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Abstract

Bayesian networks allow a parsimonious encoding of joint probability distributions via
directed acyclic graphs. While discrete Bayesian network inference is well-established, con-
ducting inference on continuous Bayesian networks often requires discretization. In this
paper, continuous Bayesian networks are subjected to various supervised and unsuper-
vised discretization methods. Subsequently, the discretized Bayesian networks are encoded
into decision diagrams, facilitating efficient inference. The trade-off between the quality
of discretization/inference and the computational cost of inference with decision diagrams
is explored by contrasting both metrics on a Pareto front. Through empirical evaluation
across a range of causal and non-causal Bayesian networks, we investigate the impact of dif-
ferent discretization methods on this trade-off. We corroborate the significantly improved
scalability of using decision diagrams for inference as opposed to traditional inference meth-
ods and extend this finding to discretized continuous networks. Coupled with insights on
the accuracy-compute cost trade-off, we advocate for discretization as a viable method for
Bayesian network inference on continuous networks.

Keywords: Bayesian networks; Decision Diagrams; Knowledge Compilation; Causal In-
ference; Bayesian Network Inference; Discretization.

1. Introduction

Bayesian networks have permeated multiple research fields such as environmental science
(Kelly (Letcher) et al., 2013), defense studies (Johansson and Falkman, 2008), and biol-
ogy (Su et al., 2013). While many applications require the accommodation of continu-
ous variables (Delgado-Hernández et al., 2014; Morales-Nápoles and Steenbergen, 2015),
state-of-the-art methods for continuous or hybrid (combination of discrete and continuous)
Bayesian network inference are still underdeveloped. Algorithms have been developed to
conduct inference on hybrid Bayesian networks when a conditional Gaussian distribution
among the variables is assumed (Koller and Friedman, 2009). However, assuming the para-
metric form of the distribution is costly, which is why much research has been dedicated
to approximation by either discretizing Bayesian networks (Beuzen et al., 2018; Nojavan
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et al., 2017; Neil et al., 2007) or by approximating the distribution of the variables in the
Bayesian network with a linear combination of exponentials (Rumı́ and Salmerón, 2007) or
polynomials (Shenoy and West, 2011), which both allow inference. Nonetheless, the latter
two approaches pose computational challenges as the number of regression coefficients in
the functions grows linearly in the domain size of the discrete variables (Mori and Mahalec,
2016).

Discretization of the continuous variables enables the use of established discrete Bayesian
network inference methods. Variable elimination and belief propagation are well-developed
exact inference methods for discrete Bayesian networks that exploit the structure of the
Bayesian network to substantially reduce the computational burden. Nevertheless, even
with these effective algorithms, the computational cost increases exponentially as the num-
ber of parent nodes within the network grows. Therefore, researchers often employ ap-
proximate methods such as sampling or variational inference approaches for more complex
Bayesian networks. These methods are summarized by Koller and Friedman (2009).

While discretization allows the use of discrete Bayesian network inference algorithms,
it may lead to a loss of information, resulting in a lower accuracy of the inference query.
At the same time, the computational cost of inference depends heavily on the number and
positioning of bins that result from the discretization process. Or, as stated in (Koller and
Friedman, 2009), “discretization provides a trade-off between the accuracy of the approxi-
mation and cost of computation.”

To address the computational challenges of Bayesian network inference after discretiza-
tion, knowledge compilation (Darwiche and Marquis, 2002) can be used. In knowledge
compilation, information (such as the probability distribution given by a Bayesian network)
is translated without loss into a format that can be queried efficiently. One of the motiva-
tions behind knowledge compilation is that by first performing a potentially computationally
expensive ‘compilation’ step, which takes exponential time in the worst case, afterwards the
result of many queries (such as inference queries) can be computed quickly. Different formats
have been used for such encodings of Bayesian networks. Often, conjunctive normal form
(CNF) is used as either the final target format (Sang et al., 2004, 2005a,b) or as an interme-
diate step in translating the Bayesian network to some other format. In those cases where
CNF is not the final target format, the CNF formula is typically translated to a format where
computing the result of inference queries is easier, at the cost of a larger representation.
These representations include the decomposable negation normal form (DNNF) (Darwiche,
2002; Chavira and Darwiche, 2008), and decision diagrams (DDs) (Dal and Lucas, 2017;
Dal et al., 2018, 2021). Other representations, such as probabilistic decision graphs (PDGs),
have been shown to be no larger in their smallest form than the smallest junction tree for
the same distribution (Jaeger, 2004). We specifically consider the compilation of Bayesian
networks into (binary) decision diagrams (BDDs) (Bryant, 1986), as they have been shown
to perform well compared to other methods such as DNNF (Dal et al., 2021). Translating
Bayesian networks into decision diagrams has been done successfully for Bayesian networks
which are natural discrete (Dal and Lucas, 2017; Dal et al., 2018, 2021), but has not been
applied to Bayesian networks with discretized continuous variables until now.

