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Abstract

A fundamental challenge of scientific research is inferring causal relations based on observed
data. One commonly used approach involves utilizing structural causal models that pos-
tulate noisy functional relations among interacting variables. A directed graph naturally
represents these models and reflects the underlying causal structure. However, classical
identifiability results suggest that, without conducting additional experiments, this causal
graph can only be identified up to a Markov equivalence class of indistinguishable models.
Recent research has shown that focusing on linear relations with equal error variances can
enable the identification of the causal structure from mere observational data. Nonetheless,
practitioners are often primarily interested in the effects of specific interventions, rendering
the complete identification of the causal structure unnecessary. In this work, we investigate
the extent to which less restrictive assumptions of partial homoscedasticity are sufficient
for identifying the causal effects of interest. Furthermore, we construct mathematically
rigorous confidence regions for total causal effects under structure uncertainty and explore
the performance gain of relying on stricter error assumptions in a simulation study.

Keywords: Causal inference; linear structural causal models; equal error variances; struc-
ture uncertainty; confidence intervals.

1. Introduction

Graphical models are a valuable tool for studying statistical dependencies among complex
systems of random variables (Lauritzen, 1996; Maathuis et al., 2019). In this paper, we study
(directed) graphical models in their intuitive interpretation as structural causal models;
edges indicate causal dependencies among interacting variables. Specifically, we consider
statistical models specified by a recursive system of structural equations corresponding
to a directed (acyclic) graph. The causal perspective views these structural equations
as assignments rather than mathematical equations, reflecting the inherent asymmetry in
cause-effect relationships.

A fundamental challenge of scientific research is inferring causal relations based on avail-
able data (Spirtes et al., 2000; Pearl, 2009; Peters et al., 2017). In particular, knowledge
of the underlying causal structure is crucial to correctly estimate the effect of external in-
terventions or to reason about counterfactual questions. However, expert knowledge of the
exact causal mechanism governing the data-generating process is missing in many applied
settings. Furthermore, performing classical controlled experiments to study the causal de-
pendencies is often also not feasible due to ethical concerns or cost considerations. The field

© 2024 D. Strieder & M. Drton.



Strieder Drton

of causal discovery addresses this challenge by developing structure learning algorithms that
estimate causal structures using only observed data (Drton and Maathuis, 2017).

A well-known result states that this causal structure, represented by a directed acyclic
graph, can, at best, be identified up to a Markov equivalence class of indistinguishable
models, unless one has access to interventional data or makes additional structural assump-
tions (see, e.g., Drton, 2018). Thus, an essential aspect of causal discovery is clarifying
under which conditions the task is well-defined in that the causal quantities of interest can
theoretically be identified from observational data alone. In this paper, we follow a line of
research introduced by Peters and Bühlmann (2014) that focuses on linear relations and
Gaussian errors with a common variance (see Section 2). In this setting, the underlying
causal mechanisms are fully identifiable from observational data alone, as the causal order
is implied by ordering conditional variances (Ghoshal and Honorio, 2018; Chen et al., 2019).
However, practitioners are typically interested in specific causal effects, where identifying
the entire causal structure seems excessive. This raises the question of whether less stringent
modeling assumptions suffice to identify and estimate the effect of interest. Specifically, we
investigate the identifiability of total causal effects in a setting that lies between the general
case of unrestricted error variances and the fully homoscedastic case: We assume a shared
variance only for the potential cause and the response of interest (Section 3).

Identifiability aside, an important aspect of (causal) inference is appropriately account-
ing for uncertainty to draw reliable conclusions from causal estimates. With only access
to observational data, this includes not only classical statistical uncertainty about the nu-
merical size of involved effects but also causal structure uncertainty, stemming from the
data-driven structure learning approach and the equivalence of multiple plausible models.
In Section 4, we follow an ansatz first introduced in Strieder et al. (2021) and explicitly
construct rigorous confidence regions for causal effects under partial homoscedasticity of
error variances as well as for the general case. We conclude our work with a simulation
study in Section 5 that compares the confidence regions under different error restrictions
and thus exemplifies the performance gained by relying on stricter structural assumptions.

2. Background

In this section, we review structural causal models and the definition of the total causal
effect, which is the causal target of interest in this study. Further, we recapitulate the
notions of identifiability and Markov equivalence of models.

2.1. Structural Causal Models and Total Causal Effects

Structural Causal Models (SCMs) are a common tool to model noisy functional relations
among a set of interacting variables {Xi : i = 1, . . . , d}. In an SCM, each variable Xi is
described as a function of a subset of other variables and a stochastic noise term εi. In
this work, we focus on linear relations, that is, written in terms of random vectors, the
data-generating process solves the linear equation system

X = BX + ε, (1)
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where X = (X1, . . . , Xd), ε = (ε1, . . . , εd), and B := [βj,i]
d
j,i=1 is a matrix that represents

direct causal dependencies. We further assume that the errors are normal distributed, that
is, ε ∼ N (0,Ω), where Ω = diag(ω) with ω = (ω1, . . . , ωd). Note that the errors are
assumed to be uncorrelated, which implies causal sufficiency. The causal perspective arises
when viewing these equation equations as making assignments rather than mathematical
equations. Thus, the underlying causal structure of SCMs is naturally represented by a
(minimal) directed graph G, where each node i in the graph corresponds to a variable Xi

and edges i → j indicate direct causal dependencies, that is, βj,i ̸= 0. Throughout this
work, we focus on acyclic causal relations, which entails that B is permutation similar to
a lower triangular matrix and yields the unique solution X = (Id − B)−1ε of the equation
system (1), where Id denotes the d × d identity matrix. Thus, X ∼ N (0,Σ) where the
covariance matrix is given by

Σ = (Id −B)−1Ω(Id −B)−T .

