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Marcel Wienöbst m.wienoebst@uni-luebeck.de

Institute for Theoretical Computer Science, University of Lübeck
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Abstract

In the context of inferring a Bayesian network structure (directed acyclic graph, DAG
for short), we devise a non-reversible continuous time Markov chain, the “Causal Zig-Zag
sampler”, that targets a probability distribution over classes of observationally equivalent
(Markov equivalent) DAGs. The classes are represented as completed partially directed
acyclic graphs (CPDAGs). The non-reversible Markov chain relies on the operators used in
Chickering’s Greedy Equivalence Search (GES) and is endowed with a momentum variable,
which improves mixing significantly as we show empirically. The possible target distribu-
tions include posterior distributions based on a prior over DAGs and a Markov equivalent
likelihood. We offer an efficient implementation wherein we develop new algorithms for
listing, counting, uniformly sampling, and applying possible moves of the GES operators,
all of which significantly improve upon the state-of-the-art run-time.

Keywords: MCMC; Causal Discovery; Markov Equivalence Classes; DAGs.

1. Introduction

A Bayesian network is a probabilistic graphical model that represents a set of random vari-
ables and their conditional (in)dependencies using a directed acyclic graph (DAG). Graph
and random variables are linked by the local Markov condition: variables are conditionally
independent of their non-descendants given their parents, which induces a factorisation of
the joint distribution via conditional distributions of variables given their parents (Lau-
ritzen, 1996; Koller and Friedman, 2009). Typically, there are multiple such factorisations
or multiple DAGs such that the local Markov condition holds.

Causal Bayesian networks, in which the edges in the DAG represent direct causal in-
fluences, provide a theory of how interventions change the joint distribution of latent and
observable variables (Pearl, 2009; Peters et al., 2017). Here, one assumes the causal Markov
condition that a variable conditional on its direct causes is independent of variables that
are not directly or indirectly influenced by it. Therefore, even when assuming faithful-
ness, that all conditional independencies in the data are implied by the factorisation of the
underlying causal DAG, observational data is generally insufficient to uniquely determine
this graph. Instead the DAGs which cannot be told apart by observational data form a
Markov equivalence class (MEC), that is an equivalence class of DAGs (Verma and Pearl,
1990; Heckerman et al., 1995), usually represented by a completed partially directed graph
(CPDAG).1 In Bayesian inference this manifests in marginal likelihoods that are the same

1. Technical definitions are given in section 3.
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Causal Structure Learning With Momentum

Figure 1: Continuous-time trace of the number of edges of the sampled graphs when tar-
geting a uniform distribution on CPDAGs with 100 vertices for the non-reversible sampler
proposed here in blue compared with the similar, but reversible, Zanella sampler in orange.
The total time of 1 unit corresponds to 5 000 jumps. Our sampler reaches equilibrium con-
siderably faster and mixes better.

for all members of the MEC. Bayesian inference starting from a prior distribution on the
equivalence classes hence yields a posterior distribution over Markov equivalence classes.

Markovian Monte Carlo methods allow drawing samples from that posterior distribu-
tion. They work by constructing a stochastic process Z with a temporal Markov property,2

that has the desired distribution as its equilibrium distribution, see Roberts and Rosenthal
(2004) for a general account for Markov chains. The empirical distribution of samples taken
from the process then approximates the usually intractable posterior distribution. This is
classically done with discrete time Markov chains, but recently continuous time samplers
have also become an active research area (Fearnhead et al., 2018).

In this work, the sampler is based on a stochastic process Z = (Zt)t≥0 taking values (γ, d)
in a space of extended coordinates where γ ∈Mn is a MEC on n variables and d ∈ {−1,+1}
is variable indicating a direction of movement corresponding to adding edges to γ if d = +1

and removing edges from γ if d = −1. This is analogous to Gustafson (1998) who adds a
direction variable to a random walk on the integers in order to improve mixing by allowing
for repeated moves in the same direction in contrast to choosing a random direction in every
step. Also Hamiltonian Monte Carlo uses a momentum variable to balance random walk
behaviour and systematic exploration (Neal, 1996).

The sampler relies on the operators introduced by Chickering (2002b) in the celebrated
GES algorithm for estimating a single MEC. They allow to move between MECs, which have
DAGmembers that differ only by a single edge deletion or insertion, thus providing a natural
and efficient representation of this space. Moreover, they can be used to immediately obtain
a reversible Markov chain, as for example recently explored by Zhou and Chang (2023)
which propose a locally balanced Markov chain sampler in the sense of Zanella (2019) for
the problem. Endowing them with momentum improves mixing and retains closeness to
the GES approach, where there are two main phases: (i) the forward phase, during which
edges are inserted and (ii) the backward phase, during which edges are deleted. Indeed, our
algorithm, which we term Causal Zig-Zag, can be viewed as a generalisation of GES and it

2. Not to be confused with the local Markov condition and the causal Markov assumption in the Bayesian
network.
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Figure 2: The expert assessment of the causal model on the left. On the right, the model
with highest posterior probability 0.701, which coincides with the model found by GES. The
two models with next highest posterior probabilities are shown in Figure 6 in the Appendix.

converges to it in the limit of increasing coldness given by a thermodynamic β as we show
in section 6. Because GES itself provably recovers the MEC of the underlying true DAG in
the limit of large sample size, this translates to Causal Zig-Zag, which is effective in finding
high-posterior regions. More generally, we make the following contributions.