In this paper, we study the trade-offs between the quality of the discretization/infer-
ence and the computational cost of both traditional and DD-based inference algorithms
following the methodology of Figure 1. This methodology is applied to sample data derived
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from causal as well as non-causal Bayesian networks, ranging in probabilistic relations, net-
work structure and sample size. To allow a different number and positioning of discretized
bins, we consider different types of discretization methods: two unsupervised approaches,
equal width (EW) and equal frequency (EF) binning, as well as the supervised minimum
description length principle (MDLP) binning method, class-attribute interdependence max-
imization (CAIM) discretization (Kurgan and Cios, 2004), ChiMerge (CM) discretization
(Kerber, 1992) and dynamic discretization (DDN) (Neil et al., 2007). Conditional probabil-
ity tables (CPTs) of discretized Bayesian networks are inferred via a maximum likelihood
estimation (MLE) as well as via a Bayesian method with adjusted empirical Bayes pri-
ors (EBP). Subsequently, we encode the discretized Bayesian networks as CNF formulas,
which are then compiled into BDDs. To assess the trade-off between the quality of dis-
cretization/inference and the cost of knowledge compilation, we use a concept known in
multi-objective optimization as the Pareto front to visualize the results of various con-
sidered approaches. A Pareto front represents the set of non-dominated solutions where
improving one objective would result in degrading another. The evaluation involves mea-
suring discretization quality in terms of the earth mover’s distance (EMD) and quantifying
knowledge compilation cost by considering the number of nodes in the BDD. Addition-
ally, for non-causal networks, we assess the quality of conditional queries (if ground truth
is available) using the weighted root mean squared error (WRMSE). For causal Bayesian
networks, such additional quality evaluation is done via the percentage error of the average
treatment effect (ATE), for which we introduce the do-operator in the subsequent section.

Hybrid
Bayesian
Network

Evaluation
Measures

Estimating
CPT’s

MLE, EBP

Discretization
EW, EV,

MDLP, CAIM,
CM, DDN

Traditional
Inference
Methods
VE, BP

Conversion
to CNF

Compiling DD

Weighted
Model Count-
ing Inference

Discretization
Quality
EMD

Inference
Quality

WRMSE, ATE

Inference
Costs

DD nodes

Figure 1: The implementation of the different tasks (highlighted in light gray) within the
methodology together with the evaluation measures (depicted in blue), applied to hybrid
Bayesian networks (indicated in white). The tasks implemented in Python comprise the
vast yellow block on the left and the vast orange block on the right consists of the tasks
implemented in C. The three selected measures of relevance are contrasted in terms of
Pareto dominance. This methodology is applied across a wide array of Bayesian networks.
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The main contributions of this work are:

• A technique to facilitate inference in hybrid Bayesian networks through discretization
and BDDs, including implementation.1

• A detailed insight into the trade-off between inference quality and inference cost for
a variety of hybrid Bayesian networks.

• Experimental evidence demonstrating the scalability advantage of BDDs compared to
traditional inference methods.

The paper is structured as follows. We start by introducing the preliminaries of Baye-
sian networks and inference in Section 2. We then continue with the encoding of Bayesian
networks to decision diagrams and discuss how the so-called weighted model counting ap-
proach can be used to compute inference queries in Section 3. In Section 4, we introduce
supervised and unsupervised discretization methods and elaborate on different methods for
inferring the conditional probability tables. The experimental setup is described in Sec-
tion 5. Section 5.1 discusses the measures used to express the quality of discretization, the
quality of inference and the computational cost of knowledge compilation with decision dia-
grams. After briefly introducing the different Bayesian networks in Section 5.2, some Pareto
fronts are highlighted, and all results are discussed in Section 5.3. Finally, we summarize
our work and propose future research directions in Sections 6 and 7.

2. Preliminaries

In this section, we introduce preliminaries and notation used throughout the paper.
The set of random variables is denoted by X = {X1, . . . ,Xn} where random variable Xi

takes values xi in corresponding state space ΩXi . A graph is denoted by G = (V,E) with
nodes V = {V1, . . . , Vn} and edges E ⊆ V × V . The graph is called directed when every edge
in the graph has a direction and it is called cyclic when there exists a directed path from a
node to itself. A directed and not cyclic graph is called a directed acyclic graph.

A Bayesian network (BN) represents random variables as the nodes of a directed acyclic
graph. The probabilistic dependencies of the random variables are represented by the edges
of such a graph. Let P (x1, . . . , xn) be the joint probability distribution of random variable
Xi corresponding to nodes Vi ∈ V in the directed acyclic graph G = (V,E). The joint
probability can be factorized according to the structure of the Bayesian network:

P (x1, . . . xn) =
n

∏
i=1

P (xi ∣ pai)

where pai represents the assignment of the random variables that correspond to parents of
Vi. Throughout this paper, we focus specifically on marginal inference, which is concerned
with the probability that a random variable Xn takes value xn when marginalizing other
variables out:

P (xn) =∑
x1

⋅ ⋅ ⋅ ∑
xn−1

P (x1, . . . xn) =∑
x1

⋅ ⋅ ⋅ ∑
xn−1

n

∏
i=1

P (xi ∣ pai).

