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Abstract

Bayesian networks (BNs) represent a probabilistic model that can visualize relationships
between variables. We apply various BN structure learning algorithms to a large dataset
from a Czech university entrance exam. This dataset includes a test of active, open-minded
thinking designed by Jonathan Baron, as well as a test of students’ attitudes toward various
conspiracies. Using BNs, we were able to identify the structure of the conspiracies and their
relationships with active open-minded thinking. We also compared results of different BN
structure learning algorithms with results of selected standard data analysis methods.

Keywords: Bayesian Networks; Data Analysis; Structural Learning of Bayesian Networks;
Actively Open-minded Thinking; Conspiracy Theories.

1. Introduction

Network models, which conceptualize behavior as a complex interplay of psychological and
other variables, is increasingly used in the humanities, such as sociology and psychology.
Pairwise Markov Random Fields (PMRFs), which are probabilistic models based on undi-
rected graphs, appear to be the dominant probabilistic graphical model in these application
areas (Epskamp et al., 2018). Bayesian networks (BNs) represent a conceptually different
probabilistic model based on directed acyclic graphs. BNs are starting to gain attention
also in sociology, psychology, psychometrics (Almond et al., 2016; Alvarez-Galvez, 2016;
Švorc and Vomlel, 2019; Orsoni et al., 2024). One of the goals of this paper is to illus-
trate their potential to uncover relationships between studied concepts. We will show the
advantages that BNs can offer in addition to traditional data analysis methods. For this
purpose, we use a study on conspiracies and active open-mindedness. The application of
BNs to this problem has raised few theoretical challenges that have implications for the
structural learning of BNs. We experimentally compare conceptually different approaches
to structural learning of BNs on the studied data.
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In this paper, we use data from the Czech National Comparative Examinations1, which
replace or supplement entrance examinations to dozens of universities in Czechia and Slo-
vakia. In the tests administered in 2022, in addition to questions assessing knowledge,
students were also asked questions assessing their Actively Open-Minded Thinking (Baron,
2019, 1991) and their attitudes toward various conspiracy theories. Actively Open-minded
Thinking is the disposition to be fair towards different conclusions, even if they contradict
one’s initial favorite conclusion. Jonathan Baron (2019) has proposed an assessment which
includes 11 questions listed in Appendix A. Questions on 16 conspiracies were also included
in the test. They are divided into five groups and are also listed in Appendix A. For the
Baron’s 11 questions, a standard five-point Likert scale was used, while for the 16 conspir-
acies, the Likert scale had seven values. We coded the values as integers 0, 1, . . . , 4 and
0, 1, . . . , 6, respectively. The dataset we used consists of 1411 vectors, where each vector
represents a single student. The vector values represent answers to 11 Baron questions and
opinions on 16 conspiracy theories. All variables in all data vectors are fully observed.

The paper is organized as follows. We begin with the applications of three standard data
analysis methods to the studied dataset. In Section 2 we present two regression analysis
of the conspiracy score versus Baron score. In Section 3 we analyse correlation matrix
of individual Baron and conspiracy variables. Another insight is offered by the Principal
Component Analysis in Section 4. The BN analysis forms Section 5. In this section,
we compare four different BN models using the traditional scores and by their prediction
accuracy in a ten-fold cross-validation experiment. We discuss what information can be
gained from graphs of BNs. We conclude the paper with a discussion of related work and
possible future work in Section 6.

2. Regression Analysis

Let C be the average of all of an individual’s conspiracy responses and B be the average of
all of an individual’s responses to the Baron questions. We begin our analysis with a linear
regression of C against the variable B. The Breusch-Pagan test rejects the null hypothesis
of homoscedasticity with p = 10−5 – the residual errors are higher for lower values of B.
Next, we apply the logarithmic transformation to C + 1 and learn the regression model

logC = 0.52− 0.17 ·B . (1)

The intercept and slope are both statistically significant with p-values less than 2 ·10−16.
The plot on the left of Figure 1 shows the regression line along with the 95% confidence
interval. Each point corresponds to an individual, and its horizontal and vertical coordinates
are values of B and C + 1, respectively. This model passes the Breusch–Pagan test of
homoscedasticity with p = 0.42. In the middle of Figure 1 is the absolute residual error as a
function of the Baron score. The distribution of residual errors of this model does not pass
the normality test – it is slightly skewed to the left, see the histogram on the right of Figure 1.
However, since the mean of this distribution is practically zero (7 ·10−15), the ordinary least
squares estimates in (1) are reasonable estimators of the regression coefficients.

