
Proceedings of Machine Learning Research 246:515–527, 2024 Probabilistic Graphical Models (PGM)

Serving MPE Queries on Tensor Networks
by Computing Derivatives

Maurice Wenig maurice.wenig@uni-jena.de

Hanno Barschel hanno.barschel@uni-jena.de

Joachim Giesen joachim.giesen@uni-jena.de

Andreas Goral andreas.goral@uni-jena.de

Mark Blacher mark.blacher@uni-jena.de

Friedrich-Schiller-Universität Jena, Germany

Editors: J.H.P. Kwisthout & S. Renooij

Abstract

Recently, tensor networks have been proposed as a data structure for weighted model
counting. Computing a weighted model count is thus reduced to contracting a factorized
tensor expression. Inference queries on graphical models, especially PoE (probability of
evidence) queries, can be expressed directly as weighted model counting problems. Max-
imization problems can also be addressed on the same data structure, only the standard
sum-product semiring has to be replaced by either the tropical (max-sum) or the Viterbi
(max-product) semiring in the computations, that is, the tensor contractions. However,
tensor contractions only provide maximal values, but MPE (most probable explanation)
queries on graphical models do not ask for the maximal value, but for a state, or even the
states, at which the maximal value is attained. In the special case of tropical tensor net-
works for ground states of spin glasses, it has been observed that the ground state can be
obtained by computing a derivative of the tensor network over the tropical semiring. Here,
we generalize this observation, provide a generic algorithm for computing the derivatives,
and prove its correctness.

Keywords: Graphical Models; Tensor Networks; Most Probable Explanation (MPE);
Maximum Probability States; Tensor Derivatives.

1. Introduction

Standard inference queries on graphical models, that is, Bayesian networks or more general
Markov random fields, include probability of evidence (PoE) and most probable explanation
(MPE) queries (Darwiche, 2003). PoE queries can be formulated as weighted model counting
problems (Chavira and Darwiche, 2008). Many state-of-the-art weighted model counting
solvers, such as D4 by Lagniez and Marquis (2017) and MiniC2D by Oztok and Darwiche
(2018), follow the knowledge compilation approach (Darwiche and Marquis, 2002) that
translates any given problem instance, for example, a Bayesian network, into an arithmetic
circuit on which inference queries can be served. Recently, tensor-network-based algorithms
for weighted model counting have been shown to contribute to the state of the art by
improving the virtual best solver on benchmark data sets (Dudek et al., 2019; Dudek and
Vardi, 2020). However, weighted model counting only directly works for PoE queries. MPE
queries can be served on arithmetic circuits by replacing sum nodes with max nodes, but
require an additional downward pass on the circuit for collecting the maximizing states.

© 2024 M. Wenig, H. Barschel, J. Giesen, A. Goral & M. Blacher.



Wenig Barschel Giesen Goral Blacher

The two-pass approach for serving MPE queries has also been used by Darwiche (2003)
for computing partial derivatives of maximizer circuits with respect to parameters and
variables, which already shows a connection between serving MPE queries and computing
derivatives. In tensor networks, PoE queries can be served with two contractions (one
for each marginalized probability), but there is no known way of serving MPE queries,
because replacing sums with maximizations, as it is done in arithmetic circuits, only yields
the maximum probability, and not a maximizing state. However, Liu et al. (2021) have
observed, in the special case of tropical tensor networks for ground states of spin glasses,
that a maximizing state can be obtained by just differentiating the tensor expression which
maximizes the probability. In this paper, we generalize this observation and make it rigorous
by providing a proof. We also provide a proof-of-concept implementation of our approach
at https://github.com/ti2-group/tensor_mpe.