1. The open-source implementation is available at https://github.com/sebastiaanbrand/bn-dd.
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Using a similar expression, conditional inference queries can be performed. These queries
compute the probability of a random variable assuming a specific value, given the observa-
tion of other random variables. In addition to observations, causal Bayesian networks dis-
tinguish themselves from non-causal Bayesian networks by their ability to facilitate causal
interventions within the graph, achieved through the utilization of the do-operator. There-
fore, the behaviour of the do-operator in the context of the Bayesian networks is also
assumed, leading to a truncated factorization of the distribution (Vonk et al., 2023):

P (x1, . . . xj−1, xj+1 . . . xn ∣ do(xj)) =∏
i≠j

P (xi ∣ pai). (1)

In case the conditional probability distributions resulting from the factorization are dis-
crete, they can be expressed in the form of conditional probability tables (CPTs). Methods
for estimating the CPTs from data are discussed in Section 4.

3. BDD Encoding and Inference

Binary decision diagrams (BDDs) (Bryant, 1986) are rooted directed acyclic graphs which
represent Boolean functions f ∶ {0,1}n → {0,1}, although by storing additional information
outside the DD they can also be used to represent pseudo-Boolean functions f ∶ {0,1}n → R.
Two important properties of BDDs are their ability to compactly represent many functions
by identifying redundancies, and their support for efficient operations (i.e. polynomial-time
in the size of the DD), such as computing marginal probabilities.

The joint probability distribution given by a BN is effectively a function of the form
f ∶ {0,1}n → R and can thus be encoded in a BDD. This is done by encoding each CPT

A B

(a) BN structure

P (A = 0) P (A = 1)
0.5 0.5

A P (B = 0∣A) P (B = 1∣A) P (B = 2∣A)
0 0.2 0.4 0.4
1 0.33 0.33 0.33

(b) Conditional probability tables

a0

ω0 ω0

b0 b0

b1b1 b1

ω1 ω2 ω3

1

(c) BDD

ωi val(ωi)
ω0 0.5
ω1 0.2
ω2 0.4
ω3 0.33
(d) ωi values

Figure 2: An example Bayesian network (a,b) and the corresponding BDD (c). The actual
probabilities corresponding to the Boolean variables ωi are stored separately (d). In the
BDD solid (dashed) edges correspond to positive (negative) assignments to the variables.
For ease of visualization, in (c), all arrows pointing to the 0 leaf have been omitted.
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entry in a small Boolean expression, from which a BDD can then be built using primitive
BDD operations for logical and (∧), or (∨), not (¬), etc. As an example, consider the BN
given in Figure 2(a)-2(b). To capture the (integer) values of A and B, Boolean variables
{a0, b0, b1} are introduced, while unique probabilities are related to Boolean variables ωi.
As an example of the encoding of specific CPT entry, P (B = 2 ∣ A = 0) = 0.4 is encoded
as (¬a0 ∧ b1 ∧ ¬b0) ⇒ ω2, where ¬a0 corresponds to A = 0 and b1 ∧ ¬b0 corresponds to
B = 2dec = 10bin. The relationship val(ω2) = 0.4 is stored outside of the BDD.

Computing marginal or conditional probabilities from a BDD that encodes a joint prob-
ability distribution can be done using so-called weighted model counting (Chavira and Dar-
wiche, 2008). During weighted model counting the DD is traversed, relevant probabilities
are gathered along the way, and each node is visited at most once, resulting in a computation
time linear in the size of the BDD.

4. Discretization and Parameter Learning Methods

The discretization process serves to partition the state space ΩXi of a continuous random
variable Xi into disjoint bins {Bj ∣ j = 1, . . . ,m} such that ⊍j Bj = ΩXi . Every bin Bj

is associated with a real number f(Bj) denoting the value of the interval. In real-world
applications, the state space of the random variable is unknown but is based on the sample
data. The value associated with each bin Bj corresponds to the sample mean of the samples
that are included in the bins, 1

∣Bj ∣ ∑xi∈Bj
xi, in which ∣Bj ∣ denotes the number of xi ∈ Bj .

The equal width (EW) discretization method partitions the state spaces ΩXi into bins
of equal width. The equal frequency (EF) discretization approach divides the samples into
quantiles. Both are unsupervised methods and require a parameter specifying the number
of bins into which the original state space should be partitioned.

