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Abstract

We enhance geometric Markov Chain Monte Carlo methods, in particular making them
easier to use by providing better tools for choosing the metric and various tuning parameters.
We extend the No-U-Turn criterion for automatic choice of integration length for Lagrangian
Monte Carlo and propose a modification to the computationally efficient Monge metric,
as well as summarizing several previously proposed metric choices. Through extensive
experimentation, including synthetic examples and posteriordb benchmarks, we demonstrate
that Riemannian metrics can outperform Euclidean counterparts, particularly in scenarios
with high curvature, while highlighting how the optimal choice of metric is problem-specific.

Keywords: Markov Chain Monte Carlo, Hamiltonian Monte Carlo, Riemannian Geometry.

1. Introduction

Outside of special cases, Bayesian inference for parameters of a graphical model requires
approximations. Markov Chain Monte Carlo (MCMC) is one of the central techniques, being
general method applicable for arbitrary joint densities. However, the practical efficiency
and accuracy of MCMC depend on several non-trivial choices, ranging from the design of
the proposals to the choice of several tuning parameters, such as integration length and
stopping criteria in samplers, leveraging Hamiltonian dynamics and eventually also to more
fundamental choices like the assumed metric for the parameter space.

We consider graphical models with continuous variables and differentiable joint density,
such as Gaussian graphical models, various latent variable models, and in general a broad
range of statistical models described as probabilistic programs, e.g. in the Stan syntax
(Carpenter et al., 2017). That is, we assume gradients of the joint density are available.
Efficient samplers have been designed around Hamiltonian (Neal et al., 2011) or Lagrangian
(Lan et al., 2015) dynamics, where the parameter space is augmented by randomly proposed
momentum or velocity and sampling is done by numerical integration of the dynamics. While
this offers clear computational advantages over random-walk MCMC, the samplers often
come with additional tuning parameters that need to be chosen. One practical solution
to these challenges is the No-U-Turn (NUTS) sampler by Hoffman and Gelman (2014),
which can automatically determine the integration time by monitoring when the integration
trajectory curves too much and also offers practical heuristics for selecting the step length.

The performance of samplers can be controlled by modifying the assumed metric for
the parameter space. In the simplest case, this corresponds to re-scaling the space by a
static matrix, a metric tensor, but by making the scaling position-dependent we can improve
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the sampling performance, especially for complex distributions. This family of methods is
called geometric or Riemannian MCMC, first introduced in Girolami and Calderhead (2011),
with several follow-up works providing alternative formulations (Xifara et al., 2014; Lan
et al., 2015; Cobb et al., 2019; Hartmann et al., 2022). Despite theoretical advantages, the
practical use of geometric MCMC methods has been limited. This can be attributed to
several reasons; the per-iteration cost of the samplers is higher due to requiring repeated
inversions of the metric tensor, the choice of the best metric is far from obvious, and in
many cases the sampler requires additional tuning parameters that are difficult to choose,
even beyond the ones in Euclidean samplers. The additional computational burden, has to
some extent, been resolved by recent works proposing metrics that are efficient to compute;
for instance, Hartmann et al. (2022) proposed the Monge metric that avoids full-matrix
operations, and Li et al. (2016) and Yu et al. (2023) showed that Riemannian MCMC
methods can be scaled efficiently even for posterior analysis of neural networks. However,
the choice of the optimal metric remains elusive, and it is difficult to use the samplers in
practice due to the various tuning parameters.

We work towards solving these issues. We outline alternative metrics for geometric
MCMC samplers, covering both existing metrics (Girolami and Calderhead, 2011; Hartmann
et al., 2022; Betancourt, 2013a) and a new variant, and then show how the adaptive
mechanism that NUTS uses for determining integration length can be extended for geometric
methods, building partly on Betancourt (2013b). Although we introduce both a new metric
variant and a new alternative stopping criterion, we note that the main goal of this work is
not to introduce new algorithms as such, but to proceed towards wider use of the methods in
practical applications. We do this primarily via an empirical comparison of the alternative
approaches, in an attempt to shed light on when and how geometric methods should be
used. In previous works, the validation of geometric MCMC methods has been limited to
isolated cases, which makes it difficult to assess the value of Riemannian metrics in practice.
Instead, we evaluate a range of alternatives by exhaustively covering the Cartesian product
over the various choices, considering in total close to 300 cases. We draw a few conclusions
based on the general trends and make the full results available for further analysis. We
observe that it is usually possible to improve over the Euclidean metric but the optimal
choice of the metric depends on the problem, and that the specific choice of the stopping
criterion does not appear to be critical.

2. Preliminaries

Let us denote by θ ∈ RD the vector of parameters of interest, with a prior distribution
p(θ) and the likelihood p(y |θ) for some observed data y = {yn}Nn=1, here assumed i.i.d for
simplicity. Our goal is to sample from the posterior distribution, p(θ |y) = p(y |θ)p(θ)/Z,
where Z =

∫
p(y |θ)p(θ)dθ is a normalization constant which does not depend on θ.