1. We present a sampler for Markov equivalence classes that is both non-reversible and
locally balanced with application to Bayesian causal discovery and causal discovery
with uncertainty quantification. Similar to the GES algorithm the sampler operates
in alternating phases, one phase where edges are inserted and one phase where edges
are removed. This makes the sampler non-reversible and improves mixing.

2. We base the sampler on new, efficient algorithms for listing, counting and applying
possible moves in the space of MECs based on Chickering’s Insert and Delete opera-
tors. These improvements go beyond the use cases in this work and also apply to the
original GES and related algorithms.

3. We show the benefits and practicality of our approach empirically and make our
implementation available in the software package CausalInference.jl.

As first illustration, we use our non-reversible sampler and a reversible counterpart to
sample CPDAGs with 100 vertices uniformly. Both samplers start from the empty graph
and continue for 5 000 steps. The samplers require no further choice of tuning parameters.
Our sampler reaches equilibrium considerably faster, see figure 1. The time of reaching a
large set such as, in this case, CPDAGs with 2400 to 2600 edges, from a single state (the
empty graph) is informative about mixing times (Peres and Sousi, 2013).

As second illustration, we partly reproduce Shen et al. (2020). They consider data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu).3 The variables extracted from the data are fludeoxyglucose PET (FDG), amyloid beta
(Aβ), phosphorylated tau (PTAU), number of ε4 alleles of apolipoprotein E; demographic

3. See acknowledgements for more information.
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Figure 3: Continuous-time trace of the number of edges of the first sampled graphs for the
ADNI data. At this time scale, the random time spend in each CPDAG is visible.

information: age, sex, years of education (EDU); and diagnosis on Alzheimer disease (DX).
To account for possibly non-linear effects the number of ε4 alleles (0, 1, or 2) is dummy
encoded (ε42, ε41), as it is done in Shen et al. (2020). We use our algorithm to sample
CPDAGs proportional to their (exponentiated) BIC score with penalty 5.5 and run the
sampler for 50 000 jumps starting from the empty graph. See section 4.1 in Chickering
(2002b) for a discussion of the Bayesian Information Criterion (BIC) and its relationship
to the marginal posterior. Our findings are shown in figures 2 and 3.

2. Related work

Bayesian methods for learning DAGs from observational data, which directly target the
posterior probability over MECs, as we do in this work, are underrepresented in the liter-
ature with popular exact methods estimating the marginal posterior probability of every
possible edge (Koivisto and Sood, 2004) and MCMC samplers focusing on the space of
DAGs (Madigan et al., 1995; Giudici and Castelo, 2003; Grzegorczyk and Husmeier, 2008)
or variable orderings (Friedman and Koller, 2000; Niinimäki et al., 2016; Kuipers and Moffa,
2017; Agrawal et al., 2018) being more widespread. Recently, differentiable formulations
have been pursued and exploited by variational and MCMC methods (Lorch et al., 2021;
Annadani et al., 2021; Cundy et al., 2021; Deleu et al., 2022; Annadani et al., 2023).

On the other hand, when aiming to estimate a single causal structure, classical algo-
rithms such as PC (Spirtes et al., 2000) and GES (Chickering, 2002b) are at their core build
on the notion of Markov equivalence. More generally, exploiting as well as analysing the
space and properties of MECs has a long and fruitful history in the causal discovery and
Bayesian network communities, beginning with Madigan et al. (1996), who pivoted the use
of MCMC using the search space of MECs for Bayesian structure learning, and Gillispie and
Perlman (2002), who initiated studies of the size distribution of MECs. Later these works
were extended by Pena (2007); He et al. (2013), who again used MCMC to analyse, e.g,
the average number of undirected edges in a CPDAG, focusing mainly on sparse graphs.
Recently, Zhou and Chang (2023) showed that the GES operators by Chickering (2002a)
have superior mixing properties compared to these earlier MCMC approaches. The sampler
used by Zhou and Chang (2023) belongs to a class of discrete time locally balanced sampler
in high dimensional spaces (Zanella, 2019). For the continuous time perspective, see (Power
and Goldman, 2019).
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3. Preliminaries

Graphs and notation. A partially directed graph, here short “graph”, G = (V,E)
consists of a set of n vertices V and a set of m edges E ⊆ V × V .4 An undirected edge
between vertices x, y ∈ V , denoted x−y, has both (x, y) ∈ E and (y, x) ∈ E, and a directed
edge u → v has (x, y) ∈ E and (y, x) ̸∈ E. Vertices linked by an edge (of any type) are
adjacent, and vertices linked by undirected edges are neighbours of each other. We say that
x is a parent of y if x→ y. We denote by Pa(x) and Ne(x) the set of parents and neighbors
of x. A directed graph contains no undirected edges. A partially directed acyclic graph
(PDAG) is a graph without directed cycles and a directed acyclic graph (DAG) is a directed
graph with this property. We denote the space of DAGs over n vertices as Dn. We let U(S)
denote the uniform distribution on a set S. ⊔ denotes the disjoint union of sets.

Markov equivalence classes. In case of a Bayesian network, the vertex set V is a set
of random variables. A v-structure are vertices x, y, z such that x → y ← z and x, z are
not adjacent. All DAGs on a vertex set V with the same set of v-structures and the same
set of adjacencies are observationally equivalent or Markov-equivalent as shown by Verma
and Pearl (1990) and form the Markov equivalence class (MEC). A CPDAG (completed
PDAG) has x → y, if x → y in each member of the equivalence class, and x − y, if there
are DAGs G and G′ in the MEC such that G contains x→ y and G′ contains x← y. The
CPDAG uniquely determines the MEC. We denote the space of CPDAGs or MECs asMn

and denote its elements by γ, η, · · · ∈ Mn. A scoring function Dn → [0,∞) for DAGs is a
Markov equivalent score if it assigns the same score to any DAG in the same MEC.