In addition to these two unsupervised discretization methods, we use four supervised
discretization methods. First, we consider the entropy error-based approach, dynamic dis-
cretization (DDN) (Neil et al., 2007)2, specifically developed for Bayesian network inference.
Second, we employ minimum description length principle discretization (MDLP) (Fayyad
and Irani, 1993), which iterates through potential cut-points recursively to minimize infor-
mation entropy with respect to a chosen target variable. Third, we apply ChiMerge (CM)
(Kerber, 1992), a discretization technique that continuously merges fine intervals based
on the χ2 statistic. Fourth, we use class-attribute interdependence maximization (CAIM)
(Kurgan and Cios, 2004), which discretizes the continuous variables intending to maximize
interdependency with the target variable (Ching et al., 1995). The latter three supervised
discretization methods have been chosen because they performed well on a variety of dis-
cretization tasks (Garćıa et al., 2013).

Discretization of a continuous Bayesian network is followed by parameter learning, which
involves the estimation of the CPTs. In this paper, we consider the maximum likelihood
estimate (MLE) and the Bayesian method with adjusted empirical Bayes type 2 maximum
likelihood priors (EBP) (Ji et al., 2015; Good, 1980). In the latter, the prior is initially
estimated through MLE but refined by substituting 0 probability values with a minimal
value (0.0001). This adjusted prior is subsequently used to infer the posterior CPTs with the

2. We use the implementation available at https://github.com/PCiunkiewicz/dynamic-discretization,
adopting the parameter settings deemed most optimal by the implementator.
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data. While the maximum likelihood estimates are sufficient to conduct inference on non-
causal datasets, the causal datasets require the Bayesian approach to prevent any positivity
violations (Zhu et al., 2023). The differences in results between both methods are discussed
together with all the results of the experiments in the next section.

5. Experiments

We apply the methodology of Figure 1 to a variety of Bayesian networks. Section 5.1
introduces the measures used to evaluate the quality of the discretization or inference and
the measure used to assess the computational cost of inference with decision diagrams.
The different non-causal and causal Bayesian networks are specified in Section 5.2. Finally,
Section 5.3 presents the results together with a list of the key findings.

5.1. Evaluation Measures

We start by discussing different measures to assess the quality of discretization and inference
and continue with a measure to evaluate the computational cost.

5.1.1. Measuring the Quality of Discretization and Inference.

While f -divergences measure differences between probability distributions on the same mea-
surable space (Sason, 2018), they are unsuitable for comparing a discretized state space and
its continuous counterpart. Instead, we use the Wasserstein distance, specifically the Eu-
clidean first-moment Wasserstein distance or earth mover’s distance (EMD), to assess dis-
cretization quality as it is a common metric to compare (multivariate) distributions (Wang
et al., 2021; Rubner et al., 2000; Applegate et al., 2011). The earth mover’s distance quan-
tifies the dissimilarity between two probability distributions by measuring the minimum
“cost” to transform one distribution into the other. A high-quality discretization does not
necessarily imply that a query of interest can be computed accurately. Fortunately, since
the synthetic BNs in the experiments have specific distributions for which there exist exact
inference methods, we have access to the conditional inference queries. To evaluate infer-
ence quality, we compare the conditional expected value of the original Bayesian network
(E[Y ∣X]) to its discretized counterpart (Edisc[Y ∣X]) using the weighted root mean squared
error (WRMSE), where the weights adjust for the probability of the conditioned-on vari-
ables. For the causal Bayesian networks, the percentage error in the average treatment effect
(ATE) is being used, which is computed by means of interventional queries as in Equation
1. We refer the reader to Appendix C for a detailed description of these measures.

5.1.2. Measuring the Computational Cost of Inference.

As outlined in Section 3, inference using decision diagrams (DD) reduces to weighted model
counting, which takes time linear in the size of the DD. Therefore, the number of nodes
of the DD is considered to be a proxy for the computational cost of inference. Although
DDs can potentially grow exponentially in the size of the Bayesian network, they typically
remain smaller, enabling more scalable inference compared to traditional methods like vari-
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Dataset Kind Variants Samples
Network Parents4 Inference

Nodes Edges Max Mean Comparison

LG Synthetic 36 100-5000 5 4 2 0.8 WRMSE
NM Synthetic 8 100-500 2 1 1 0.5 WRMSE
CQ Synthetic 1 2500 3 3 2 1 ATE
Lalonde Real 1 2676 10 17 9 1.7 ATE
MC Synthetic 1 4000 12 15 6 1.25 ATE
Arth Real 1 1000 235 28 6 1.22 None

Table 1: Characteristics of the Bayesian networks.

able elimination (VE) or belief propagation (BP).3 Figure 1 details the methodology and
implementation languages used.