We use the following notation and graphical concepts in the remainder of the article.
We write i <G j if node i precedes node j in a causal ordering of the corresponding directed
acyclic graph (DAG). If the DAG contains an edge from node i to node j, then node i is
called a parent of node j, and we denote the set of all parents of node j with p(j). Further, if
the DAG contains a directed path from node i to node j, then node j is called a descendant
of node i, and we denote the set of all descendants of node i with d(i). Finally, we write
Σj,i|p(i) for the conditional covariance matrix, that is,

Σj,i|p(i) := Σj,i − Σj,p(i)(Σp(i),p(i))
−1Σp(i),i.

The target of interest in this work is the total causal effect C(i → j), that is, the effect
of an external intervention on Xi onto Xj . Within the framework of linear SCMs, the total
causal effect is formally defined as the unit change in the expectation of Xj with respect to
an intervention in Xi

C(i→ j) :=
d

dxi
E[Xj | do(Xi = xi)].

If the underlying DAG G is known, this parameter of interest can be expressed as a simple
function of the covariance matrix φ(G,Σ) := Σj,i|p(i)(Σi,i|p(i))

−1, which is the regression co-
efficient of Xi when regressing Xj on (Xi, Xp(i)). However, difficulties arise in practice when
the underlying causal structure is unknown, and thus, a valid adjustment set is unknown.

2.2. Markov Equivalence and Identifiability

An important question is, thus, given an observational distribution PΣ from a set of pos-
sible distributions {PΣ : Σ ∈ M}, can one uniquely recover the (causal) target of interest
φ(G,Σ)? Each DAG G may generate a (sub-)set of possible distributions from the model
space M with entailing effect φ(G,Σ), and thus, geometrically, this question is about the
set of distributions that lie in the intersection of multiple plausible (causal) models.

Generally, an underlying linear Gaussian SCM naturally encodes a set of conditional
independence constraints, given graphically by the set of d-separation relations in the un-
derlying (true) DAG, which correspond algebraically to polynomial constraints on the set
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of possible covariance matrices. Two DAGs are called Markov equivalent if they imply the
same set of conditional independence constraints and thus generate the same set of distri-
butions. However, these Markov equivalent DAGs do not necessarily entail the same causal
effect of interest and, therefore, without additional (structural) assumptions, identification
is at most possible up to a Markov equivalence class, that is, a set of potential values of the
target of interest, each corresponding to a DAG within the same Markov equivalence class.

Additional faithfulness-type assumptions commonly guarantee at least being able to
identify the Markov equivalence class by assuming that the given distribution does not sat-
isfy additional conditional independence constraints, which are not implied by d-separation
relations in the (true) DAG. We note that to recover our target of interest, the total causal
effect, it is not necessary to fully identify the underlying DAG. We do not need to be able
to distinguish a generating (minimal) DAG from its supergraphs to identify the target ef-
fect since all supergraphs yield a valid adjustment set for the total causal effect. To see
that, note that every ’additional’ parent of node i in a supergraph has to be conditionally
independent of node i given the (minimal) parent set, which follows from d-separation in
the minimal DAG. Thus, while assuming sparsity might improve computational aspects (by
reducing the size of the model space), from a theoretical point of view, it suffices to only
consider complete DAGs, that is, (causal) topological orderings of the involved variables,
which includes all (sparse) DAGs as subgraphs.

In this article, we will focus our attention on the concept of generic identifiability. We
call the causal parameter C(i → j) generically identifiable if it can be recovered uniquely
for almost all Σ ∈ M from a given observational distribution PΣ out of a set of possible
distributions {PΣ : Σ ∈ M}. Put differently, the set of covariance matrices corresponding
to distributions for which the target of interest is not identifiable form a Lebesgue measure
zero subset of our model space M.

3. Homoscedasticity in SCMs

In this section, we investigate how introducing homoscedasticity constraints among the
different error variances leads to identifiability of the (causal) parameters of interest. As
mentioned before, in general, identification is at most possible up to a set of indistinguishable
effects corresponding to Markov equivalent models. To be precise, in our setting under the
assumption of an underlying linear Gaussian SCM, every possible distribution N (0,Σ)
belongs to a covariance matrix from the set M :=

⋃
G∈G(d)M(G), where G(d) is the set of

all complete DAGs on d nodes and

M(G) =
{
Σ ∈ PD(d) : ∃B ∈ RG,ω ∈ Rd with Σ = (Id −B)−1diag(ω)(Id −B)−T

}
(2)

is the (causal) model given by a DAG G, where RG = {B ∈ Rd×d : βj,i = 0 if j <G i}. Note
that without restrictions on the error variances, each set M(G) corresponds to the entire
cone of positive definite matrices PD(d). In other words, all complete DAGs are Markov
equivalent, and any complete DAG could have generated every possible given observational
distribution. However, the total causal effect given by φ(G,Σ) is not the same within
all complete DAGs G that could have generated Σ. Thus, the total causal effect is not
identifiable without any additional order or structure constraints.
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Theorem 1 (see, e.g., Pearl (2009)) The total causal effect C(i→ j) is not generically
identifiable under the assumption of an underlying linear Gaussian SCM.