Markov jump process. Following Kallenberg (2002), a continuous time stochastic pro-
cess (Zt)t≥0 on a countable state space S with almost surely right-continuous paths that are
constant apart from isolated jumps with the temporal Markov property is a Markov jump
process.5

In our case, the state space is the space of MECs S = Mn or the space of MECs
extended by a direction or momentum, S =Mn × {+1,−1}, and an abstract notion of time
inherent to the sampler, related but not identical to the run time of its implementation.

Denote the jump times of Z as 0 = τ0 < τ1 < τ2 < . . . , these are random times τ where
Zτ ̸= Zτ−. The law of a Markov jump process can be described by

• the starting distribution Z0 ∼ ν;

• the rate function Λ: S → [0,∞) such that conditional on Zτi = a, a ∈ S, the time to
the next jump τi+1 − τi is exponentially distributed with rate Λ depending on a;6

• a jump kernel, such that Zτi+1 has the conditional distribution κa given Zτi = a.

This entails by the Markov property that τ1/Λ(Z0), (τ2− τ1)/Λ(Zτ1), . . . form an inde-
pendent sequence of Exp(1) random variables and Z0, Zτ1 , Zτ2 , . . . an embedded discrete-
time Markov chain where P (Zτi = b | Zτi = a) = κa{b} with κa for a ∈ S being a probability
kernel

∑
b∈S κa{b} = 1 where κa{a} = 0 by construction.

4. Excluding self-edges: (x, x) /∈ E.
5. We only consider time-homogeneous processes where P(Zt = b | Zs = a) only depends on t− s.
6. So Λ(a) = 1/(E[τi+1 − τi | Zτi = a]).
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We also define λ(a ↷ b) = Λ(a)κa{b} the specific rate of jumps from a ∈ S to b ∈
S. Both total rate Λ(a) and the jump kernel κa, a ∈ S, are determined by λ through

Λ(a) =
∑

b∈S λ(a ↷ b) and κa{b} = λ(a↷b)
Λ(a) ,, b ∈ S. This has intuitive meaning. As the

minimum of independent exponential random variables with rates λ(a ↷ b1), . . . , λ(a ↷ bk)
is exponentially distributed with rate Λ(a), one can either jump to a state drawn from κa
after Exp(Λ(a)) distributed time units, or chose the earliest jump to b1, . . . , bk in the support
of κa with jump times drawn each from (independent) distributions Exp(λ(a ↷ b1)), . . . ,
Exp(λ(a ↷ b1)).

A process has π as equilibrium distribution if
∑

a∈S P(Zt ∈ B | Zs = a)π{a} = π(B),
where t > s > 0, B ⊂ S. A stronger requirement relevant for sampling is ergodicity, which
for finite state spaces takes the form limt→∞ P (Zt = b | Zs = a) = π{b} for all b, a ∈ S so
that in the long run, states from Z can be used to approximate samples from π.

Operators for Markov equivalence classes. Chickering (2002a) defines two sets of
operators on Mn. The operator Insert(γ, x, y, T ) inserts the edge x → y to the CPDAG
γ and directs previously undirected edges t − y to t → y for t ∈ T , such that vertices
t ∈ T become “tails” of a v-structure t → y ← x. Here x and y are not adjacent and T
are (undirected) neighbours of y that are not adjacent to x. The resulting PDAG is then
completed7 to a CPDAG γ′ if possible, otherwise the insertion is not defined (invalid).

The operator Delete(γ′, x, y,H) deletes an edge x − y or x → y of the CPDAG γ′ and
directs previously undirected edges x−h as x→ h and y−h as y → h for h in H such that
vertices h ∈ H become “heads” of new v-structures x → h ← y. The resulting PDAG is
then completed to a CPDAG γ if possible, otherwise the deletion is not defined (invalid).

We call a move or jump from MEC γ to MEC γ′ local if there is a DAG G ∈ γ, which
can be transformed to a DAG G′ ∈ γ′ by a single edge insertion or deletion. Local moves are
preferable for two reasons: Firstly, if a weight function w, for example the exponentiated
BIC score, factorises over the DAGs,

w(G,Data) =
∏
x∈V

w(PaG(x), x,Data),

then changes in w can be computed efficiently by comparing local scores or local weights,
see Chickering (2002a), corollaries 7 and 9.

Secondly, Theorems 15 and 17 of (Chickering, 2002a) give precise criteria for the validity
of local moves. Denote by NAx(y) the (undirected) neighbours of y that are adjacent to x.
In short, Insert(γ, x, y, T ) is a valid local move, if and only if (i) NAx(y) and the elements
of T form a clique and (ii) any path from y to x without a directed edge pointing towards
y (such a path is called semi-directed) contains a vertex in NAx(y) ∪ T . Delete(γ, x, y,H)
is a valid local move, if and only if H ⊂ NAx(y) and NAx(y) \H form a clique.

4. Random walks on Markov equivalence classes

The key for the construction of a Markov process on Markov equivalence classes is that the
valid local Insert and Delete operators are mutual inverses.