2. Tensor Networks

So far, there is no established standard notation for tensors and tensor expressions. There-
fore, we briefly introduce the notation that we are going to use in the following. Tensors are
a generalization of vectors and matrices and can essentially be treated as multi-dimensional
arrays. Let [d] denote the discrete set {1, . . . , d}. Then, formally, a tensor with n axes is
a function T :×n

i=1[di] → R on a discrete domain to a set of entries, where di ∈ N are
arbitrary axis sizes. We use Tijk to indicate the entry T (i, j, k) and call i, j, and k indices
instead of function arguments. Here, we do not require R to be a field, but only that it is a
commutative semiring. This allows us to use operations such as the maximum, which can
not be an operation of a field because it has no inverse elements. In the following, we only
consider tensors with real entries. Therefore, we will only write R instead of R from now
on.

For example, a tensor with two axes [m] and [n] is a matrix M ∈ Rm×n, because it can
also be seen as a function M : [m]×[n]→ R. We can also have tensors T : [m]×[n]×[o]→ R
with more than two axes. The number of axes is called the order of the tensor. With this,
a vector is a tensor of order one, a matrix is a tensor of order two, and a batch of matrices
is a tensor of order three. A visualization of this is given in Figure 1.

1 7

4 5
i

j

(a) Matrix, with M12 = 7.

2 1

0 43 9

8 01 7

4 5

i

j

k

(b) Tensor, with T123 = 1.

Figure 1: Axes of a matrix and axes of a third-order tensor.

We can combine multiple tensors with arithmetic operations, similar to how two matrices
can be multiplied, in a tensor network.

516

https://github.com/ti2-group/tensor_mpe


Serving MPE Queries on Tensor Networks

Definition 1 A tensor network with axis sizes d1, . . . , dn ∈ N is a set of tuples

T := {(T (i), S(i)) | i ∈ [m]}

with m ∈ N, where each tuple consists of a tensor and an associated set of axes, i.e.
S(i) ⊆ [n] and T (i) :×j∈S(i) [dj ]→ R.

Tensor networks are a very natural representation of graphical models. Actually, Robeva
and Seigal (2017) have shown a duality between graphical models and tensor networks. The
difference is that instead of functions over shared variables, tensor networks use tensors over
shared axes, and instead of different values of a variable, tensor networks use indices along
an axis. Next, we define how to operate on a tensor network. For this, we first need some
notation.

Definition 2 (Multi-Index) A multi-index of length n is a tuple of n indices.

Multi-indices are a useful notion because it is often easier to treat the multiple indices,
which are used to access tensor entries, as a single object. An example of that can be found
in the following definition.

Definition 3 (Projections) Let x be some multi-index of length n, and let S := {s1 <
. . . < sm} ⊆ [n] for some m ≤ n. Then the projection of x onto S is a multi-index of length
m, denoted as x : S with

(x : S)i := xsi .

Definition 4 (Domain of a Tensor Network) Let T be a tensor network with axis
sizes d1, . . . , dn. Then the domain of T is the set of all possible indices dom(T) :=×n

i=1[di].
We also define the domain for a subset of axes I ⊆ [n] as dom(T)|I :=×i∈I [di], and the
domain where we fix a subset of axes I ⊆ [n] to indices xI as dom(T)|I=xI := {x ∈ dom(T) |
x : I = xI}.

Note that dom(T)|I contains all combinations of indices for the axes in I and consists of
multi-indices of length |I| ≤ n, whereas dom(T)|I=xI contains all combinations of indices
for the axes not in I and consists of multi-indices of full length n because they still include
the fixed indices xI .

The operation naturally associated with tensor networks is called contraction. It consists
of two elementary operations, namely, an aggregation ⊕ and a combination �. These
operations only need to define a commutative semiring on R. In the standard sum-product
semiring R, which is actually more than just a commutative semiring, namely, a field, we
have ⊕ = + and � = ·.

Definition 5 (Tensor Contraction) We define the complete contraction of a tensor net-
work T as

κ(T) :=
⊕

x∈dom(T)

⊙
(T,S)∈T

Tx:S .

Note that we aggregate over all axes for the complete contraction, which results in a scalar.
There is also a more general contraction that does not always aggregate over all axes, but
since we are not using it in the following, we leave it out for simplicity. Conceptually, it is
helpful to also consider the combination of the tensors without the aggregation.