The reported inference time for DDs includes both compilation and weighted model
counting. The runtime of inference with traditional methods (dotted block on the left of
Figure 1) is compared to the runtime of inference with DDs (both dashed blocks on the right
of Figure 1). Since VE and BP are implemented in Python and weighted model counting
in C++, comparing their runtimes directly is inappropriate. Instead, scalability is assessed
by measuring the time speed-up (seconds) as the number of bins in the Bayesian network
increases. The results are presented in Section 5.3.

5.2. Bayesian Network Description

The specifications of the non-causal and causal Bayesian networks, that are subject to
experimentation, are introduced in this section. A summary of their characteristics can be
found in Table 1.

Linear Gaussian (LG) Bayesian network. Samples are drawn from a linear Gaus-
sian Bayesian network (Ostwal, 2020) with random variables A,B,C,D,E. In total, 36
experiments were conducted, varying in sample size (N) and distribution parameters. To
ensure a balanced experimental design, Sobol sequences were employed (Garud et al., 2017).
Detailed experimental specifications are provided in Tables 4 and 5 of Appendix B. The
computational cost in terms of the number of nodes in the DD is drawn against the WRMSE
and against the earth mover’s distance in Figure 4(a), 4(c) and Figure 4(b), respectively.

Normal mixture (NM) Bayesian network. Samples from a normal mixture Bayesian
network are drawn using a two-node Gaussian mixture model. In this network, A follows
a Bernoulli distribution and P (B∣A) is Gaussian, based on (Neil et al., 2007). Details on
sample sizes and distribution parameters are listed in Table 6 of Appendix B.

3. We used the Python implementation of pgmpy for VE and BP (Ankan and Panda, 2015).
4. The maximum and mean number of parents (also called maximum and mean in-degree) are proxies for

computational cost of inference.
5. The reported node and edge size pertain to the pruned Bayesian network.
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Causal quadratic (CQ) Bayesian network. Data is sampled from a quadratic data-
generating process (DGP). In this DGP, the confounder Z is distributed normally and has
a quadratic effect on outcome variable Y while also affecting treatment variable T . For the
full specifications of the distribution of the quadratic DGP (Parikh et al., 2022), the reader
is referred to Appendix B. The computational cost of inference has been set out against the
percentage error of the ATE in the Pareto front of Figure 4(d).

Lalonde causal Bayesian network. The Lalonde causal dataset is a real causal dataset
where the effect of temporary employment on income is studied (LaLonde, 1986) given
confounding variables. Since an observational (Dehejia and Wahba, 1999) as well as an
experimental dataset (LaLonde, 1986) is available, we can compare our non-parametric
estimates of the average treatment effect with the difference in means in the observational
and experimental datasets. The comparative analysis of computational cost of inference is
presented alongside the percentage error of the ATE in the Pareto front depicted in Figure
4(e).

Mixed Confounding (MC) Bayesian network. Samples are drawn from a mixed
confounding dataset, characterized by both continuous and discrete variables that influence
multiple variables in the graph in a non-linear way, as outlined in detail in the Csuite bench-
marking causal datasets (Geffner and et al., 2022). Figure 4(f ) draws the computational
cost of inference against the percentage error of the ATE within a Pareto front.

Arth Bayesian network This vast Bayesian network, sourced from the GeneNet package
and featured in bnlearn, consists of plant expression data (Opgen-Rhein and Strimmer,
2007). Due to the enormous size of the network and our practical resource constraint of
64GB RAM, we have compiled a computationally equivalent pruned version of the network
(Baker and Boult, 2013). Given the absence of a ground truth for conditional queries, the
network is solely assessed based on the earth mover’s distance.

5.3. Results

First, the speed-up scalability results are introduced. This is followed by some Pareto fronts
epitomizing the trade-off between computational cost and discretization/inference quality.
Finally, the key findings are presented.

5.3.1. Scalability of Decision Diagrams for Inference

In Figure 3, we have compared the speedup of Bayesian network inference via decision
diagrams to Bayesian network inference with variable elimination (VE) (Figure 3(a)) and
belief propagation (BP) (Figure 3(b)) for the Lalonde Bayesian network. The Lalonde
network has been chosen since it has the highest maximum in-degree, a proxy for the
computational cost of inference. The fact that inference with decision diagrams becomes
at least over 10 times faster than VE or BP as the number of bins increases underscores a
notable improvement in scalability (in fact, for BP this is true for over 5 bins).
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(a) BDD speedup versus VE (b) BDD speedup versus BP

Figure 3: The speedup plots for using decision diagrams as opposed to VE (3(a)) or BP
(3(b)) for inference for the Lalonde experiment. The red crosses refer to EF binning, the
blue circles represent the EW binning and the MDLP binning is indicated by a green square.
As the number of bins increases, using decision diagrams is more than 10 times as fast as
both VE and BP.

5.3.2. General Results

While all Pareto fronts are available at Zenodo6, a representative selection across all Baye-
sian networks and errors is highlighted in Figure 4. These Pareto fronts clearly demonstrate
that increasing the number of bins results in a reduction of the earth mover’s distance but
an increase in computational cost. Simultaneously, the WRMSE and the percentage error
of the ATE decrease as the number of bins rises, up to a certain number of bins.