7. The completion of a PDAG refers to the CPDAG representation of the MEC with the same skeleton and
v-structures as the PDAG. There are cases, when this CPDAG does not exist, namely when there are
no DAGs with this skeleton and v-structures. A simple example is PDAG C4, the cycle on four vertices.
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Lemma 1 (Chickering (2002b); Zhou and Chang (2023) ) If γ′ = Insert(γ, x, y, T ),
x, y ∈ V , T ⊂ V , γ ∈ Mn is a valid local move, then there is a unique set of undirected
neighbours H of y that are adjacent to x in γ′ such that γ = Delete(γ′, x, y,H).

Conversely if γ = Delete(γ′, x, y,H) is a valid local move, then there is a unique set of
undirected neighbours T of y that are not adjacent to x in γ such that γ′ = Insert(γ, x, y, T ).

There may be two operators going from γ to γ′, which is precisely the case if the inserted
or deleted edge is undirected and Insert(γ, x, y, T ) equals Insert(γ, y, x, T ) (same for Delete).
Phrased differently, the number of operators turning γ into γ′ is identical to the operators
for the reverse direction from γ′ to γ (Zhou and Chang, 2023).

Lemma 2 (Chickering (2002b); Zhou and Chang (2023)) The edge inserted by a
local Insert(γ, x, y, T ) is undirected exactly if T is empty and Pa(x) = Pa(y).

We write γ′ ∈ Insert(γ) and γ ∈ Delete(γ′) to indicate that γ′ can be obtained from
γ by a valid local Insert operation and that γ can be obtained from γ′ by a valid local
Delete operation. For example this lemma entails, when declaring γ, η ∈ Mn (undirected)
neighbours if η ∈ Insert(γ)∪Delete(γ), general algorithms to sample from undirected graphs
such as a simple continuous time random walk on S =Mn with jump intensity

λ(γ ↷ η) =

{
1 if η ∈ Insert(γ) ⊔Delete(γ)

0 otherwise.

This process has U(Mn) as stationary distribution. While this jump intensity is remarkably
simple, practical implementation requires the efficient enumeration of valid Insert and Delete
operators for example to determine the total rate Λ(γ) = | Insert(γ) ⊔ Delete(Γ)|, a topic
we come back to in section 7. Here using lemma 2 allows to account for multiple moves
yielding the same CPDAG η.

Alternatively, one can also move towards η with twice the rate if there are two operators
from γ to η, as long as one then also moves back from η to γ with twice the rate. This leads
to an easier implementation and thus we proceed this way in our code. Also the Zanella
process (Power and Goldman, 2019), a generalisation of the simple continuous time random
walk that can be used to sample from the a distribution π defined onMn, is now available.

Let π be a probability distribution on Mn. Let g : [0,∞) → [0,∞) be a balancing
function such as

√
t, min(1, t) or t/(1 + t) with the property g(t) = tg(1/t). The Zanella

process (Zt)t≥0 onMn is defined by the intensity

λ(γ ↷ η) =

g

(
π{η}
π{γ}

)
if η ∈ Insert(γ) ⊔Delete(γ)

0 otherwise
,

where γ ∈Mn.

Theorem 3 Let the target probability π be strictly positive for all γ ∈ Mn. Then Z is
irreducible, π is the unique stationary distribution and

lim
t→∞

P (Zt = γ | Zs = a) = π{γ} for all γ, η ∈Mn.

The proof of this theorem goes along similar lines as the proof of Theorem 4 below, so we
omit it.
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η1 η2

γ

ζ1 ζ2 ζ3 ζ4

γ−1γ+1

Figure 4: On the left, MEC γ with two neighbours η1, η2 in Insert(γ) and four neighbours
ζ1, . . . , ζ4 in Delete(γ). The Zanella sampler for the uniform distribution on the space of
MECs Mn will leave γ after an exponentially distributed time with total rate Λ(γ) = 6
towards one of the six neighbours drawn from κγ = U({η1, η2, ζ1, ζ2, ζ3, ζ4}). On the right,
the situation is shown for the Zig-Zag sampler. To target a uniform distribution on Mn,
if γ ∈ Mn has 2 direct neighbours in Insert(γ) and 4 direct neighbours in Delete(γ), then
move up from γ+1 with total rate 2, move from γ+1 to γ−1 with rate 2 = 4 − 2 and down
from γ−1 with total rate 4.

5. The Causal Zig-Zag sampler

We now define our sampler which can be thought of as Zanella process lifted by attaching
a notion of direction. We baptise the non-reversible continuous-time sampler for Markov
equivalence classes the “Causal Zig-Zag” motivated by the characteristic Zig-Zag pattern
in the trace of the number of edges in the causal graph, see figure 1. Here, we exploit that
Insert and Delete endow the spaceMn with an intuitive interpretation of direction.

Let S = Mn × {−1,+1}. If γ ∈ Mn, we denote the element (γ,+1) by γ+1 and the
element (γ,−1) by γ−1 and write γd = (γ, d) for d ∈ {−1,+1}. Again, choose a balancing
function g and a target probability π on S and a Markov jump process Z as follows: For
γ ∈Mn,

λ(γ+1 ↷ η+1) =

g

(
π{η}
π{γ}

)
if η ∈ Insert(γ)

0 otherwise.