Nevertheless, given an observational distribution PΣ, we can recover a finite set of possi-
ble values of the total causal effects by enumerating all effects corresponding to all equivalent
complete DAGs (Maathuis et al., 2009). We emphasize that while the number of permu-
tations of d nodes is d factorial, many of these permutations lead to the same effects. For
example, half of the permutations correspond to orderings with j <G i and, thus, entail a
zero-sized effect. Similarly, the ordering among the parent set p(i) or among the descendant
set d(i) is irrelevant to the specific value of the total causal effect. In fact, the size of the set
of possible values of the total causal effect is upper bound by 2(d−2) + 1. However, under a
general linear Gaussian SCM, this set of indistinguishable effects contains zero and non-zero
values and, thus, is not informative about the existence or direction of a total causal effect
without additional assumptions.

3.1. Equal Error Variance Constraint

A frequently used structural assumption that resolves this issue is introducing homoscedas-
ticity among the error variances, that is, assuming ωi = ωj for all i, j = 1, . . . , d. This
assumption restricts the set of possible distributions to a proper subset of the cone of pos-
itive definite matrices. Working with this assumption of equal error variances does not
seem unreasonable for exploratory analyses in applications involving variables from simi-
lar domains or measurements obtained by similar machines and applications with concrete
knowledge about external error variances.

From a causal perspective, this restriction refines the Markov equivalence classes and
yields a straightforward criterion to identify the underlying causal ordering. Since the
external error variances are equal, source nodes in the DAG have to be of minimal variance.
To be precise, the homoscedasticity assumption corresponds to the algebraic constraint
that the variance of each node conditioned on its parents has to be equal. Thus, for a given
(complete) DAG, the set of possible distributions is given by

MEV (G) =
{
Σ ∈ PD(d) : ∃ω > 0 with ω = Σk,k|p(k) ∀ k = 1, . . . , d

}
.

Note that any given Σ has a minimal diagonal element, which ’fixes’ the value of the equal
error variance ω and has to correspond to a source node in an underlying (minimal) DAG.
If this minimal element is not unique, all nodes corresponding to minimal elements must
be source nodes. By recursively conditioning on previous nodes and selecting nodes with
minimal conditional variances, we obtain a unique one-to-one correspondence between a dis-
tribution Σ and a generating underlying minimal DAG. Thus, two causal models MEV (G)
only coincide at distributions generated by subgraphs that admit both complete graphs as
valid causal orderings. However, since the underlying minimal DAG is unique, all valid
causal orderings entail the same total causal effect. As mentioned, this follows due to d-
separation criteria in the (unique) minimal DAG. Every ’additional’ parent of node i in a
supergraph has to be conditionally independent of node i given the (minimal) parent set.
In other words, we obtain the following result.
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Theorem 2 (Peters and Bühlmann (2014)) The total causal effect C(i → j) is glob-
ally identifiable under the assumption of an underlying linear Gaussian SCM with full ho-
moscedasticity.

We emphasize that this holds globally without additional faithfulness-type assumptions.

3.2. Identifiability under Partial Homoscedasticity

In this section, we answer the question of what happens between the general case of ar-
bitrary error variances and the fully homoscedastic case with one common error variance.
Specifically, we study the case of partial homoscedasticity; that is, we restrict ωi = ωj only
for potential cause Xi and response Xj of interest. This extends the possible applications
of the framework towards cases where (only) the potential cause and response are from
similar domains and cases with concrete knowledge about external error variances of (only)
the potential cause and response. Algebraically, this assumption of partial homoscedasticity
corresponds to the constraint that the variance of node i conditioned on its parents equals
the variance of node j conditioned on its parents. Thus, for a given (complete) DAG, the
causal model under partial homoscedasticity is given by

MPEV (G) =
{
Σ ∈ PD(d) : Σi,i|p(i) = Σj,j|p(j)

}
.

In previous work, Wu and Drton (2023) show that this assumption refines the Markov
equivalence classes in such a way that two equivalent DAGs only generate the same causal
model if and only if both postulate the same parent sets p(i) and p(j), respectively. This
raises the question of whether this structural partial homoscedasticity assumption is enough
to uniquely recover the total causal effect of interest C(i → j) from a given observational
distribution PΣ. To answer that question, we study the set of possible values of the total
causal effect entailed by a distribution that lies in the intersection of multiple plausible
causal models.