To facilitate the interpretation of results across various experiments, the Pareto fronts
have been condensed into the heatmaps presented in Tables 2 and 3 of Appendix A. All the
experiments yield the following four key findings.

First, the solutions with the lowest earth mover’s distance to the original BN are the
most-binned solutions as can be observed in Figure 4(b). In general, we observe that
the earth mover’s distance decreases when the number of bins used to discretize the BN
increases, but the distance reduction becomes lower as the number of bins grows larger.

Second, the difference between inference results when estimating the CPTs with max-
imum likelihood estimate or the Bayesian method with adjusted empirical Bayes type 2
maximum likelihood priors is negligible. This similarity is evident from the plots in Figure
4(a) and 4(c), and supported by the data in Table 2 in Appendix A. Additional discrepancy
plots on Zenodo further illustrate this negligible difference.

Third, the WRMSE and the PE decrease when adding bins up to a certain number of
bins whereafter it increases again, indicating overfitting in data-sparse areas of the root
variable. The Pareto fronts of Figure 4(c), 4(d), 4(e) and 4(f ) show that the bending point
differs per experiment. Generally, more available samples or simpler BN structures lead to
the solution with the lowest error being often a more intensely-binned solution.

6. https://zenodo.org/record/11202314
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(a) WRMSE for the linear Gaussian exper-
iment 9 with CPT method MLE.

(b) Earth mover’s distance for the linear
Gaussian experiment 9

(c) WRMSE for the linear Gaussian exper-
iment 9 with CPT method EBP.

(d) Percentage error of the ATE for the
causal quadratic DGP

(e) Percentage error of the ATE for the
Lalonde dataset

(f ) Percentage error of the ATE for the
mixed confounding dataset

Figure 4: Number of nodes in the BDDs versus various evaluation measures for several
discretization approaches with different parameter settings, per dataset. Approaches rep-
resenting trade-offs between objectives (axes, both to be minimized) lie on the Pareto front
(dashed line).
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Finally, it can incidentally be observed that one of the supervised discretization methods
dominates the other solutions (Figure 4(f )). However, no supervised discretization method
performs exceptionally well across all experiments on the considered measures.

6. Discussion

This paper presented a method for performing inference on continuous Bayesian networks
using discretization and a computationally efficient knowledge compilation approach on
decision diagrams. Unlike previous evaluations of discretizing methods of BNs (Nojavan
et al., 2017; Beuzen et al., 2018), we applied many supervised and unsupervised discretiza-
tion methods to a diverse set of non-causal and causal BNs. Thereby, we have explored the
trade-off between the computational cost of inference and the quality of the discretization
in terms of distance and inference results

Our contribution is threefold. First, our research underscores the significant scalabil-
ity advantage of inference through knowledge compilation with decision diagrams, which
becomes over 10 times faster as the number of bins increases, compared to traditional
approaches. Second, not only do our findings confirm that increasing the number of bins re-
duces the earth mover’s distance, they also highlight that the required number of bins needed
to minimize errors in inference queries depends on the sample size and the complexity of
the BN structure. Lastly, we explore addressing positivity violations in Bayesian networks
by estimating CPTs with adjusted empirical Bayes priors, achieving results comparable
to those obtained through maximum likelihood estimation, thus extending applicability to
causal networks

We propose the following three avenues for future research: given the diverse origins of
the continuous BNs used in our studies (Geffner and et al., 2022; Scutari, 2010), there is
a pressing need for a standardized set of continuous BNs, complete with ground truths, to
serve as benchmarks across the research domain. Additionally, while our work has primarily
focused on BDDs, investigating the effects of discretization methods on other types of deci-
sion diagrams, such as Weighted Positive Binary Decision Diagrams (WPBDDs) and Affine
Algebraic Decision Diagrams (AADDs), could offer valuable insights. Finally, the proposed
methodology could be benchmarked against other known approximate inference methods
for continuous Bayesian networks, such as sampling methods or variational inference (Koller
and Friedman, 2009).

7. Conclusion

As demonstrated in this paper, discretizing continuous Bayesian networks does not nec-
essarily lead to the explosion of computational cost nor to an extreme loss of accuracy.
Therefore, we encourage researchers to carefully consider discretization as a viable option
before making parametric assumptions in the network.
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J. Wang, P. Wang, and P. Shafto. Efficient discretizations of optimal transport. arXiv
preprint arXiv:2102.07956, 2021.

A. Y. Zhu, N. Mitra, and J. Roy. Addressing positivity violations in causal effect estimation
using gaussian process priors. Statistics in Medicine, 42(1):33–51, 2023.

376



Balancing Cost and Accuracy in Inference of Continuous Bayesian Networks

Appendix A. Heatmap Results

Table 2: Heatmap summarizing all the non-causal results.