λ(η−1 ↷ γ−1) =

g

(
π{γ}
π{η}

)
if γ ∈ Delete(η)

0 otherwise.

and for γ ∈Mn and d ∈ {−1,+1},

λ(γd ↷ γ−d) =

(
−
∑
η
λ(γd ↷ ηd) +

∑
η
λ(γ−d ↷ η−d)

)+

,

where x+ = max(0, x) denotes the positive part. Note that λ can be computed if π is
only known up to a multiplicative constant as typical for Bayesian applications. Figure 4
illustrates the neighboring states for the Zanella and Zig-Zag sampler.
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Theorem 4 Let the target probability π{γ} > 0 be strictly positive for all γ ∈ Mn. Then
Z is irreducible,

P(Zt = b | Zs = a) > 0

for all a, b ∈ S. The distribution π̃ on S with π̃(γd) = π{γ}/2 is the unique stationary
distribution and

lim
t→∞

P
(
Zt = γd | Zs = a

)
= π{γ}/2 for all a ∈ S,

where γ ∈Mn, d ∈ {+1,−1}.

Proof One first shows that any state γd communicates with 0−1
n , where 0 denotes the empty

graph. From this, the chain Z is irreducible (aperiodicity is not a concern for continuous
time chains.) This part of the proof we give in the supplement (it bears some similarity to
the consistency argument for the greedy equivalence search algorithm.)

It remains to show that π̃ is the stationary distribution of Z. This follows by applying
proposition 9 in the supplement which gives general criteria for stationarity. We proceed
by checking the three conditions of the proposition (equations (1), (2) and (3)).

Firstly, s : S → S, s(γd) = γ−d is a bijection on S that is easily seen to be π̃-isometric
(equation (1)).
Also, skew balance (equation (2)) holds: if η ∈ Insert(γ)

π̃{γ+1}λ(γ+1 ↷ η+1) =
π{γ}
2

g

(
π{η}
π{γ}

)

=
π{η}
2

g

(
π{γ}
π{η}

)
= π̃{η−1}λ(η−1 ↷ γ−1)

using the balancing property of g. Else, if η ̸∈ Insert(γ), also γ /∈ Delete(η) and π̃{γ+1}λ(γ+1 ↷
η+1) = π̃{η−1}λ(η−1 ↷ γ−1) = 0.
Finally, we obtain the semi-local condition (equation (3)), Λ(γ+1) =

∑
b∈S λ(γ+1 ↷ b) =∑

η∈Insert(γ) λ(γ
+1 ↷ η+1) + λ(γ+1 ↷ γ−1)

=
∑

η∈Delete(γ) λ(γ
−1 ↷ η−1) =

∑
a∈S λ(γ−1 ↷ a)

= Λ(s(γ+1)). Thus the theorem is proved.

6. GES as limit of our sampler

It is interesting to note that when starting in the empty graph with the balancing function
g(x) =

√
x and target π{γ} = exp(βs(γ)), where β > 0 is a coldness parameter and s is a

Markov equivalent score, we recover the greedy equivalence search algorithm (GES) in the
limit β →∞. In this limit, the Insert operator that improves the score the most is selected
immediately with probability approaching 1 as long as there is such an edge addition which
improves the score at all. This is because for η ∈ Insert(γ),

κγ+1{η+1} =
exp(12β(s(η)− s(γ))∑

ζ∈Insert(γ)
exp(12β(s(ζ)− s(γ)))
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is a soft-max over the score improvements and the intensity Λ(γ) approaches infinity. If no
edge addition can improve the score anymore, the direction changes immediately if there is
an edge removal that increases the score. In following second phase, again with probability
approaching one, the Delete operator that improves the score the most is immediately se-
lected with probability approaching 1 by same argument. This way the process reaches with
probability approaching 1 in time approaching 0 the highest scoring model along the same
trajectory as the GES with the same computational effort as a GES (when implemented
with the same algorithmic improvements given below). This proves the following statement:

Theorem 5 If started in the empty graph, with balancing function g(x) =
√
x, for all t > 0,

lim
β→∞

P(Zt ∈ {γ+1
⋆ , γ−1

⋆ }) = 1,

where γ⋆ is the CPDAG found by a two-pass greedy equivalence search starting in the empty
graph.

Moreover, for large β, with high probability Z visits the same models as the two-phase
GES, with the same computational effort.

We refer to the thorough discussion in section 4 of Chickering (2002b). In particular, we
conclude with the remark in section 4.3 that starting in the empty graph is an efficient way
to converge towards the concentration of posterior mass in the large sample limit. Behaviour
of piecewise deterministic processes under similar annealing schemes has been previously
studied in Monmarché (2016).

7. Efficient algorithms for the underlying graph operations

Before stating our algorithmic results, it is necessary to revisit a basic problem in this area:
computing a DAG in the MEC represented by a given CPDAG. It is well-known that this
task can be solved in linear-time O(n+m) for CPDAGs with n vertices and m edges relying
on algorithms from the chordal graph literature (Chickering, 2002a). The key observation
is that the directed edges of the CPDAG can be ignored and any acyclic and v-structure-
free orientation of the undirected edges, will yield a DAG from the MEC. This task can
be performed using, e.g., by the graph traversal algorithm Maximum Cardinality Search,
MCS for short (Tarjan and Yannakakis, 1984), which, at each step, visits a vertex with the
highest number of already visited neighbours. Appendix A.2 in (Chickering, 2002a) gives a
good overview over this approach. More generally, the term consistent extension is used to
describe a DAG with the same adjacencies and v-structures as a given (C)PDAG.