From now on, we denote the target distribution by π(θ) = p(y |θ)p(θ) and the log target
distribution by ℓ(θ) = log π(θ). We assume both are differentiable with respect to θ.

2.1. Riemannian MCMC

Random walk Monte Carlo methods are theoretically sufficient for solving the posterior
inference problem, but today most practical samplers leverage on gradient information to
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reduce the correlation between the samples (Neal et al., 2011; Betancourt, 2017). Further-
more, treating distances in the parameter space from the perspective of a suitably chosen
Riemannian metric has been shown to help explore difficult or pathological geometries
(Girolami and Calderhead, 2011). In the following, we present the samplers directly from the
perspective of the more general Riemannian formulation, explaining the commonly assumed
Euclidean metric as a special case when necessary.

Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) The Hamiltonian
dynamics define a trajectory generated by a system of differential equations based on the
joint distribution of the log-target distribution ℓ(θ) and a D-dimensional auxiliary random
variable p, interpreted as momentum. The distribution of the auxiliary variable is often
chosen as Gaussian p |θ ∼ N (0,G(θ)). This is now presented directly in the Riemannian
formulation, where G(θ) is a general Riemannian metric. The Hamiltonian is a function of
the joint density p(θ,p) = p(θ)p(p |θ) constructed as p(θ,p) = e−H(θ,p),

H(θ,p) = −ℓ(θ) +
1

2
log detG(θ)︸ ︷︷ ︸

ϕ(θ)

+1
2 p

⊤G−1(θ)a . (1)

The dynamics are given by the system of equations ṗ = ∇θH(θ,p), θ̇ = ∇pH(θ,p).
Euclidean Hamiltonian Monte Carlo (HMC) is the special case where the metric is constant
G(θ) =M . It results in explicit dynamics, in the sense that ṗ only depends on θ and vice
versa,

θ̇ =M−1 p, ṗ = ∇θℓ(θ). (2)

When the covariance is G(θ), the dynamics are no longer explicit and are given by

θ̇ = G−1(θ)p, ṗ = −∇θϕ(θ)−
1

2
∇θ p⊤G(θ)−1 p . (3)

Numerical Integration HMC dynamics are numerically integrated by solving Eq. (2)
with an explicit numerical integrator which is time-reversible and preserves volume, often
the Leapfrog integrator (Neal et al., 2011). Numerical integration of Eq. (3) can be done
with the generalized Leapfrog integrator (Girolami and Calderhead, 2011) or the midpoint
integrator (Brofos and Lederman, 2021). The numerical integration has an implicit step
which relies on fixed point iterations. Importantly, in both cases the integration depends on
two key parameters that are difficult to set in practice:

• Step-size, denoted ε;

• Integration length T · ε, where T is the number of integration steps.

Lagrangian Monte Carlo (LMC) The Riemannian sampler by Lan et al. (2015) admits
an explicit but not volume preserving integrator. Lagrangian dynamics are the Riemannian
Hamiltonian dynamics under the change of variable v = G(θ)−1 p. The random variable
v is the velocity of the system and if the momentum is Gaussian then it is distributed
v |θ ∼ N (0,G(θ)−1). The energy functional is defined in the same way as the Hamiltonian
E(θ,v) = − log p(θ,v). The identity detG(θ)−1 = 1/detG(θ), gives

E(θ,v) = −ℓ(θ)− 1

2
log detG(θ) +

1

2
vT G(θ)v . (4)
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The dynamics are the geodesic equations with an extra term

θ̇ = v, v̇ = −η(θ,v)−G(θ)−1∇ϕ(θ), (5)

where the k-th component of the vector η(θ,v) is, in Einstein notation, [η(θ,v)]k =
Γk
ij(θ)v

i vj , where Γk
ij are the Christoffel symbols. Lan et al. (2015) constructs a nu-

merical integrator for this. The integrator is explicit but not volume preserving. We account
for this change of volume in the acceptance probability of a new sample (θt,vt) after t steps
of step-size ε starting from (θ0,v0)

a(θt,vt |θ0,v0) = min

{
1,

e−E(θt,vt)

e−E(θ0,v0)
| det Jt|

}
.

Given a position θ0, each sample is drawn by first sampling v0 ∼ N (0,G−1(θ)), updating
the triplet θt, vt and | det Jt| using Lan’s integrator for t = 1, .., T steps and step-size ε, and
accepting the new sample with probability a(θt,vt |θ0,v0). The numerical integrator can
found in Appendix A.4.

2.2. The No-U-Turn Sampler

The No-U-Turn Sampler by Hoffman and Gelman (2014) provides one practical solution for
automatic selection of the key tuning parameters of Euclidean HMC, including ε, t and M .
The method is divided into a warm up phase and the actual sampling phase.

Warm up phase. During warm up, the Dual-Averaging algorithm, which is a stochastic
gradient optimization algorithm, is used to tune the step-size ε of the numerical integrator
to achieve a desired acceptance probability. Additionally, M is estimated during the warm
up. The warm up samples are used to estimate the global covariance, which is then inverted
and used as a fixed metric and applied as a linear reparametrization to the sample space
to facilitate sampling. This offers a somewhat heuristic but in practice a good method for
selecting the step size and the metric.