517



Wenig Barschel Giesen Goral Blacher

Definition 6 (Tensor Combination) We define the combination of a tensor network T
as an n-th order tensor π(T) with

π(T)x :=
⊙

(T,S)∈T

Tx:S

for x ∈ dom(T).

We can use the commutative semiring operations to split up the aggregation in the
complete contraction of a tensor network into multiple smaller contractions with tensors as
intermediate results. For example, in a matrix chain multiplication Mil = Aij · Bjk · Ckl,
which is a special case of tensor network, we avoid computing the tensor combination Xijkl

before contracting over j and k, by first computing Yik = Aij ·Bjk as an intermediate result
and then Mil = Yik ·Ckl. Alternatively, we could have first computed Zjl = Bjk ·Ckl as an in-
termediate results and then Mil = Aij ·Zjl. We call the choice of arranging the intermediate
computations a contraction path. The choice of contraction path can make an exponential
difference in performance (Gray and Kourtis, 2021). Finding an optimal contraction path
for an arbitrarily connected tensor network is, however, an NP-hard problem (Lam et al.,
1997). Still, in practice, with a good choice of contraction path, we can often efficiently
marginalize and maximize in tensor networks, by using addition and maximization respec-
tively as an aggregation operation.

For conditioning, we need another operation, namely, slicing. A slice of a tensor network
considers only a subset of the full domain, where some axes have been set to fixed indices.

Definition 7 (Slicing) Let T be a tensor network with axis sizes d1, . . . , dn. Let I ⊆ [n]
and xI ∈ dom(T)I , then we denote the slice of T where the axes I have been set to the
indices xI as T|I=xI with

dom(T|I=xI ) := dom(T)|I=xI .

Because of the different domain, the operations on the sliced tensor network are different
from the same operations on the unsliced tensor network. The contraction κ(T|I=xI ) no

longer aggregates over the axes in I, and π(T|I=xI ) is an (n− |I|)-th order tensor with

π(T|I=xI )x−I = π(T)xIx−I

for xI ∈ dom(T)|I and x−I ∈ dom(T)|[n]\I . We use xIx−I to denote a complete multi-index

of length n with the indices from xI and x−I at the appropriate positions in the multi-index.
In practice, the contraction of a sliced tensor network is implemented as a contraction

over slices of the contained tensors. These tensor slices can be interpreted as lower-order
tensors themselves, and therefore the contraction over these slices is faster than over the
full-order tensors.

3. Graphical Models as Tensor Networks

Tensor networks provide a natural representation of graphical models (Markov random
fields). The operations of tensor contraction and tensor slicing naturally facilitate inference
queries. We consider a graphical model with n variables. Let [d1], . . . , [dn] be the domains of

518



Serving MPE Queries on Tensor Networks

the variables, let C ⊆ 2[n] be the set of the factors of the graphical model, let XC :=×c∈C [dc]
be the domain of the variables in C ∈ C, and let φC : XC → R≥0 be the interaction
parameters for the factor C ∈ C such that

p(x) = exp

(∑
C∈C

φC(x)− Z

)

for x ∈ X[n], where Z is the log-normalization constant. To put them into the context of

tensor networks, we view the interaction parameters as |C|-th order tensors T (C) such that

T (C)
x := φC(x)

for x ∈ XC . Then, the graphical model is represented by the tensor network T :=
{(T (C), C) | C ∈ C}, and we can compute the (unnormalized) probability of the maximum
probability state x̂ with a contraction of this tensor network over the tropical semiring with
the semiring operations ⊕ = max and � = + as

log p(x̂) = κ(T).

We can even condition on variables with the use of slicing,

log p(x̂|I = xI) = κ
(
T|I=xI

)
.

Our goal, however, is to compute the index x̂, that is, a probability maximizing state. In
the following, we show how this can be accomplished by computing the derivative of this
tensor contraction over the tropical semiring.

4. Tensor Derivatives

In this section, we use I, J , and K instead of xI , xJ , and xK to denote multi-indices, to
avoid confusion between tensor indices and function arguments, and to be more aligned
with the notation of multivariable calculus.