The computational task of applying one of the GES operators is fundamental, not only in
the context of this work, but naturally also for GES itself and other score-based algorithms.
Classically, the following approach is used, as described by Chickering (2002a): First, the
operator is applied locally by inserting/deleting the edge and orienting edges incident to
T , respectively H, yielding a PDAG. Second, for this PDAG, a consistent extension is
computed. Third, the new CPDAG is directly computed from the consistent extension.

The first and third step can be performed in linear-time, however, the second step,
when performed naively, needs time O(n3) (Dor and Tarsi, 1992; Wienöbst et al., 2021).
We provide a linear-time algorithm for this problem by modifying the first and second step,
building on ideas from Chickering (2002b) and Hauser and Bühlmann (2012):
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γ′ = Insert(γ, b, d, {c})
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Figure 5: A schematic overview of the linear-time approach for applying a GES operator.
Previous approaches add the inserted edge to the initial CPDAG, obtaining a PDAG asso-
ciated with the new MEC γ′. However, going from this PDAG to the CPDAG, usually via
a consistent DAG extension as intermediate step, necessitates time O(n3). In contrast, our
approach finds a consistent DAG extension of the initial CPDAG in time O(n+m), which
has the property that applying the operator directly yields a DAG from γ′. Transforming
this DAG into its CPDAG can be done in O(n+m), as shown by Chickering (1995).

Theorem 6 Let γ be a CPDAG. Applying a GES operator Insert(γ, x, y, T ) or Delete(γ, x, y,H)
to γ and obtaining γ′ is possible in time O(n+m).

Proof By Theorem 15 and 17 in (Chickering, 2002b), any GES operator corresponds
to a single edge insertion/deletion in a certain DAG in the MEC of γ. Our approach
is as follows. First, compute a consistent extension of γ, which has the property that a
single insertion/deletion yields a DAG from the new MEC represented by γ′ in linear-time.
Exploiting that γ is a CPDAG allows us to find this consistent extension G in linear-time
using a modified MCS (described below). Then, the insertion/deletion can be performed in
constant time to yield DAG G′. Afterwards, the “standard” third step of finding CPDAG
γ′ for DAG G′ is applied (Chickering, 1995).

To perform the first step, we distinguish between the Insert and Delete operator. In
case of the Insert(γ, x, y, T ), we perform an MCS which starts with visiting the vertices
in T and NAx(y). As they form a clique, it is easy to see that this does not violate the
properties of an MCS (the visit order is one which could be produced by a ”standard”
MCS). As discussed in the proof of Theorem 15 in (Chickering, 2002b) and Proposition 43
in (Hauser and Bühlmann, 2012) , this yields a DAG G with the desired property that
inserting x→ y gives G′ ∈ γ′. For the Delete(γ, x, y,H) operator, we proceed the same way
only that vertices in NAx(y) \H are visited first (afterwards x and y in this order). By the
proof of Theorem 17 in (Chickering, 2002b), this gives a DAG G′ ∈ γ′.
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This time-complexity is asymptotically optimal, as there are graphs, for which O(m)
edges change after applying an operator.

In the framework described above, to obtain a uniform MCMC sampler of CPDAGs, it
suffices to count the number of operators and to sample an operator with uniform proba-
bility. We derive the first polynomial-time algorithm for this task.8

Theorem 7 Let γ be a CPDAG. The number of locally valid Insert and Delete operators
can be computed in time O(n2 ·m). Sampling an operator uniformly is possible in the same
time complexity.

Sampling an operator in polynomial-time in this manner is only possible in the uniform
case. When operators are weighted by their score, a different procedure is necessary.

There are multiple possible approaches to sample an operator proportional to an under-
lying local score, which may update after a move. In this work, we rely on the fact that, per
move, usually only a few operator scores change. Hence, we use (i) caching of local scores
to only recompute scores, which actually change. This is, as in the GES algorithm, crucial
as the score computation can be the bottleneck of the algorithm (depending on sample size
and the particular scoring procedure). Then, we (ii) efficiently list all operators one-by-one
(without generating invalid operators), enabled by the insights from the previous section.

Corollary 8 Let γ be a CPDAG with maximum number of neighbors d. The operators can
be listed in time O(n2 ·m+ |op(γ)| · d).

Using this result and caching, the overall cost per move is in O(n2 ·m + |op(γ)| · d +
|changed(γ)| · scoreeval), where scoreeval describes the time of a score evaluation. In our
empirical studies, we find that the number of operators per pair of vertices is often constant
(when the undirected edge degree is constant) and that the number of changed operators
is usually very small, making the algorithmic improvements impactful.

8. Conclusions

We provide a novel continuous-time momentum-based MCMC sampler over the space of
MECs based on the GES operators (Chickering, 2002b) and extended by a notion of direc-
tion. We show empirically that it can achieve favourable mixing time compared to earlier
MCMC approaches and apply an efficient implementation of this sampler to the problem
of observational causal discovery. In particular, our algorithmic improvements regarding
the application of the GES operators, yielding linear-time for applying an operator and
polynomial-time for counting the number of operators, go beyond this specific use case.

8. The proof is provided in Appendix B in the supplement.
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References

R. Agrawal, C. Uhler, and T. Broderick. Minimal I-MAP MCMC for scalable structure
discovery in causal DAG models. In International Conference on Machine Learning,
pages 89–98. PMLR, 2018.

S. A. Andersson, D. Madigan, and M. D. Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. The Annals of Statistics, 25(2):505–541, 1997.