1. https://www.scioexams.com/
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Figure 1: Conspiracy score (logC+1) as a function of the Baron score B (left), the absolute
residual error as a function of the Baron Score (middle), and the histogram of the residual
error (right).

3. Correlation Analysis

Next, we examine pairwise correlations of individual questions. Figure 2 shows the upper
triangles of the correlation matrices. The size and color intensity of the dots correspond to
the correlation value. The larger the dot, the stronger the correlation. Positive correlation
dots are blue, negative correlation dots are red. For the matrix on the left, the crosses
indicate correlations that were not found to be significant at the 5% significance level. The
more hypotheses that are tested on the same data, the higher the probability of getting false
positives. This behavior is known as the multiple comparisons problem. To counteract this
problem, we used the method of Holm (1979). The results are shown on the right side of
Figure 2. While without Holm’s correction only 95 of 351 null hypotheses (of a correlation)
are rejected, with Holm’s correction the number is almost doubled - there are 159 of rejected
correlations. Of course, except for the crosses, the two matrices are identical. Let us take a
closer look at the correlations that remain significant after the correction. We can see that all
Baron variables are negatively correlated with conspiracies, all Baron variables are pairwise
positively correlated with only one exception, the {B9, B10} pair, and all conspiracies are
pairwise positively correlated with a few exceptions related to C7 (iron cannot evaporate).

Next, we apply a graph visualization method to the correlation matrix with correlations
considered significant after Holm’s correction. We use the algorithm of Fruchterman and
Reingold (1991) to obtain a graph layout in which the distances between nodes correspond
to the correlation values between these nodes, in the sense that the higher the absolute
value of the correlations, the more attracted the nodes are to each other. For this we use
the R package qgraph (Epskamp et al., 2012). See Figure 3. Green edges correspond to
positive correlations while red edges correspond to negative correlations. The wider the
edge, the higher the correlation value. In the figure, we can see that most of the Baron
variables are close to each other, with the exception of B3 and B9. From the figure we
can see that several conspiracies are not only closely related to each other (positively), but
also to some Baron variables (negatively), with the strongest relationships being between
{C11, C14, C15} and {B5, B7, B8}. Some conspiracies are rather remote, e.g. C10.
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Figure 2: The upper triangles of the correlation matrices for the individual conspiracies
and Baron questions. The crosses indicate correlations that are not significant at the 5%
significance level – with no correction (left) and with Holm’s correction (right).
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Figure 3: The undirected graph of the correlation matrix after Holm’s correction.
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4. Principal Component Analysis

Another exploratory data analysis technique is Principal Component Analysis (PCA) (Pear-
son, 1901). The data is linearly transformed into a new coordinate system so that the
directions that capture the most variation in the data, called principal components, can be
identified. PCA reveals that the first principal component explains more than 50% of the
variance, while the second principal component explains only 9%. The plot in Figure 4 dis-
plays the individual contributions of the model variables to the first component (horizontal
axis) and the second component (vertical axis). It is clearly visible that, with one excep-
tion2 of C7, the conspiracies constitute the first principal component with the negative value
(left) and the Baron questions with the positive value (right). Note that the most negative
values correspond to the hard core conspiracies, while the least negative values correspond
to most of the questions from the shallow knowledge group plus C16 (homeopathy) from
the soft conspiracies group.
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Figure 4: Contributions of individual variables to the first and second PCA components.

It is interesting to compare the relative positions of the nodes in Figures 3 and 4.
The methods used to construct these plots are based on different principles – correlation
analysis is based on pairwise relationships, while PCA provides a global view – but the
intuition behind both methods is that nodes with similar behavior should be closer together.
Therefore, it is not surprising that most of the nodes connected by an edge in Figure 3 are
closer to each other than most of the other pairs in Figure 4.

5. Bayesian Networks Analysis

Bayesian networks (Pearl, 1988; Jensen and Nielsen, 2007; Koller and Friedman, 2009) are
probabilistic models that use acyclic directed graphs to visualize the relationships between
model variables. Specifically, the graph encodes conditional independence statements that
can be derived from the graph using the d-separation criterion.