Error measure EMD WRMSE

CPT method NA EBP MLE EBP MLE

Binning method All EF EF EW EW

Experiment N

LG9 5000 EF30 EF17 EF17 EW12 EW12*
LG10 3000 EF30 EF17* EF17* EW10* EW10*
LG11 2000 EF30 EF12* EF12* EW8* EW8*
LG12 1000 EF30 EF12 EF12 EW8* EW8*
LG13 800 EF30 EF12 EF12 EW5* EW5*
LG14 600 EW30 EF8 EF8 EW8* EW8*
LG15 500 EW30 EF8 EF8 EW8* EW8*
LG16 400 EW30 EF8 EF8 EW5* EW5*
LG17 300 EW30 EF8 EF8 EW5* EW5*
LG18 200 EW30 EF5 EF5 EW5- EW5-
LG19 100 EW30 EF5 EF5 EW5- EW5-
LG101 100 EW30 EF5 EF5 EW8* EW8*
LG102 1050 EF30 EF12 EF12 EW8 EW8
LG103 1525 EF30 EF12 EF12 EW10* EW10*
LG104 575 EF30 EF5* EF5* EW5* EW5*
LG105 812 EF30 EF12 EF12 EW8* EW8*
LG106 1762 EF30 EF17 EF17 EW8* EW8*
LG107 1288 EF30 EF12 EF12 EW8* EW8*
LG108 338 EW30 EF8 EF8 EW5- EW5-
LG109 456 EW30 EF8 EF8 EW5* EW5*
LG110 1406 EF30 EF10 EF10 EW8- EW8-
LG111 1881 EF30 EF10* EF10* EW12* EW12*
LG112 931 EF30 EF10 EF10 EW5* EW5*
LG113 694 EW30 EF10 EF10 EW8* EW8*
LG114 1644 EW30 EF14 EF14 EW8- EW8-
LG115 1169 EF30 EF12 EF12 EW10* EW10*
LG116 219 EW30 EF5 EF5 EW5- EW5-
LG117 278 EW30 EF5 EF5 EW5- EW5-
LG118 1228 EF30 EF10 EF10 EW8* EW8*
LG119 1703 EF30 EF17 EF17 EW10* EW10*
LG120 753 EF30 EF12 EF12 EW8- EW8-
LG121 991 EF30 EF12* EF12* EW8* EW8*
LG122 1941 EF30 EF10 EF10 EW8* EW8*
LG123 1466 EF30 EF12 EF12 EW8* EW8*
LG124 516 EW30 EF10 EF10 EW5* EW5*
LG125 397 EW30 EF8 EF8 EW5* EW5*
NM1 500 EW30+ EF25+ EF25+ EW20+ EW20+
NM2 500 EF30+ EF30+ EF30+ EW30+ EW30+
NM3 500 EF30+ EF25+ EF25+ EW17+ EW17+
NM4 500 EF30+ EF30+ EF30+ EW25+ EW25+
NM5 100 EF30+ EF8+ EF8+ EW17+ EW17+
NM6 100 EF30+ EF30+ EF30+ EW25+ EW25+
NM7 100 EF30+ EF17+ EF17+ EW30+ EW30+
NM8 100 EF25+ EF25+ EF25+ EW30+ EW30+
Arth 1000 EW30
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Table 3: Heatmap summarizing the causal results: every box refers to a Pareto front
corresponding to discretization methods EF and EB, evaluation measure EMD, WRMSE
and PE ATE, and inferring CPT method MLE or EBP. The color indicates the number
of bins in the best approach for the corresponding experiment with respect to the chosen
evaluation measure: light blue stands for a small number of bins and dark blue means a
large number of bins. In the heatmap, a star indicates MDLP dominance over all solutions
for that binning strategy, a plus signifies CAIM dominance, a minus denotes ChiMerge
dominance and a tilde denotes dynamic discretization dominance.

Error measure EMD PE ATE

CPT method All EBP

Binning method – EF EW

Experiment N

CQ DGP 2500 EF30 EF30 EW25
Lalonde 2675 EF12 EF9* EW3*

MC 4000 EW30 EF4+ EW5+

As the computational cost becomes generally higher when the number of bins in the
discretization process increases, these heatmaps focus on the quality of discretization and
inference. For example, the discretization EF9 in Pareto front of Figure 4(e) dominates all
other EF discretizations in terms of the error. Therefore, EF9 returns in the heatmap of
Table 3 in the corresponding error and CPT inference method column.
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Appendix B. Experimental Set-up

The experimental setup outlines the specifications of each of the experiments in terms of
their distribution and sample size.

Table 4: The first 25 experiments involving linear Gaussian BNs parameterized by Sobol
sequences for the number of samples N and standard deviations. Each variable follows a
normal distribution N (µ,σ), with mean µ specified in the header and standard deviation
σ listed in the table.