Y. Annadani, J. Rothfuss, A. Lacoste, N. Scherrer, A. Goyal, Y. Bengio, and S. Bauer. Vari-
ational causal networks: Approximate Bayesian inference over causal structures. arXiv
preprint arXiv:2106.07635, 2021.

Y. Annadani, N. Pawlowski, J. Jennings, S. Bauer, C. Zhang, and W. Gong. BayesDAG:
Gradient-based posterior sampling for causal discovery. In ICML 2023 Workshop on
Structured Probabilistic Inference & Generative Modeling, 2023.

D. M. Chickering. A transformational characterization of equivalent Bayesian network struc-
tures. In Proceedings of the Eleventh conference on Uncertainty in artificial intelligence,
pages 87–98, 1995.

D. M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of
Machine Learning Research, 2:445–498, 2002a.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 3:507–554, 2002b.

C. Cundy, A. Grover, and S. Ermon. Bcd nets: Scalable variational approaches for Bayesian
causal discovery. Advances in Neural Information Processing Systems, 34:7095–7110,
2021.
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M. Wienöbst, M. Bannach, and M. Lískiewicz. Extendability of causal graphical models:
Algorithms and computational complexity. In Uncertainty in Artificial Intelligence, pages
1248–1257. PMLR, 2021.

G. Zanella. Informed proposals for local MCMC in discrete spaces. Journal of the Amer-
ican Statistical Association, 115(530):852–865, Apr. 2019. doi: 10.1080/01621459.2019.
1585255. URL https://doi.org/10.1080/01621459.2019.1585255.

Q. Zhou and H. Chang. Complexity analysis of Bayesian learning of high-dimensional DAG
models and their equivalence classes. The Annals of Statistics, 51(3):1058–1085, 2023.

396

https://doi.org/10.1007/978-1-4612-0745-0_3
https://doi.org/10.1007/978-1-4612-0745-0_3
https://doi.org/10.1007/s10959-013-0497-9
https://doi.org/10.1007/s10959-013-0497-9
https://arxiv.org/abs/1912.04681
https://doi.org/10.1214/154957804100000024
https://doi.org/10.1038/s41598-020-59669-x
https://doi.org/10.1080/01621459.2019.1585255


Causal Structure Learning With Momentum

Acknowledgements

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu).

As such, the investigators within the ADNI contributed to the design and implementa-
tion of ADNI and/or provided data but did not participate in the writing of this article.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/

wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
ADNI data is de-identified and publicly available for download. All study participants

provided written informed consent, and study protocols were approved by each local site’s
institutional review board.

Data collection and sharing for the ADNI project was funded by the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI

(Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Insti-

tute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through gener-

ous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery

Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,

Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F.

Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IX-

ICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson

Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso

Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals

Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transi-

tion Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI

clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the Na-

tional Institutes of Health (www.fnih.org). The grantee organisation is the Northern California

Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic

Research Institute at the University of Southern California. ADNI data are disseminated by the

Laboratory for Neuro Imaging at the University of Southern California.

397

adni.loni.usc.edu
http://adni.loni.usc.edu/ wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/ wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
www.fnih.org


Schauer Wienöbst

Appendix A. Skew-balanced jump processes

Proposition 9 If there is an bijection s on S that is π-isometric:

π{a} = π{s(a)}, a ∈ S, (1)

such that skew detailed balance

π{a}λ(a ↷ b) = π{s(b)}λ(s(b) ↷ s(a)) a, b ∈ S (2)

holds and such that the semi-local condition

Λ(a) = Λ(s(a)) (3)

holds, then Z is π-stationary.

(3) typically requires that sn for some order n = 1, 2, . . . is the identity map. If s is the
identity (n = 1), then (3) and (1) hold automatically and (2) reduces to a detailed balance
condition.

Also the case n = 2 is important. A map s : S → S is an involution if s ◦ s is the
identity. For example, if S = X × {−1, 1}, then s with s((x, d)) = s((x,−d)) for (x, d) ∈ S
is an involution. An involution is automatically an bijection. Importantly, (2) is trivial for
b = s(a), but turns into a linear constraint if designing samplers using s with higher orders
n.

Appendix B. Remaining proofs

A convenient criterium for stationary is as follows: If Z is stationary for π, then for bounded
f : S → R ∑

a

∑
b

λ(a ↷ b)(f(b)− f(a))π{a} = 0. (4)

Conversely, if the preceding equation holds for all f : S → R bounded, then Z is stationary.
]
Proof [Proof of proposition 9]

The proposition follows from (2) by
∑

a

∑
b λ(a ↷ b)f(b)π{a} =

∑
a

∑
b λ(s(b) ↷

s(a))f(b)π{s(b)} and with z = s(a),

=
∑
b

∑
z

λ(s(b) ↷ z)f(b)π{s(b)}

and by the definition of the specific rate and its connection to the total

=
∑
b

Λ(s(b))f(b)π{s(b)} =
∑
a

∑
b

λ(b ↷ a)f(b)π{b}

=
∑
a

∑
b

λ(a ↷ b)f(a)π{a}.