For derivatives of operations on tensor networks, we use the standard notion of the
Jacobian matrix, extended to the domain of tensors. It is helpful to view a tensor as a high-
dimensional container for scalars, similar to a vector. Then the concepts already known
from multivariable calculus can easily be transferred to tensors and serve as a useful tool to
deal with functions that transform tensors into other tensors, such as the tensor combination
in Definition 6.

Definition 8 (Jacobian Tensor) Let f be a function that maps an n-th order tensor V
with axis sizes v1, . . . , vn to an m-th order tensor U = f(V ) with axis sizes u1, . . . , um. Then
the Jacobian tensor dU

dV is an (m + n)-th order tensor with axis sizes u1, . . . , um, v1, . . . , vn
with (

dU

dV

)
IJ

:=
dUI
d VJ

=
d f(V )I
d VJ

for I ∈ dom(U) and J ∈ dom(V ). We use IJ := (i1, . . . , im, j1, . . . , jn) to denote the
concatenation of the multi-indices I = (i1, . . . , im) and J = (j1, . . . , jn).

519



Wenig Barschel Giesen Goral Blacher

Because we can represent the contraction as a composite function of combination and ag-
gregation, we can compute the derivative of the contraction by the chain rule.

Observation 1 (Chain Rule for Tensors) Let g be a function that maps a tensor W to
a tensor V = g(W ) and let f be a function that maps V to a tensor U = f(V ) = f(g(W )).
Then, for I ∈ dom(U) and K ∈ dom(W ),(
dU

dW

)
IK

=
∑

J∈dom(V )

(
dU

dV

)
IJ

(
d V

dW

)
JK

=
∑

J∈dom(g(W ))

(
d f(g(W ))

d g(W )

)
IJ

(
d g(W )

dW

)
JK

.

Let us start by defining the derivative of the aggregation operation (⊕ = max) over
the tropical semiring. The max operator is not differentiable at the standard definition
of differentiability in every point. It is non-differentiable when both inputs are equal.
Therefore, we extend the definition of a derivative for the maximum operation.

Definition 9 (Extended Derivative of the Bivariate Maximum) Let a, b ∈ R. Then
we define the extended derivative of the maximum as

d max(a, b)

d a
:= 1 [a ≥ b] , d max(a, b)

d b
:= 1 [b ≥ a] .

This sets the extended derivative at the point of non-differentiability, a = b, to 1 ∈ R for
both the derivative with respect to a and with respect to b. The reasoning behind this
choice is, that we want to use the derivative with respect to an input as a measure of how
much this input contributes to the output, and in the case where a = b, both a and b
contribute equally to the output.

The extended derivative of the bivariate maximum function can be generalized to an
extended derivative of a maximum over any number of inputs. In the following lemma, we
maximize over outputs of a function f(x) instead of elements of a set x ∈M , to clarify that
there can be multiple inputs x1 6= x2 with the same value f(x1) = f(x2).

Lemma 10 (Extended Derivative of the Maximum) Let f : M → R and let ŷ :=
max
x∈M

f(x). Then for x ∈M the extended derivative of the maximum at f(x) is given as

d ŷ

d f(x)
= 1 [f(x) = ŷ] .

Proof Let M := {x1, . . . , xm}, let yi := f(xi) and let zi := max(yi,max(yi+1,max(. . . )))
for i ∈ [m]. Then ŷ = z1 and with the chain rule we get the following factorization,

d ŷ

d yi
=

d z1
d z2
· · · d zi−1

d zi

d zi
d yi

= 1 [y1 ≤ z2] · . . . · 1 [yi−1 ≤ zi] · 1 [yi ≥ zi+1] .

At least one factor in this factorization is zero if, and only if yi is not the maximum value.
If ŷ = yi, then z1 = z2 = . . . = zi = ŷ and yi ≥ zi+1, therefore d ŷ

d yi
= 1. Otherwise, if ŷ 6= yi,

then let k be the greatest index such that yk > yi. If

(a) k > i, then yi < zi+1, and thus 1 [yi ≥ zi+1] evaluates to zero,

520



Serving MPE Queries on Tensor Networks

(b) k < i, then yk > zk+1 by the definition of k, and thus 1 [yk ≤ zk+1] evaluates to zero.