Without loss of generality, we focus on the intersection between two (complete) graphs
G1 and G2, that is, the intersection between two models MPEV (G

1) and MPEV (G
2). Both

models can be parametrized similarly to (2), with B ∈ RG and ω ∈ Rd−1 under the partial
homoscedasticity restriction ωi = ωj . Thus, as parameterized models, MPEV (G

1) and
MPEV (G

2) are irreducible algebraic models (see, e.g., Cox et al., 2015). The intersection
of two irreducible models is either of lower dimension or both models fully coincide. As
already mentioned, Theorem 4.1 of Wu and Drton (2023) states that the two models fully
coincide if and only if they imply the same parent sets for i and j, respectively, that is,
pG1(i) = pG2(i) and pG1(j) = pG2(j). In this case however, both models would also entail the
same total causal effect φ(G1,Σ) = φ(G2,Σ) = Σj,i|p(i)(Σi,i|p(i))

−1 since pG1(i) = pG2(i). In
the other case, if G1 and G2 do not imply the same parent sets for i and j, the intersection of
MPEV (G

1) andMPEV (G
2) consequently has to be lower dimensional and, thus, a Lebesgue

measure zero subset. Nevertheless, this intersection is not empty; see Example 1. Combining
both cases, we obtain the following result.

Theorem 3 The total causal effect C(i→ j) is generically identifiable under the assumption
of an underlying linear Gaussian SCM with partial homoscedasticity among i and j.
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In other words, we can uniquely recover the total causal effect of interest for almost
all Σ ∈

⋃
G∈G(d)MPEV (G), that is, for almost all observational distributions from a linear

Gaussian SCM under partial homoscedasticity. See Appendix A for an explicit example.
Further, note that analogous additional faithfulness-type assumptions, i.e., assuming that
the distribution satisfies only the equal error variance constraint between i and j as implied
by the parent set of the true underlying DAG, would guarantee global identifiability. How-
ever, we emphasize that we can explicitly construct not only ’unfaithful’ distributions in
the intersection between two models that would imply effects of different magnitudes but
also distributions in the intersection of two models that imply different directions for the
considered effect. Thus, not even the causal ordering of the potential cause Xi and response
Xj is globally identifiable without additional assumptions.

Example 1 The two linear Gaussian SCMs with partial homoscedasticity ω1 = ω2, given
by the underlying DAGs G1 and G2 generate the same observational distribution (with
ω = (1, 1, 1) and ω = (0.81, 0.81, 1.52), respectively) but entail a different total causal effect
C(1 → 2), that is, φ(G1,Σ) = 0.29 ̸= 0 = φ(G2,Σ).

1

2

3

0.29

−0.38

0.70

(a) G1

1

2

3

0.43

0.46

−0.31

(b) G2

We used computer algebra software to find a covariance matrix that satisfies both equal
error variance constraints Σ1,1 = Σ2,2|1 and Σ1,1|{2,3} = Σ2,2|3. Thus, such a covariance
could have been generated by both causal orderings 1 <G 2 <G 3 and 3 <G 2 <G 1 and
exemplifies that not even the direction of the effect is globally identifiable. Note that we
rounded the displayed values; for more information see Appendix B.

4. Causal Inference under Partial Homoscedasticity

Theoretical identifiability aside, intuitively, stronger structural assumptions should lead to
more informative inference results. Thus, in the following sections, we want to investigate
how causal inference differs under these three error variance assumptions and how much
performance can be gained by relying on stricter structural assumptions.

4.1. Maximum Dual Likelihood Estimation

Assume we have access to observational data in form of n independent copies X(1), . . . ,X(n)

of a random vector X that follows a linear Gaussian SCM, given by an unknown DAG G.
This section aims to estimate the set of indistinguishable total causal effects C(i→ j), cor-
responding to all equivalent models, similar to the IDA-framework (Maathuis et al., 2009).
We employ dual likelihood methods (Brown, 1986; Kauermann, 1996) as an alternative to
classical maximum likelihood estimation due to computational advantages (Strieder and

219



Strieder Drton

Drton, 2024). The main idea of dual likelihood is to swap the arguments in the usual classi-
cal minimization of the Kullback–Leibler divergence, which yields a different estimator and
corresponds to maximizing

ℓdualn (Σ) := − log det(Σ−1)− tr(ΣΣ̂−1),

where Σ̂ = 1
n

∑n
l=1X

(l)(X(l))T is the empirical covariance. We note that employing dual
likelihood transfers the optimization problem from a covariance matrix to its inverse, sim-
plifying constraints on total causal effects to facilitate the test inversion in Section 4.2.

Similar to the classical likelihood, Σ̂ is the unconstrained dual maximum likelihood
estimate for Σ ∈ M. Thus, in the general case without any restrictions on the error
variances, the total causal effect can be estimated via {φ(G, Σ̂) ∈ R : G ∈ G(d)}, which is
the set of all causal effects implied by all indistinguishable models that could have generated
the maximum (dual) likelihood estimate Σ̂. Note that many complete DAGs necessarily
entail the same effect as they imply the same adjustment set p(i). Thus, to calculate this
proposed estimate, we only need to compute 2d−2 values, that is, enumerate all distinct
parent sets p(i) that do not include j, and further append zero. Furthermore, note that the
adjustment sets implied by complete DAGs are not necessarily efficient if the true underlying
DAG is not complete (Henckel et al., 2022).