2. Note that C7 was also an exception in the case of correlations.
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5.1. Data Transformation

Recall that the individual variables are discrete with Likert scale values. To avoid overfit-
ting problems when learning large conditional probability tables, we decided to transform
the five-point Likert scale of the Baron variables and the seven-point Likert scale of the
Conspiracy variables into a three-point scale. Let c denote the middle value of a Likert
scale, in our case it is 2 for the five-point Likert scale and 3 for the seven-point Likert scale.
We define the transformed value v as a function of the original value u as follows:

v =


−1 if u < c, meaning I disagree,
0 if u = c, meaning I am neutral, and

+1 if u > c, meaning I agree.

One question is whether this new scale should still be treated as an ordinal scale or rather as
a nominal scale. We chose the latter option because the neutral value does not necessarily
mean that the respondent’s opinion is between agreement and disagreement, but this value
can also indicate some reluctance to answer, which can be of additional value for the analysis.
It also allows the learning algorithms more flexibility in learning the CPTs. The most
common value for Baron variables is +1 with a relative frequency of 0.572. The most
common value for conspiracy variables is −1 with a relative frequency of 0.547. These
frequencies can be considered as lower bounds for the prediction accuracy of BN models to
be considered successful.

5.2. Latent Class Analysis

The Latent Class (LCA) model assumes that each respondent can be assigned to a class
such that respondents in the same class answer questions in the same way. An important
task is to decide on the number of these classes so that the model best explains the observed
data. As a measure of the quality of the model, we will use here and later the Bayesian
Information Criterion (BIC) (Schwarz, 1978), which is defined as

BIC(BN,D) = LL(BN,D)− logN

2
· d(BN) (2)

where LL(BN,D) is the log-likelihood of the data D given the BN model, N is the length
of the data D (i.e., the number of data vectors), and d(BN) is the number of parameters in
BN . We trained the LCAmodels using the poLCA package (Linzer and Lewis, 2011) in R (R
Core Team, 2021). Several other LCA methods could be applied to the studied problem,
we decided to use the poLCA algorithm, which is a latent class analysis of polytomous
nominal outcome variables with the aim of minimizing the BIC, a criterion we also use
when learning other probabilistic models discussed later in this paper. The maximum BIC
value is achieved by the LCA model with six classes.

In Table 1, we present the most probable values of the Baron and Conspiracy variables
for six different states of the latent class variable in the LCA model (with six states). To
the right of the latent class state, we show its prior probability. We can see that LC = 1
represents students who mostly respond positively to the Baron variables and, except for
C7, do not believe in conspiracies. The students represented by the state LC = 2 do
not think that indecisiveness and uncertainty are OK (B3), believe that the first answer
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Baron variables Conspiracies
LC p 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0.29 + + + + + + + + 0 + + − − − − − − + − − − − − − − − −
2 0.41 + + − + + + + + − + + − + + + + − + − − + − − − − − +
3 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0.03 0 + − + + + + + − 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0.17 0 0 − 0 + 0 0 0 − 0 + − + 0 + + − + − − + − − − − − +
6 0.07 − − + − − − − − + − − − − − − + − + − − + − − − − − +

Table 1: The most probable values of the Baron and Conspiracy variables given each of the
six latent class states in the LCA model. To the right of the state is its prior probability p.
The value +1 is abbreviated as + and the value −1 is abbreviated as −.

is usually the best (B9), and tend to accept few conspiracies (C2, C3, C4, C5, C7, C10,
and C16). The state LC = 3 corresponds to students with a neutral opinion about all
variables and LC = 4 corresponds to students with a neutral opinion about conspiracies,
both groups are rather rare. The last two states of LC correspond to students who tend to
accept some conspiracies, and especially when LC = 6 they answer negatively most of the
Baron variables. It is interesting to see that there is no state of LC for which the prevailing
opinion would be positive towards any of the “Hard Core” conspiracies and towards the
conspiracies of the Ignorance of New Facts (Covid-19) group. This means that the model
can never predict the positive opinion about these conspiracies as the most probable, no
matter what the observed state of the other variables is.