Therefore, if ŷ 6= yi, then d ŷ
d yi

= 0.

With the derivative extension of the maximum, we can work out the derivative of the
aggregation operation over the tropical semiring that is used in tensor contractions.

Lemma 11 (Jacobian Tensor of Aggregations) Let C be an n-th order tensor with a
unique maximum entry. Let A := max

I∈dom(C)
CI , then dA

dC is a tensor with only one non-zero

entry, (
dA

dC

)
I

= 1

[
I = argmax

J∈dom(C)
CJ

]
for I ∈ dom(C).

Proof Because the maximum entry of C is unique, this follows immediately from the def-
inition of the Jacobian tensor (Definition 8) and the extended derivative of the maximum
(Lemma 10).

In practice, we can not assume that the maximum is unique, but we can adapt the
definition of the extended derivative to also cover this case. We discuss this in detail in
Section 5.3.

With the derivative of the aggregation done, let us now consider the derivative of the
tensor combination over the tropical semiring with combination operation � = +.

Lemma 12 (Jacobian Tensor of Combinations) Let T be a tensor network with n
axes, and let (T, S) ∈ T be a tensor in the tensor network, with its corresponding set of
axes, that has order m := |S|. Then, over the tropical semiring, the derivative of the
combination π(T) with respect to a tensor T is an (n+m)-order tensor that has only zero-

entries, except for one non-zero entry
(
d π(T)
d T

)
IJ

= 1 where TJ contributes to the sum that

computes the scalar value π(T)I :(
d π(T)

d T

)
IJ

= 1 [I : S = J ]

for I ∈ dom(T) and J ∈ dom(T ).

Proof The combination π(T)I over the tropical semiring is a sum over the tensor entries
at the corresponding indices in I. Because TJ has no influence on the summands from the
other tensors, their derivative with respect to TJ is zero, that is,(

d π(T)

d T

)
IJ

=
d

d TJ

∑
(T ′,S′)∈T

T ′I:S′ =
d

d TJ
TI:S = 1 [I : S = J ] .

Now, we can combine the derivative of the aggregation operation and the derivative
of the combination operation into the derivative of the complete contraction by using the
chain rule and additional vectors in the original tensor network.

521



Wenig Barschel Giesen Goral Blacher

Theorem 13 (Differentiation with Respect to an Axis) Let T be a tensor network
with axis sizes d1, . . . , dn such that the combination π(T) over the tropical semiring has a
unique non-zero maximal entry. For i ∈ [n], let T̃ (i) := 0di be a zero-vector of size di. Let
T̃ := T∪ {(T̃ (i), {i}) | i ∈ [n]} be the original tensor network augmented by the vectors T̃ (i).
Then, we have over the tropical semiring that

1. κ(T̃) = κ(T), and

2. for all i ∈ [n], the Jacobian tensor d κ(T̃)
d T̃ (i) is a vector of size di with only one non-zero

entry at the index x̂i, where x̂ := argmax
I∈dom(T)

π(T)I .

Proof 1. We assume that all axes of the tensor network are used by at least one of its
tensors. If this is not the case, axes that are not used can be removed. With this, the
addition of {(T̃ (i), {i}) | i ∈ [n]} does not introduce any new axes. Therefore π(T̃) has the
same shape as π(T). Furthermore, because 0 ∈ R is the neutral element of the addition in
R, which is the combination operation � = + in the tropical semiring, we have π(T̃) = π(T)
and therefore κ(T̃) = κ(T).

2. It follows that, for all i ∈ [n] and k ∈ [di],(
d κ(T̃)

d T̃ (i)

)
k

=
∑

J∈dom(T̃)

(
d κ(T̃)

d π(T̃)

)
J

(
d π(T̃)

d T̃ (i)

)
Jk

chain rule

=
∑

J∈dom(T)

(
d κ(T)

d π(T)

)
J

(
d π(T̃)

d T̃ (i)

)
Jk

1.

