
MIT Press, 2009. ISBN 978-0-262-01319-2. URL http://mitpress.mit.edu/catalog/

item/default.asp?ttype=2&tid=11886.

J. Larrosa, C. Martinez, and E. Rollon. Theoretical and empirical analysis of cost-function
merging for implicit hitting set wcsp solving. In The 38th Annual AAAI Conference on
Artificial Intelligence February 20-27, 2024; Vancouver, Canada. AAAI Press, 2024.

J. Marques-Silva and I. Lynce. On improving MUS extraction algorithms. In K. A.
Sakallah and L. Simon, editors, Theory and Applications of Satisfiability Testing - SAT
2011 - 14th International Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22,
2011. Proceedings, volume 6695 of Lecture Notes in Computer Science, pages 159–173.
Springer, 2011. doi: 10.1007/978-3-642-21581-0\ 14. URL https://doi.org/10.1007/

978-3-642-21581-0_14.

P. Saikko, C. Dodaro, M. Alviano, and M. Järvisalo. A hybrid approach to optimiza-
tion in answer set programming. In M. Thielscher, F. Toni, and F. Wolter, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Sixteenth In-
ternational Conference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018, pages
32–41. AAAI Press, 2018. URL https://aaai.org/ocs/index.php/KR/KR18/paper/

view/18021.

A. Slivkins. Introduction to multi-armed bandits. Found. Trends Mach. Learn., 12(1-2):
1–286, 2019. doi: 10.1561/2200000068. URL https://doi.org/10.1561/2200000068.

436

https://doi.org/10.1016/j.artint.2010.02.001
http://hdl.handle.net/1807/43539
https://doi.org/10.2200/S00893ED2V01Y201901AIM041
https://doi.org/10.1007/978-3-642-40627-0_23
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886
https://doi.org/10.1007/978-3-642-21581-0_14
https://doi.org/10.1007/978-3-642-21581-0_14
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18021
https://doi.org/10.1561/2200000068

Adaptive HS for MAP and MPE Inference

P. Smirnov, J. Berg, and M. Järvisalo. Pseudo-boolean optimization by implicit hitting
sets. In L. D. Michel, editor, 27th International Conference on Principles and Practice of
Constraint Programming, CP 2021, Montpellier, France (Virtual Conference), October
25-29, 2021, volume 210 of LIPIcs, pages 51:1–51:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi: 10.4230/LIPICS.CP.2021.51. URL https://doi.org/10.

4230/LIPIcs.CP.2021.51.

P. Smirnov, J. Berg, and M. Järvisalo. Improvements to the implicit hitting set approach to
pseudo-boolean optimization. In K. S. Meel and O. Strichman, editors, 25th International
Conference on Theory and Applications of Satisfiability Testing, SAT 2022, August 2-5,
2022, Haifa, Israel, volume 236 of LIPIcs, pages 13:1–13:18. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi: 10.4230/LIPICS.SAT.2022.13. URL https://doi.

org/10.4230/LIPIcs.SAT.2022.13.

R. S. Sutton and A. G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 1998. ISBN 978-0-262-19398-6. URL
https://www.worldcat.org/oclc/37293240.

437

https://doi.org/10.4230/LIPIcs.CP.2021.51
https://doi.org/10.4230/LIPIcs.CP.2021.51
https://doi.org/10.4230/LIPIcs.SAT.2022.13
https://doi.org/10.4230/LIPIcs.SAT.2022.13
https://www.worldcat.org/oclc/37293240

	Introduction
	Background
	Implicit Hitting Set
	Multi-armed Bandit
	Multi-armed Hitting Set
	Empirical Results
	Conclusions and Future Work