5.3. Tree Structured BNs

The second class of BN models considered in our study is the class of tree-structured BNs.
These models are learned by the Chow-Liu algorithm (Chow and Liu, 1968), which greedily
adds the edges with the highest mutual information among the connecting variables, unless
the addition would create a cycle. These models are attractive because their structure is
easy to read, they can be learned very efficiently, and the model’s conditional probability
tables (CPTs) can be reliably estimated. A potential weakness is that the structure may
not be a good description of the problem under consideration due to its oversimplification.
We will refer to these models as CLT models.

5.4. BNs Learned by Conditional Independence Tests

The third class represents BNs learned by the PC algorithm (Spirtes and Glymour, 1991).
This algorithm is based on conditional independence tests and consists of two steps. First,
the so-called graph skeleton is learned, and then the colliders (nodes where edges meet head-
to-head) are identified. We used the NPC version of this algorithm, implemented in the
Hugin tool (Madsen et al., 2003), with the conditional independence test with the default
5% significance level. We will refer to these models as NPC models.
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Figure 5: Comparison of graphs of BN models: LCA (top left), CLT (top right), NPC
(bottom left), and BIC (bottom right).
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5.5. BNs Minimizing BIC

BNs that minimize the BIC criterion (2) will be referred to as BIC models. It is known
that learning BIC-optimal BNs is NP-hard. However, for smaller models3 BIC-optimal
BNs can be learned using the GOBNILP tool (Cussens and Bartlett, 2018). The class of
BIC-optimal BNs is attractive because it represents a statistically sound trade-off between
data fit and model complexity. These models are typically sparser, which can be seen as an
advantage for their interpretability in the application domain. We also observe that direct
relationships between variables are better represented in the BIC model than in the LCA
model. For example, the LCA model discussed in Section 5.2 can never predict a positive
opinion towards any of the “Hard Core” conspiracies and towards the Ignorance of New
Facts (Covid-19) conspiracies regardless of the states of other variables, but in the BIC
model C15 = 1 and C11 = 1 implies that C14 is most likely present.

5.6. Comparisons of Graphs and Their Layouts

In Figure 5 we compare the graph structures of the four BNs discussed above. The layout
of the nodes was manually designed so that there are no crossing edges4 and the edges are
neither very long nor very short the BIC optimal BN. The layout is the same for all graphs.

The issue of BN graph layout deserves more attention, but a deeper analysis is beyond
the scope of this paper. Various graph layout methods proposed in the literature could be
(and are) applied to BN layout. Our concern is a layout that reveals important information
from the modeled domain to the user. An open question seems to be what would be the
most appropriate node distance measure for BNs, since the basic building block of BNs are
families of nodes and not pairs of nodes as in the correlation graph discussed in Section 3.

In Figure 6, we compare two layouts of the BIC optimal BN – (a) our manual layout and
(b) the layout of the correlation graph sfrom Figure 3. The graphs are the same, only the
node positions differ. Layout (a) is more compact and easier to read, but layout (b) reveals
additional information about the model variables, e.g. C10 and B10 are quite distant from
the other variables, B3 and B9 do not have much in common with most of the other Baron
variables, which otherwise form a fairly compact cluster, the conspiracies C15, C14, C11, C8

have a central position in the graph.

5.7. Uncovering Relationships Using BNs

Indeed, the BNs suggest that higher scores on Baron’s questions imply a lower likelihood
of conspiracy beliefs. This holds for all variables. Variables that are connected by a shorter
path in the model graph tend to have a closer association. With the exception of the LCA
model, which was not designed for this purpose, BNs help us gain deeper insight into the
problem being modeled. For example, the graphs of the CLT and BIC models suggest
that B9: “The first answer may not be the best” directly reduces the probability of C6:
“Most problems have a clear cause and a simple solution. Also, B11 “Consider more than
one possible answer” directly reduces the probability of C15: “There are chemicals behind
airplanes that affect human health. In the BIC and CLT models, these are the only links

3. Our models can be considered smaller.
4. This is possible because the learned graph is planar.
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(a) (b)

Figure 6: Comparison of two layouts of the BIC model.

between the Baron questions and conspiracies. This implies that if we know answers to B11

and B9, other Baron questions are irrelevant to conspiracy beliefs.