=
∑

J∈dom(T)

(
d κ(T)

d π(T)

)
J

1 [J : {i} = k] . combination

Because of Lemma 11, the derivative of the aggregation by the combination d κ(T)
d π(T)J evaluates

to one if J is the argmax of π(T) and zero otherwise. Since x̂ = argmax
I∈dom(T)

π(T)I by definition,

it follows that, for all k ∈ [di],(
d κ(T̃)

d T̃ (i)

)
k

=
∑

J∈dom(T)

(
d κ(T)

d π(T)

)
J

1 [J : {i} = k]

=
∑

J∈dom(T)

1 [J = x̂]1 [J : {i} = k]

= 1 [x̂i = k] ,

which means that d κ(T̃)
d T̃ (i) has only one non-zero entry at the index x̂i.

522



Serving MPE Queries on Tensor Networks

5. The Algorithm

Theorem 13 suggests an algorithm for serving MPE queries on graphical models that is
represented by a tensor network over the tropical semiring. First, construct the augmented
tensor network T̃ by adding the zero-vectors T̃ (i) to the tensor network T that represents
the graphical model. Then, compute the derivative of the κ(T̃), which computes the max-
imum log probability value, with respect to the i-th axis, that is, compute d κ(T̃)/d T̃ (i).
The single non-zero entry in the derivative gives the i-th index in the multi-index that
represents the argmax. In practice, the derivatives can be computed by automatic differen-
tiation (Griewank and Walther, 2008) of the contraction κ(T̃).

5.1. Link to the Log Partition Function

With a contraction over the standard sum-product semiring, we can compute the log par-
tition function. That is, by switching the semiring from the sum-product semiring to the
tropical semiring, we switch from computing the log normalizing constant to computing the
maximum probability value of any state. The contraction κ(T̃) can thus be computed by
replacing the sum operations in the log partition function with max operations, that is,

log
∑
x∈X

∏
C∈C

exp (φC(x))︸ ︷︷ ︸
Z

switch semiring−→ log max
x∈X

∏
C∈C

exp (φC(x))

= max
x∈X

∑
C∈C

φC(x)︸ ︷︷ ︸
κ(T)

.

A well-known observation is that computing the derivative of the log partition function
over the standard semiring gives the expected value of the sufficient statistics (φc)C∈C . That
is, we have a correspondence between the derivatives of the log partition function over the
standard sum-product and over the tropical semiring, which is illustrated in Figure 2.

standard (+, ·)
semiring

expected value of
sufficient statistics

tropical (max,+)
semiring

max probability
state

switch semiring

d
erivativ

es

d
eriva

tiv
es

Figure 2: What the derivatives of the log partition function yield in different semirings.

523



Wenig Barschel Giesen Goral Blacher

5.2. Computational Complexity

Computing the log partition function over either semiring needs the same number of semiring
operations, that is, the complexity is asymptotically the same if we assume that all semiring
operations can be computed in constant time. Computing the derivatives of the log partition
function over either semiring can be accomplished by reverse-mode automatic differentiation
within a constant factor in the time needed to compute the contraction κ(T̃) itself (Griewank
and Walther, 2008, Sections 4.5).

For the memory overhead of computing the derivative of the contraction over the tropical
semiring, we have to consider that the complete contraction, performed along a contrac-
tion path, is transformed into a series of tropical batch-matrix-multiplications. The mem-
ory overhead for the derivatives of the contraction path is then composed of the memory
overhead for the derivatives of these batch-matrix-multiplications. Consider the following
batch-matrix-multiplication:

Csij = max
k

(Asik +Bskj) .