Under the additional structural assumption of partial homoscedasticity between poten-
tial cause i and response j, that is, assuming ωi = ωj , the maximum likelihood estimation
is a complex combinatorial optimization problem. However, for a fixed DAG G, dual maxi-
mum likelihood estimation is equivalent to solving a sequence of linear regression problems
for each node regressed on its descendants. Thus, we obtain the optimal value

sup
Σ∈MPEV (G)

ℓdualn (Σ) = −
d∑

k ̸=i,j
log
(
(Σ̂−1)k,k|d(k)

)
− 2 log

(
1
2

(
(Σ̂−1)i,i|d(i) + (Σ̂−1)j,j|d(j)

))
− d.

The corresponding total causal effect is the regression coefficient of node j when regress-
ing node i on its descendants, that is, τj

((
(Σ̂−1)d(i),d(i)

)−1
(Σ̂−1)d(i),i

)
, where τj projects

the |d(i)|-dimensional vector onto the component corresponding to j if j ∈ d(i) and zero
otherwise. Subsequently, maximizing over the space of complete DAGs G ∈ G yields the
dual maximum likelihood estimate under partial homoscedasticity. We emphasize that this
dual maximum likelihood estimate may lie in the intersection of multiple causal models
implying different total causal effects. Thus, analogously to the general case, we propose to
estimate the total causal effect under structure uncertainty as the set of all causal effects
corresponding to DAGs that achieve this optimal value. Using combinatorial shortcuts, we
can compute this proposed estimate without checking all d factorial permutations, i.e., all
complete DAGs implying the same parent sets p(i) and p(j) are equivalent and entail the
same causal effect of interest. Thus, it suffices to compute and compare two times 3d−2

optimal values.
Further, under full homoscedasticity among all error variances and for a fixed DAG G,

we obtain the optimal value

sup
Σ∈MEV (G)

ℓdualn (Σ) = −d log
(
1
d

d∑
k=1

(Σ̂−1)k,k|d(k)
)
− d
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with corresponding total causal effect τj
((
(Σ̂−1)d(i),d(i)

)−1
(Σ̂−1)d(i),i

)
. Analogously, maxi-

mizing over the space of complete DAGs G ∈ G then yields the dual maximum likelihood
estimate. This dual maximum likelihood estimate may also lie in the intersection of multiple
causal models. However, in this case, this intersection has to correspond to distributions
generated by a lower-dimensional subgraph. Thus, all complete DAGs that achieve this op-
timal value are valid causal orderings of the true underlying subgraph and entail the same
total causal effect. We note that leveraging combinatorial shortcuts to calculate this total
causal effect estimate is more complex, but evaluating all permutations can be avoided with
ideas similar to Silander and Myllymäki (2006).

4.2. Confidence Intervals for Total Causal Effects

In order to draw reliable conclusions from causal estimates under structure uncertainty, we
further want to construct a confidence interval, that is, in the technical sense, a region that
(at least asymptotically) guarantees a desired frequentist coverage probability of the true
total causal effect of interest. Recent proposals that rigorously account for uncertainty in
causal inference rely on test-inversion approaches to construct confidence sets for causal
quantities of interest (Strieder and Drton, 2023; Wang et al., 2023). Strieder and Drton
(2023) explicitly construct a confidence region for the total causal effect by inverting joint
tests for the underlying causal structure and effect size in the concrete setting of an under-
lying linear Gaussian SCM with equal error variances. We will take up their methodology
and extend it to the partial homoscedastic and general cases. Again, we emphasize that
the total causal effect is not globally identifiable when departing from the complete ho-
moscedastic case. Thus, structure uncertainty is not only aleatoric due to the data-driven
model choice but also epistemic due to multiple models being indistinguishable. We aim to
construct reliable confidence intervals that consider all sources of uncertainty and cover all
indistinguishable effects with the desired frequency.

In the general setting, without assuming equal error variance, the ansatz of inverting
joint tests for causal structure and effect size leads to the following statistical testing problem
for all ψ ∈ R

H
(ψ)
0 : Σ ∈ Mψ against H1 : Σ ∈ M\Mψ,

where Mψ :=
⋃
G∈G(d)Mψ(G) with Mψ(G) := {Σ ∈ PD(d) : φ(G,Σ) = ψ}. We solve the

testing problem using the dual likelihood ratio test and the theory of intersection union
tests (see, e.g., Casella and Berger, 1990) to obtain the following result.

Theorem 4 Let α ∈ (0, 1). For all G ∈ G(d) with i <G j define

D(G) := (Σ̂−1)2j,i|d(i)\{j} − (Σ̂−1)j,j|d(i)\{j}

(
(Σ̂−1)i,i|d(i)\{j} − (Σ̂−1)i,i|d(i) exp

(χ2
1,1−α
n

))
.

Then an asymptotic (1 − α)-confidence set for the total causal effect C(i → j) under the
assumption of an underlying linear Gaussian SCM is given by

C :=
⋃

G∈G(d) :D(G)≥0

[
L(G), U(G)

]⋃{
0
}
,
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where the closed-form solution for the limits is given by

L(G) :=
−(Σ̂−1)j,i|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
, U(G) :=

−(Σ̂−1)i,j|d(i)\{j} +
√
D(G)

(Σ̂−1)j,j|d(i)\{j}
.

The proof is given in Appendix C.
Without any additional structural assumption on the error variances, the total causal

effect is not identifiable, and all complete DAGs could have generated every possible ob-
servational distribution. While the confidence regions still contain information and restrict
the real line of all possible effects, they will always include the possibility of no effect.