In the BIC model, three conspiracies have the most links to other nodes: C9: “100 million
= billion” (5 edges), C11: “Vaccinations cause autism” (6 edges), and C15: “There are
chemicals behind airplanes that affect human health” (5 edges). They can be considered as
key conspiracies that characterize the tested individuals. Other measures of node centrality
have been proposed in the literature (Opsahl et al., 2010). The node centrality is defined
as the sum of the strengths of the edges adjacent to that node, where the edge strength is
the absolute value of the edge weight. The edge weight can be defined as the correlation or
mutual information of the nodes connected to the edge. Other centrality measures include
closeness and betweenness based on the shortest path length between nodes in the network
defined as a path minimizing the number of intermediate nodes. Betweenness of a node
then measures the number of shortest paths that pass through that node.

An anonymous reviewer suggested using the size of Markov Blanket as a measure of
node centrality. Markov Blanket of a node X is the set containing the parents of X, the
children of X, and the other parents of all children of X. All other variables in the model
are independent of X given the states of the nodes in the Markov Blanket. In Table 2 we
can see that B11 has the largest Markov Blanket among the Baron variables and C11 among
the conspiracies. This corresponds to their key role identified by other criteria above.
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Baron variables Conspiracies
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 4 1 2 4 1 3 2 1 1 6 1 1 3 5 3 4 1 4 5 1 8 3 2 3 6 2

Table 2: Size of Markov Blankets.

5.8. Experimental Comparisons of BN Models

We evaluated the ability of the models to predict states of certain variables given observa-
tions of other variables. Namely, we randomly select 3, 9, 13, 18, and 21 variables out of 26
model variables and instantiate them using values of a data vector from the test set. We
then use the tested model to predict the states of the uninstantiated variables. We compare
the predicted most probable state with the observed state in the data vector. We compute
the average prediction accuracy over all predictions of the tested model. The process is
repeated ten times, where in each experiment nine out of ten folds of data sets are used
for model learning and the remaining fold is used for testing. The average results are sum-
marized in Figure 7. The best performance5 is achieved by the LCA model regardless of
the number of observed variables. The CLT and BIC models also perform well, and their
performance improves as more variables are observed. This is not the case for NPC, whose
performance deteriorates with more observed variables. This is an indication that some
CPTs in NPC were most likely too complex to be correctly estimated from the data.

We also compared the learned BN models by their fit to the data. All numbers reported
are averages over 10 models learned from different training sets. First, we computed the
average log-likelihood (LL) on the testing data6. Second, we computed the average Akaike’s
Information Criterion (AIC) and Bayesian Information Criterion (BIC) with respect to all
data. The results are shown on the left side of Figure 7. The best values for each criterion
are shown in bold. For all three criteria, the best model is LCA, followed by BIC.
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LCA BIC NPC CLT

LL -3062 -3110 -3518 -3112

AIC -30275 -30684 -33994 -31140
BIC -31139 -31446 -48053 -31555

Figure 7: Comparison of BN models prediction accuracy (left) and their fit to the data
(right). LL is computed with respect to testing data, AIC and BIC with respect to all data.

5. The LCA accuracy of 0.654 is higher than 0.572 and 0.547, the average prevalence of the most common
states of Baron and Conspiracy variables, respectively, see Section 5.1. It is still well below 1, 000, but
this is not surprising because of the natural uncertainty of the problem being modeled – two students
who answered a subset of questions in the same way may naturally differ in their answers to some of the
other questions.

6. This measures how well the probability distribution of the model fits the distribution of the testing data.
The model with the best fit also maximizes predictive ability, measured as the distance of the conditional
distributions given the observed states in the model and in the testing data.
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6. Discussion

We applied several statistical and machine learning methods to the dataset representing
students’ attitudes towards active open-minded thinking and various conspiracies. Each of
these methods has its own merits and has contributed to a complex view of the problem
under study. This is particularly true for (1) regression analysis, which shows that active
open-minded thinking, as measured by the Baron score, decreases belief in conspiracies, (2)
visualization using the undirected graph of the correlation matrix after Holm’s correction,
where the distances correspond to the strength of the correlations, (3) the PCA method, that
helps identify the key variables of the studied problem, and (4) Bayesian networks, where
the LCA model helps identify the main clusters of students and has a good predictive ability,
and the BIC optimal model has a good balance between simplicity and precision, so it can
reveal what the key variables are and how they relate to each other. In addition, a BN GUI
enables users to study the influence of variables of particular interest.