To see how much memory we need to compute the derivative of this batch-matrix-multipli-
cation, let k̂sij be the index at which Csij = Asik̂sij +Bsjk̂sij is maximized, then the derivative

is given as the following sixth-order tensor(
dC

dA

)
sijs′i′k

=
dCsij
dAs′i′k

= 1

[
s = s′ ∧ i = i′ ∧ k = k̂sij

]
,

because the entry As′i′k can only contribute to Csik, if it is used in the maximization which
defines Csik, which means that s′ = s and i′ = i. Furthermore, the specific entry Asik
is only used if k is the maximizing index. This means that we only have to store k̂sij
for every s, i, and j. This requires the same memory as is needed for storing C itself.
Therefore, the extra memory needed for computing the derivative is almost the same as
the memory needed for computing the maximum value itself. The key differences between
the computation of the maximal value itself and the computation of the derivative, that
affect the memory requirements, are the stored data types, namely floating point numbers
for computing the maximum value and integers for computing the maximum state, and
that when computing the maximal value we can deallocate intermediate tensors that are no
longer needed. The latter should not amount to large differences, because good contraction
paths usually have only a small number of large intermediate tensors. However, if memory
is a limiting constraint, then we can trade the memory for runtime by using checkpointing
in automatic differentiation (Griewank and Walther, 2000).

5.3. Multiple Maxima

In practice, we can not assume that there is only one maximum probability state. This leads
to the problem that the derivative of the aggregation might have more than one non-zero
entry. Therefore the derivative of the contraction might have multiple non-zero entries as
well. This can however easily be dealt with, by defining an alternative extended derivative
of the maximum function, which guarantees the existence of exactly one non-zero entry in
the Jacobian tensor of an aggregation, even if the maximum is not unique. One possible

524



Serving MPE Queries on Tensor Networks

strategy to achieve this is to always choose the smallest maximizing index as the unique
non-zero entry and to set the extended derivative at all the other maximizing indices to
zero. Note that this strategy does not necessarily compute the same maximizing state for
different contraction paths, because the computed maximizing state now depends on the
order in which the axes have been aggregated. For example, consider a graphical model
over two variables with maximum probability states a = (1, 2) and b = (2, 1). In this case,
with forward mode automatic differentiation, if the first axis is aggregated first, then a will
be computed, otherwise b will be computed.

5.4. Implementation

We have implemented the algorithm for serving MPE queries on tensor networks as a proof
of concept using PyTorch (Ansel et al., 2024) and its autograd features. For this, we
implemented our own autograd function for a batch-matrix-multiplication over the tropical
semiring. To test the practical validity of the approach, we used our implementation on
randomly generated graphical models in the form of tensor trains (see Figure 3). The
corresponding runtimes of the implementation on these tensor trains are shown in Figure 4.

T (1) T (2) T (3) T (4)
x1 x2 x3

x4 x5 x6 x7

Figure 3: A tensor train graphical model with four factors.

Our proof of concept implementation is available in our repository at https://github.
com/ti2-group/tensor_mpe. The implementations can be improved by using better con-
traction paths, harnessing the parallel processing power of graphical processing units (GPUs)
for batch-matrix-multiplications over the tropical semiring, or by avoiding contracting over
all elements by using a conditional variant of slicing that mimics branch-and-bound algo-
rithms.

6. Conclusion

For tensor network representations of graphical models, we have explored the connection be-
tween derivatives of tensor network contractions over the tropical semiring and MPE (most
probable explanation) states, that is, states of maximum probability. The connection, which
is in the spirit of Darwiche’s differential approach to inference in Bayesian networks, is rem-
iniscent of the connection of derivatives of a graphical model’s log partition function over
the standard sum-product semiring and the expected value of its sufficient statistics. Over
the tropical semiring, the connection directly leads to an algorithm for serving MPE queries
on graphical models that are represented by tensor networks. The algorithm uses reverse-
mode automatic differentiation to compute the derivatives of a complete tensor network
contraction over the tropical semiring. By standard results from automatic differentiation,
the time complexity of the algorithm is asymptotically the same as the corresponding com-

525

https://github.com/ti2-group/tensor_mpe
https://github.com/ti2-group/tensor_mpe


Wenig Barschel Giesen Goral Blacher

Figure 4: Runtimes of the implementation of our approach on tensor trains with 64 possible
values for each variable, varying total number of variables, and varying number of condi-
tional variables. The model was evaluated on three different queries for each configuration
of total and conditional variables, and the median times are connected by lines. Each query
was run ten times.

plexity for computing the log partition function with a tensor network contraction. The
space complexity, however, depends on the size of the largest intermediate tensor and thus
can be larger than the corresponding complexity for computing the log partition function.