In the last step we use that Λ(s(b)) = Λ(b) =
∑

a λ(b ↷ a) and π{s(b)} = π{b}. So we have
established (4) for any summable f .
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Proof [Supplement to the proof of Theorem 4.] Let γd ∈ S, where γ is not the graph
with no edges 0n (assume that n > 1 so there is something to show.) We now prove
P(Zt = 0−1

n | Zs = γd) > 0, γd ∈ S, t > s. We first find a state η−1 such that P(Z(t−s)/2 =

η−1 | Zs = γd) > 0, γd ∈ S. If d = −1, one can take η = γ. Otherwise, if d = +1, though
Delete(γ) is non-empty9, it can still be that λ(γ+1 ↷ γ−1) = 0. But in that case, by
construction, Insert(γ) is non-empty and λ(γ+1 ↷ ζ+1) > 0 for some ζ ∈ Mn. Repeating
that argument, at most n(n− 1)/2 many jumps lead to a state η−1 ∈ S and together, these
jumps have positive probability to occur in a time interval of length (t−s)/2, so η−1 is that
state we are looking for.

Now from η there is a sequence of at most n(n−1)/2 edge removal moves that reach 0n.
Together these jumps have again positive probability to occur in a time interval of length
(t − s)/2. Therefore P(Zt = 0−1

n | Zs = γd) ≥ P(Zt = 0−1
n | Z(t−s)/2 = η−1)P(Z(t−s)/2 =

η−1 | Zs = γd) > 0.
By repeating this argument, P(Zt = 0−1

n | Z(t−s)/2 = γ−d) > 0. Using skew balance to

reverse the path from γ−d to 0−1
n into a path from 0+1

n to γd, replacing edge inserts by edge
deletions and vice versa, P(Zt = γd | Z(t−s)/2 = 0+1

n ) > 0.
Also P(Z(t−s)/2 = 0+1

n | Zs = 0−1
n ) > 0 as λ(0−1

n ↷ 0+1
n ) > 0 because there is no

delete operator available, but one can insert an undirected edge to 0n. We therefore have
P(Zt = γd | Zs = 0−1

n ) ≥ P(Zt = γd | Z(t−s)/2 = 0+1
n )P(Z(t−s)/2 = 0+1

n | Zs = 0−1
n ) > 0.

This is sufficient because S is finite.

Proof [Proof of Theorem 7] The task immediately reduces to counting the number of
operators for each pair of vertices. We consider the Delete(γ, x, y,H) operator first. Here,
the set of operators correspond to the subsets of NAx(y), which form a clique. This further
reduces to the problem of counting (and sampling) the number of cliques of a chordal graph,
that is a graph without induced cycles of length ≥ 4, (Dirac, 1961) due to the fact that there
can only be undirected edges between vertices in NAx(y) (Lemma 3 (Chickering, 1995)) and
that these undirected edges form a chordal graph in a CPDAG (Andersson et al., 1997). It
is a basic fact that the number of cliques of a chordal graph γ is given by:∏

u∈V
2PaD(u) + 1,

where G is any consistent extension of γ due to the fact that all parents of u form a clique
(else D would not be a consistent extension as it has additional v-structures). Each term in
the product gives the number of cliques containing u as highest ordered vertex w.r.t. some
fixed topological ordering of D. Evaluating this is clearly possible in O(m) per pair x, y.

For the Insert(γ, x, y, T ) operator, the set of operators is formed by subsets T of the
undirected neighbours of y, which are nonadjacent with x, such that NAx(y)∪T is a clique
and NAx(y) ∪ T blocks all paths from y to x without edge pointing towards y. The latter
condition complicates the matter. It can be resolved as follows: Consider, for each neighbor
of y, the set of vertices reachable via a path without edges pointing towards y (that is
reachable via a semi-directed path y − x . . . ) not containing an undirected neighbour of y.

9. γ has edges, so there is a DAG G ∈ γ from which an edge can be removed to obtain some G′ ∈ Delete(γ)
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This can be done independently of x taking overall time (for all y) O(n2m). If, under these
constraints, x is reachable from a neighbour w of y, which is non-adjacent to x, then w has
to be in T (else there is an open semi-directed path from y to x). After taking all such
vertices w, none of the remaining vertices has an open semi-directed path to x. We show
this by contradiction. Assume there exists z such that there is a semi-directed path from
z to x not blocked by NAx(y) ∪ T . There has to be a vertex a on this path, which is a
neighbour of y else z would be in T , consider the one closest to x. Then, this vertex has
an unblocked semi-directed path to x and hence is in T . This is a contradiction to the fact
that the path is open given NAx(y) ∪ T .

Hence, we can compute the set of vertices, which must be in T in overall time O(n2m),
respectively O(m) per pair x, y. Consequently, they need to form a clique with NAx(y) (this
can be checked in O(m) as well). The remaining neighbours of y (non-adjacent with x),
which are fully connected to NAx(y) and the must-take vertices, may be part of T as long
as they themselves form a clique. Hence, we arrive at the problem of counting the number
of cliques in a chordal graph studied above, which can be solved in time O(m).

It is easy to see that sampling can be performed in time O(n2m) (when performing
counting as preprocessing) by first sampling a pair of vertices x, y with probability propor-
tional to the number of locally valid operators and second sampling an operator for this set
with uniform probability (which amounts to sampling a clique in a chordal graph).

Appendix C. Further models with high posterior probability for the
ADNI database

In the main document, we only showed the DAG with highest posterior probability of 0.701
for the data from the ADNI database. In figure 6, we show the DAGs with the second- and
third-highest posterior probabilities, which are 0.207 and 0.0049.

Figure 6: The two models with second- and third-highest posterior probabilities, namely
0.207 and 0.0049. This illustrates one particular use case of our sampler, namely uncertainty
quantification in the situation where GES applies, such as uncertainty about the edge SEX
to EDU.
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