Inducing additional structure by assuming equal error variances among the potential
cause i and response j (potentially) resolves this ambiguity and leads to confidence regions
via inverting the following statistical testing problem for all ψ ∈ R

H
(ψ)
0 : Σ ∈ Mψ

PEV against H1 : Σ ∈ MPEV \Mψ
PEV ,

where Mψ
PEV :=

⋃
G∈G(d)M

ψ
PEV (G) with Mψ

PEV (G) := {Σ ∈ MPEV (G) : φ(G,Σ) = ψ}.
Analogously, solving this testing problem with dual likelihood ratio tests and the theory of
intersection union tests yields the following result.

Theorem 5 Let α ∈ (0, 1). Define K := minG∈G(d)K(G) and Z := minG∈G(d):j<GiK(G),
where

K(G) :=

d∏
k ̸=i,j

√
(Σ̂−1)k,k|d(k)

(
(Σ̂−1)i,i|d(i) + (Σ̂−1)j,j|d(j)

)
.

Furthermore, for all G ∈ G(d) with i <G j define

D(G) :=(Σ̂−1)2j,i|d(i)\{j}

− (Σ̂−1)j,j|d(i)\{j}

(
(Σ̂−1)j,j|d(j) + (Σ̂−1)i,i|d(i)\{j} −

K exp
(χ2

2,1−α
2n

)
∏d
k ̸=i,j

√
(Σ̂−1)k,k|d(k)

)
.

Then an asymptotic (1 − α)-confidence set for the total causal effect C(i → j) under the
assumption of an underlying linear Gaussian SCM with (partially) equal error variance
among i and j is given by

C :=
⋃

G∈G(d) :D(G)≥0

[
L(G), U(G)

]⋃{
0 : Z ≤ K exp

(χ2
1,1−α
2n

)}
,

where the closed-form solution for the limits is given by

L(G) :=
−(Σ̂−1)j,i|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
, U(G) :=

−(Σ̂−1)i,j|d(i)\{j} +
√
D(G)

(Σ̂−1)j,j|d(i)\{j}
.

The proof is given in Appendix D.
We highlight the overarching structure of the confidence regions, which consist of inter-

vals that each represent a plausible causal ordering with i <G j and possibly a zero that
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Figure 1: Empirical coverage of 95%-confidence intervals for the total causal effect.
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Figure 2: Mean width of 95%-confidence intervals for the total causal effect.

reflects remaining uncertainty about the direction of the effect. It is worth noting that any
causal ordering with i <G j immediately implies no effect. Therefore, informally, the hy-
pothesis of no effect for a DAG with i <G j is larger than that of a specific effect ψ in a DAG
with j <G i. This intuitively explains the lower degrees of freedom in the corresponding
critical value.

5. Simulation Study

In this section, we present the results of a simulation study that compares the performance of
our proposed confidence regions (general conf with no variance assumption and partial

ev conf assuming partial homoscedasticity) and the confidence region proposed in Strieder
and Drton (2024) under the (strict) assumption of all error variances being equal (ev conf).
Thus, our simulations contrast the potential information gain of relying on stricter structural
error variance assumptions. Our experiments were designed following Strieder and Drton
(2024) with synthetic data from 10−dimensional sparse DAGs with true non-zero total
causal effects under the three error variance regimes. For details on the data generation
process and additional simulation results for data with no true effect, see Appendix E.

Figure 1 reports the empirical coverage frequencies. As expected, all methods achieve
the desired coverage frequency of 0.95 under their respective error variance regime (and
more restrictive cases); however, they fail under the more general regimes. To investigate
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Figure 3: Proportion of times zero contained in 95%-confidence intervals for the total causal
effect.

the potential upside of relying on stricter variance assumptions, we investigate how conclu-
sive the proposed confidence regions are about the existence and size of causal effects in
the form of the average width of the non-zero part of the confidence sets (Figure 2) as well
as proportions of times zero is contained in the confidence sets (Figure 3). Note that the
methods do not adapt to the complexity of the data; that is, each method’s width and zero
proportions do not vary across the different data generation settings. Furthermore, without
any error variance assumption, the confidence region is never conclusive about the exis-
tence of an effect, highlighting that structural assumptions are necessary to obtain decisive
results. Nevertheless, the validity of the confidence statements relies on the correctness of
the error variance assumption, which thus, must be carefully chosen to make calibrated and
informative confidence statements about total causal effects under structure uncertainty.

6. Conclusion

An essential aspect of causal discovery is clarifying under which conditions it is theoretically
possible to identify causal quantities from observational data alone. In this paper, we
investigate how different assumptions on the error variances lead to the (non-)identifiability
of total causal effects of interest. While the classical setting with arbitrary error variances
leads to a (finite) set of indistinguishable potential effects, the recently studied equal error
variance setup with one common variance entails global identifiability. We demonstrate
that in between those cases, assuming partial equal variance between the potential cause
and response of interest is sufficient to generically identify the total causal effect.