Acknowledgments

This work was supported by the Carl Zeiss Stiftung within the project “Interactive Infer-
ence”.

References

J. Ansel, E. Z. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell,
D. Berard, E. Burovski, G. Chauhan, A. Chourdia, W. Constable, A. Desmaison, Z. De-
Vito, E. Ellison, W. Feng, J. Gong, M. Gschwind, B. Hirsh, S. Huang, K. Kalambarkar,
L. Kirsch, M. Lazos, M. Lezcano, Y. Liang, J. Liang, Y. Lu, C. K. Luk, B. Maher, Y. Pan,
C. Puhrsch, M. Reso, M. Saroufim, M. Y. Siraichi, H. Suk, S. Zhang, M. Suo, P. Tillet,
X. Zhao, E. Wang, K. Zhou, R. Zou, X. Wang, A. Mathews, W. Wen, G. Chanan, P. Wu,
and S. Chintala. Pytorch 2: Faster machine learning through dynamic python bytecode
transformation and graph compilation. In Proceedings of the ACM International Confer-

526



Serving MPE Queries on Tensor Networks

ence on Architectural Support for Programming Languages and Operating Systems, pages
929–947, 2024.

M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7):772–799, 2008.

A. Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM, 50(3):280–305, May 2003. ISSN 1557-735X. doi: 10.1145/765568.765570.

A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelli-
gence Research, 17:229–264, Sept. 2002. ISSN 1076-9757.

J. M. Dudek and M. Y. Vardi. Parallel weighted model counting with tensor networks.
CoRR, abs/2006.15512, 2020. URL https://arxiv.org/abs/2006.15512.

J. M. Dudek, L. Dueñas-Osorio, and M. Y. Vardi. Efficient contraction of large ten-
sor networks for weighted model counting through graph decompositions. CoRR,
abs/1908.04381, 2019. URL http://arxiv.org/abs/1908.04381.

J. Gray and S. Kourtis. Hyper-optimized tensor network contraction. Quantum, 5:410,
2021.

A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of checkpointing
for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software, 26(1):19–45, Mar. 2000. ISSN 1557-7295. doi: 10.1145/347837.
347846.

A. Griewank and A. Walther. Evaluating derivatives. SIAM, Philadelphia, 2. ed. edition,
2008. ISBN 9780898716597. Includes bibliographical references and index.

J. Lagniez and P. Marquis. An Improved Decision-DNNF Compiler. In Proceedings of the
Joint Conference on Artificial Intelligence (IJCAI), pages 667–673, 2017.

C. Lam, P. Sadayappan, and R. Wenger. On Optimizing a Class of Multi-Dimensional
Loops with Reductions for Parallel Execution. Parallel Processing Letters, 7(2):157–168,
1997.

J.-G. Liu, L. Wang, and P. Zhang. Tropical tensor network for ground states of spin
glasses. Physical Review Letters, 126(9):090506, Mar. 2021. ISSN 1079-7114. doi: 10.
1103/physrevlett.126.090506.

U. Oztok and A. Darwiche. An Exhaustive DPLL Algorithm for Model Counting. Journal
of Artificial Intelligence Research, 62:1–32, 2018.

E. Robeva and A. Seigal. Duality of graphical models and tensor networks. CoRR,
abs/1710.01437, 2017. URL http://arxiv.org/abs/1710.01437.

527

https://arxiv.org/abs/2006.15512
http://arxiv.org/abs/1908.04381
http://arxiv.org/abs/1710.01437

	Introduction
	Tensor Networks
	Graphical Models as Tensor Networks
	Tensor Derivatives
	The Algorithm
	Link to the Log Partition Function
	Computational Complexity
	Multiple Maxima
	Implementation

	Conclusion