Experiment N P (A) P (B) P (C) P (D ∣ A,B) P (E ∣ C,D)
µ = 20 µ = 20 µ = 15 µ = 2A + 3B µ = 3C + 3D

σ σ σ σ σ

LG101 100 1 1 1 1 1

LG102 1050 5.5 5.5 5.5 5.5 5.5

LG103 1525 3.25 3.25 3.25 3.25 3.25

LG104 575 7.75 7.75 7.75 7.75 7.75

LG105 813 4.38 4.38 4.38 4.38 4.38

LG106 1763 8.88 8.88 8.88 8.88 8.88

LG107 1288 2.13 2.13 2.13 2.13 2.13

LG108 338 6.63 6.63 6.63 6.63 6.63

LG109 456 3.81 3.81 3.81 3.81 3.81

LG110 1406 8.31 8.31 8.31 8.31 8.31

LG111 1881 1.56 1.56 1.56 1.56 1.56

LG112 931 6.06 6.06 6.06 6.06 6.06

LG113 694 2.69 2.69 2.69 2.69 2.69

LG114 1644 7.19 7.19 7.19 7.19 7.19

LG115 1169 4.94 4.94 4.94 4.94 4.94

LG116 219 9.44 9.44 9.44 9.44 9.44

LG117 278 5.22 5.22 5.22 5.22 5.22

LG118 1228 9.72 9.72 9.72 9.72 9.72

LG119 1703 2.97 2.97 2.97 2.97 2.97

LG120 754 7.47 7.47 7.47 7.47 7.47

LG121 991 1.84 1.84 1.84 1.84 1.84

LG122 1941 6.34 6.34 6.34 6.34 6.34

LG123 1466 4.09 4.09 4.09 4.09 4.09

LG124 516 8.59 8.59 8.59 8.59 8.59

LG125 397 2.41 2.41 2.41 2.41 2.41
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Table 5: Number of samples and parametrization of the experiments with the 11 extra
linear Gaussian Bayesian networks. These experiments are meant to isolate the effect of the
sample size on the Pareto front. Note that the samples in lower sample-sized experiments
are contained in the samples of experiments with higher sample sizes.

P (A) P (B) P (C) P (D ∣ A,B) P (E ∣ C,D)
N (20,2) N (20,2) N (15,2) N (2A + 3B,2) N (3C + 3D,2)

(a) Parametrization of all of the experiments
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(b) Name and sample size of experiments

Table 6: Number of samples and parametrization of the experiments with the Normal
mixture model

Experiment N P (A) P (B ∣ A = 1) P (B ∣ A = 0)

NM1 500 B(1, 12) N (21,10) N (25,1)
NM2 500 B(1, 45) N (21,10) N (25,1)
NM3 500 B(1, 12) N (6,2) N (4,2)
NM4 500 B(1, 45) N (6,2) N (4,2)
NM5 100 B(1, 12) N (21,10) N (25,1)
NM6 100 B(1, 45) N (21,10) N (25,1)
NM7 100 B(1, 12) N (6,2) N (4,2)
NM8 100 B(1, 45) N (6,2) N (4,2)

The following causal quadratic (CQ) linear experiment is adopted from (Parikh et al.,
2022):

Xi ∼ N (0,1)
Yi(0) = βTXi + ϵ0 where ϵ0 ∼ N (0,1)
Yi(1) = Yi(0)2 + αTXi + ϵ1 where ϵ1 ∼ N (0,1)
Ti = expit(1TXi))

A maximum number of 30 bins was allowed for all experiments except for the Lalonde
dataset (12 bins maximum).
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Appendix C. Evaluation Measures

We compare the conditional expected value of the target variable E[Y ∣X] with respect to
conditioning on one of the root nodesX of the original Bayesian network with its counterpart
on the discretized Bayesian network, denoted by Edisc[Y ∣ X]. In order to compensate for
the probability of the conditioned-on variable, we evaluate the accuracy of the discretized
conditional expected value by means of the weighted root mean squared error (WRMSE):

WRMSE =
√
∑
x

P (X = x)(E[Y ∣X = x] −Edisc[Y ∣X = x])2

where P (X = x) denotes the discretized probability that X takes value x. Note that the
number of values involved in WRMSE depends on the discretization of the root node X.

For the causal Bayesian networks in Section 5.2, we have access to the true average
treatment effect:

ATE = E[Y ∣ do(T = 1)] −E[Y ∣ do(T = 0)]
= EZ[E[Y ∣ T = 1, Z] −E[Y ∣ T = 0, Z]]

for confounding variables Z, treatment variable T and target variable Y . Therefore, we
consider the percentage error (PE) of the average treatment effect (ATE) as the object of
investigation:

PE = 100 × ∣ATEtrue +ATEdisc

ATEtrue
∣ .
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