Furthermore, appropriately accounting for uncertainty is crucial to draw reliable conclu-
sions from causal estimates. With only access to observational data, this includes classical
statistical uncertainty about the numerical size of involved effects and causal structure
uncertainty, stemming from a data-driven structure learning approach as well as the equiv-
alence of multiple plausible models. Via a test inversion approach, we construct rigorous
confidence regions that account for all types of uncertainty and show that if practitioners
are willing to rely on stricter error variance assumptions, then the corresponding confidence
regions are more informative about the existence and size of total causal effects.
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Appendix A. Identifiable Example

Under the assumption of an underlying linear Gaussian SCM with partial homoscedasticity
ω1 = ω2, that is, Σ1,1|p(1) = Σ2,2|p(2), the observational distribution PΣ, given by

Σ =

1 1 2
1 2 3
2 3 5.5

 ,

uniquely entails the total causal effect C(1 → 2) = 1. This follows from the observation
that Σ1,1|p(1) = Σ2,2|p(2) if and only if p(1) equals the empty set and p(2) = {1}. Thus,
C(1 → 2) = Σ1,2(Σ1,1)

−1 = 1.

Appendix B. Non-identifiable Example

In Example 1, we used computer algebra software to find a covariance matrix that satisfies
both equal error variance constraints Σ1,1 = Σ2,2|1 and Σ1,1|{2,3} = Σ2,2|3. The exact entries
of the found covariance matrix are algebraic numbers, given as complex root expressions.
Thus, we display in the following the found (exact) example up to a precision of 15 decimal
digits, that is, the observational distribution PΣ, given by

Σ =

 1.00000000000000 0.294584930358565 −0.176750958215139
0.294584930358565 1.08678028119436 0.648086846788844
−0.176750958215139 0.648086846788844 1.52145794696742

 ,

could have been generate by two different linear Gaussian SCMs X = BX + ε, that is,
either

B1 =

 0 0 0
0.294584930358565 0 0
−0.383006074698015 0.700155015505460 0


and Var(ε1) = diag(1, 1, 1), represented by G1 in Example 1, or

B2 =

0 0.456230601077430 −0.310510067542541
0 0 0.425964350891600
0 0 0


and Var(ε2) = diag(0.810718388180567, 0.810718388180567, 1.52145794696742), given by
G2.

Appendix C. Proof of Theorem 4

Proof Let ψ ∈ R and Σ ∈ Mψ. SinceMψ =
⋃
G∈G(d)Mψ(G) there exists a complete graph

G such that Σ ∈ Mψ(G). Without loss of generality, we assume i <G j; otherwise, ψ has
to be zero, which is always contained in the proposed confidence regions by construction.

The model space M equals the set of all positive definite matrices PD(d) and can

be identified with an open subspace in R
1
2
(d2+d). Each (single) hypothesis of the union

Σ ∈ Mψ(G) then defines a 1
2(d

2 + d)− 1-dimensional submanifold of R
1
2
(d2+d). Therefore,

227



Strieder Drton

the asymptotic distribution of the dual likelihood ratio test statistic under every single
hypothesis is given by χ2

1 and, thus,

PΣ

(
n

(
sup
Σ∈M

ℓdualn (Σ)− sup
Σ∈Mψ(G)

ℓdualn (Σ)

)
> χ2

1,1−α

)
→ α.

For details on this classical result about the limit distribution of likelihood ratio test
for submanifolds and the transformation to dual likelihood, we refer to Drton (2009) and
Strieder and Drton (2024). Furthermore, dual likelihood estimation via solving a sequence
of linear regression problems (see Section 4.1) yields the following optimal values

sup
Σ∈M

ℓdualn (Σ) = sup
Σ∈M(G)

ℓdualn (Σ) = −
d∑

k=1

log
(
(Σ̂−1)k,k|d(k)

)
− d,

sup
Σ∈Mψ(G)

ℓdualn (Σ) =−
d∑
k ̸=i

log
(
(Σ̂−1)k,k|d(k)

)
− log

(
(Σ̂−1)i,i|d(i)\{j} + ψ2(Σ̂−1)j,j|d(i)\{j} + 2ψ(Σ̂−1)i,j|d(i)\{j}

)
− d.

Plugging in these dual likelihood estimates, we view

n

(
sup
Σ∈M

ℓdualn (Σ)− sup
Σ∈Mψ(G)

ℓdualn (Σ)

)
− χ2

1,1−α

as a strictly convex quadratic polynomial in ψ, which has real roots if D(G) ≥ 0, where

D(G) := (Σ̂−1)2j,i|d(i)\{j} − (Σ̂−1)j,j|d(i)\{j}

(
(Σ̂−1)i,i|d(i)\{j} − (Σ̂−1)i,i|d(i) exp

(χ2
1,1−α
n

))
.

Thus, the inequality n
(
supΣ∈M ℓdualn (Σ)− supΣ∈Mψ(G) ℓ

dual
n (Σ)

)
> χ2

1,1−α holds if and only
if

ψ ∈

[
−(Σ̂−1)i,j|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
,
−(Σ̂−1)i,j|d(i)\{j} +

√
D(G)

(Σ̂−1)j,j|d(i)\{j}

]
.

The test inversion approach and intersection union theory complete the proof.