BN models can be further improved by considering the local structure of CPTs as Noisy-
MIN, Noisy-MAX (Dı́ez and Druzdzel, 2006; Dı́ez and Galán, 2003), Noisy-Threshold (Vom-
lel and Tichavský, 2014), or Logistic Regression (Rijmen, 2008) models. To support this
claim, we can use CPT P (C11|C8, C15) from the BIC optimal model. For C11 = 1 to become
more probable than C11 = −1, both parents must take state 1, the value 1 of one parent is
not sufficient to switch to belief in the conspiracy C11:

P (C11 = 1|C8 = 1) = 0.33,

P (C11 = 1|C15 = 1) = 0.27, but

P (C11 = 1|C8 = 1, C15 = 1) = 0.56 .

This suggests that there is a synergy effect that may be reflected in some of the local models
mentioned above. Another argument in favor of BNs with local structure of their CPTs is
that they allow larger CPTs that increase the value of LL while still keeping the penalty
low (Sharma et al., 2020; Vomlel et al., 2023).

In this paper, we have focused on a particular class of BN models, namely BNs based on
discrete nominal data. Another natural class of BN models to consider are BNs assuming
ordinal data, i.e., BNs that explicitly respect the order among the states of variables. We
have already done preliminary experiments with the method of Luo et al. (2021). This
method assumes that the ordinal variables arise from a marginal discretization of a set of
Gaussian variables whose structural dependence in latent space follows a directed acyclic
graph. The BNs learned by this method were relatively complex models with too many
edges. We plan to further explore this direction by also considering an alternative method
of Grzegorczyk (2024). Recently, BNs have been applied to the analysis of Likert scale
responses (Orsoni et al., 2024), which are also the scales used in our study.
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Appendix A. Baron Questions

We use (R) to indicate reverse scoring.

(B1) Allowing oneself to be convinced by a solid opposing argument is a sign of good
character.

(B2) People should take into consideration evidence that goes against conclusions they
favor.

(B3) Being undecided or unsure is the result of muddled thinking. (R)
(B4) People should revise their conclusions in response to relevant new information.
(B5) Changing your mind is a sign of weakness. (R)
(B6) People should search actively for reasons why they might be wrong.
(B7) It is OK to ignore evidence against your established beliefs. (R)
(B8) It is important to be loyal to your beliefs even when evidence is brought to bear

against them. (R)
(B9) When we are faced with a new question, the first answer that occurs to us is usually

best. (R)
(B10) Good thinking leads to uncertainty when there are good arguments on both sides.
(B11) When faced with a new question, we should consider more than one possible answer

before reaching a conclusion.

Appendix B. Conspiracy Theories

The following is our translation of the original Czech text. We have classified the conspir-
acies into groups. You can see that some of the statements are not conspiracies, but rather
lack of knowledge, etc. For the sake of simplicity, we will refer to all these statements as
conspiracies. Again, we use (R) to indicate reverse evaluation.
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BNs for Conspiracy Theories

“Hard core” Conspiracies

(C15) The trail behind the jets is made up of chemicals released to affect human health or
natural processes.

(C14) Humans never actually landed on the moon, it was all recorded in TV studios.

Shallow Knowledge

(C5) We are warmer in summer than in winter because the distance from the Earth to the
Sun is smaller in the summer than in the winter.

(C7) At very high temperatures, iron can evaporate. (R)

(C10) An astronaut in a spacecraft is not affected by gravity because it’s far from Earth.

(C9) 100 million is the same as one billion.

Ignorance of New Facts (Covid-19)

(C11) Vaccinations cause autism.

(C12) Obese people with diabetes are at high risk of complications from coronavirus infec-
tion. (R)

(C13) A common complication of coronavirus infection is pneumonia. (R)

(C8) Gargling salt water or lemon juice reduces the risk of contracting Covid 19.

Not so “Hard Core” (Soft) Conspiracies

(C1) 5G networks may be more risky to human health or the environment than proven,
longer-running wireless networks.

(C2) Modern technology makes it possible to derive a near-complete diagnosis and find
an effective treatment from analyzing a drop of a patient’s blood under an optical
microscope.

(C3) The cause of most of the so-called diseases of civilization is a toxic burden on the
body or unrecognized multicellular parasites.

(C4) Genetically modified foods (GMOs) threaten human health.

(C16) Homeopathic drugs contain virtually no active ingredients. (R)

Simple Mind

(C6) Most social problems have a clear cause and a simple solution.
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