Appendix D. Proof of Theorem 5

Proof Let ψ ∈ R and Σ ∈ Mψ
PEV . Since Mψ

PEV =
⋃
G∈G(d)M

ψ
PEV (G) there exists a

complete graph G, such that Σ ∈ Mψ
PEV (G). We assume i <G j; the case j <G i can be

constructed analogously.
The dual likelihood ratio test statistic is upper bounded by the larger test statistic of

testing against the entire cone of positive definite matrices, that is,

n

(
sup

Σ∈MPEV

ℓdualn (Σ)− sup
Σ∈Mψ

PEV (G)

ℓdualn (Σ)

)
≤ n

(
sup

Σ∈PD(d)
ℓdualn (Σ)− sup

Σ∈Mψ
PEV (G)

ℓdualn (Σ)

)
.
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Within the set of all positive definite matrices PD(d), each (single) hypothesis of the

union Σ ∈ Mψ
PEV (G) defines a

1
2(d

2+d)−2-dimensional submanifold of R
1
2
(d2+d). Therefore,

the asymptotic distribution of this stochastic upper bound of the dual likelihood ratio test
statistic is given by χ2

2 and, thus, with the conservative critical value χ2
2,1−α from the

stochastic upper bound, we obtain

PΣ

(
n

(
sup

Σ∈MPEV

ℓdualn (Σ)− sup
Σ∈Mψ

PEV (G)

ℓdualn (Σ)

)
> χ2

2,1−α

)

≤ PΣ

(
n

(
sup

Σ∈PD(d)
ℓdualn (Σ)− sup

Σ∈Mψ
PEV (G)

ℓdualn (Σ)

)
> χ2

2,1−α

)
→ α.

For details on the limit distribution of the likelihood ratio test for submanifolds and the
transformation to dual likelihood, we refer to Drton (2009) and Strieder and Drton (2024).
Furthermore, the dual likelihood estimation via solving a sequence of linear regression prob-
lems (see Section 4.1) yields

sup
Σ∈MPEV

ℓdualn (Σ) = −2 log(K2 )− d.

with

K := min
G∈G(d)

d∏
k ̸=i,j

√
(Σ̂−1)k,k|d(k)

(
(Σ̂−1)i,i|d(i) + (Σ̂−1)j,j|d(j)

)
,

as well as

sup
Σ∈Mψ

PEV (G)

ℓdualn (Σ) =−
d∑

k ̸=i,j
log
(
(Σ̂−1)k,k|d(k)

)
− d− 2 log

(
1
2

(
(Σ̂−1)i,i|d(i)\{j}

+ ψ2(Σ̂−1)j,j|d(i)\{j} + 2ψ(Σ̂−1)i,j|d(i)\{j} + (Σ̂−1)j,j|d(j)
))
.

Plugging in these dual likelihood estimates, we view

n

(
sup

Σ∈MPEV

ℓdualn (Σ)− sup
Σ∈Mψ

PEV (G)

ℓdualn (Σ)

)
− χ2

2,1−α

as a strictly convex quadratic polynomial in ψ, which has real roots if D(G) ≥ 0, where

D(G) :=(Σ̂−1)2j,i|d(i)\{j}

− (Σ̂−1)j,j|d(i)\{j}

(
(Σ̂−1)j,j|d(j) + (Σ̂−1)i,i|d(i)\{j} −

K exp
(χ2

2,1−α
2n

)
∏d
k ̸=i,j

√
(Σ̂−1)k,k|d(k)

)

Thus, the inequality n
(
supΣ∈MPEV

ℓdualn (Σ) − sup
Σ∈Mψ

PEV (G)
ℓdualn (Σ)

)
> χ2

2,1−α holds if

and only if

ψ ∈

[
−(Σ̂−1)i,j|d(i)\{j} −

√
D(G)

(Σ̂−1)j,j|d(i)\{j}
,
−(Σ̂−1)i,j|d(i)\{j} +

√
D(G)

(Σ̂−1)j,j|d(i)\{j}

]
.

The test inversion approach and intersection union theory complete the proof.
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Figure 4: Empirical coverage of 95%-confidence intervals for the total causal effect.
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Figure 5: Mean width of 95%-confidence intervals for the total causal effect.

Appendix E. Additional Simulation Results

In this section, we recapitulate the synthetic data generation process adapted from Strieder
and Drton (2024) and present further simulation results for true non-zero effects. To gen-
erate a synthetic data set, we first select a random permutation of 10 nodes. Second, we
prune the corresponding complete graph by including each edge with a probability of 0.5.
Then, we generate edge weights according to a normal distribution N (0.5, 0.1) and generate
n samples according to the linear Gaussian SCM represented by the selected DAG. Here,
we use three different error variance regimes, that is, general data where each error vari-
ance is sampled uniformly from [0.5, 1.5], partial ev data with the two error variance of
potential causal and effect being 1 and the rest sampled uniformly from [0.5, 1.5], and ev

data with all error variances being 1. We repeated this process to obtain 1000 independent
data sets (twice, with true non-zero effect and no effect) to calculate the presented empirical
quantities.

Figure 4 shows the empirical coverage frequencies when no true effect exists. Note that
this task is ’easier’ as no effect corresponds to the larger class of models being plausible
where node j proceeds node i in the causal ordering. However, the information contained in
the intervals still significantly differs, highlighted by the average width reported in Figure 5.
Finally, note that, in this setting, the zero proportions are equal to the empirical coverage.
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