Sampling phase. The other key choice, the integration length, is handled by an adaptive
method. Rather than fixing it at a given value, the algorithm attempts to identify the correct
integration length by monitoring the expanding trajectory. Given an initial position in the
parameter space, the trajectory is generated forward or backward in time. Each trajectory
expansion doubles the number of previous integration steps. This is carried out until either
the u-turn criterion is met or the trajectory is divergent. For details, see Hoffman and
Gelman (2014).

After the u-turn (or divergence) is detected, a sample is chosen out of the whole trajectory
by multinomial sampling, where the probability is given by the relative acceptance probability
of each element of the trajectory (Carpenter et al., 2017; Cabezas et al., 2024). NUTS is
guaranteed to be a valid sampler since it satisfies detailed balance (Hoffman and Gelman,
2014). Although NUTS was conceived for Hamiltonian Monte Carlo, it has been extended
to Riemannian Manifold Hamiltonian Monte Carlo (RMHMC-NUTS) (Betancourt, 2017)
and, as will be shown here, can be extended to Lagrangian Monte Carlo (LMC-NUTS). We
are not aware of previous works that make this explicit.
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Various alternative formulations that allow for adaptive control of the parameters have
been proposed, for instance (Hoffman et al., 2021; Sountsov and Hoffman, 2021; Wang and
Wibisono, 2022), that may offer practical advantages like parallel computations; we leave
possible use of these techniques in context of Riemannian methods as future work.

3. Method

Here we outline our general approach for constructing a practical family of Riemannian
MCMC methods. We assume sampling is done by following either the Hamiltonian or
Lagrangian dynamics as explained in Section 2.1 in some metric G(θ), and the sampler
follows the general principle of NUTS. That is, (a) we use the Dual-Averaging algorithm
during warm-up for selecting the optimal step-size and for fine-tuning the metric when
applicable, and (b) we use the u-turn criterion for stopping integration for each proposal.

This section discusses the details briefly from the perspective of the choice of the
metric and adaptation of its tuning parameters and the details of the stopping criterion in
Riemannian metrics.

3.1. Metrics

Several Riemannian metrics have been explored as possible choices for posterior inference,
but there is no general consensus (theoretical or empirical) on what the metric should be. All
works proposing specific metrics naturally have valid argumentation in favor of the choice,
but ultimately the relative merits of the alternatives depend on whether the chosen metric
helps solving challenging inference problems more efficiently.

The Fisher Information Metric (FIM) is the inverse of the lower bound of the
variance of unbiased estimator and is further motivated by the second order Taylor series
expansion of the Kullback–Leibler divergence. Its geometric properties have been studied as
part of Information Geometry (Amari and Nagaoka, 2000). It is defined as the covariance of
the score function,

G(θ) := Ey |θ

[
∇ log p(y |θ)∇ log p(y |θ)⊤

]
.

For regular probabilistic models, the score function has zero expectation, therefore the FIM
computed as the expected outer product of the score functions or the expected Hessian
matrix are the same, that is G(θ) = Ey |θ

[
−∇2 log p(y |θ)

]
. Sometimes the Hessian of the

prior is added to the metric (Girolami and Calderhead, 2011), which is positive definite
as long as the covariance of the score dominates. While the metric has strong theoretical
justifications and no additional tuning parameters, the form of FIM depends on the likelihood.
It can be troublesome or even impossible to derive analytically and typically needs costly
numerical inversions (Lan et al., 2015).

One general metric is the Softabs metric by Betancourt (2013a). It applies a soft-
absolute value to the eigenvalues of the Hessian of the log target, and thus is guaranteed
to be positive definite. However, the metric requires second order differentiation to be
computed, and RMHMC and LMC require one more order of derivatives of the metric tensor,
which can be prohibitively expensive. The Hessian matrix, in its eigenvalue decomposition
is ∇2ℓ(θ) = QΛQ⊤, where Q is orthonormal and Λ is diagonal. The softabs function is
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applied to each element of the diagonal matrix and the metric is

G(θ) = Q ·softabs(Λ) ·Q⊤ .

Here softabs(λi) = λ coth (αλi), and α is the cutoff set to 1e6 in Betancourt (2013b).
Another choice for a general metric is the Monge metric by Hartmann et al. (2022).

This metric may appear simple at first glance, but it is inherited from the geometry of the
graph of the target distribution in the inclusion of a Euclidean space. It is formed by the
outer product of gradients and gives a closed form inverse for Lan’s integrator. It is given by

G(θ) = ID + α2∇ℓ(θ)∇ℓ(θ)⊤.

The Monge metric has nice computational properties due to fast inversions etc., but one
needs to tune α2 carefully for optimal performances.

Euclidean HMC rarely uses the identity metric G(θ) = ID, but instead assumes a full
metric MD or a diagonal metric diag(m). A non-identity metric facilitates the exploration
of the parameter space, which is limited by the eigenvalues of the metric (Carpenter et al.,
2017; Beskos et al., 2013). To achieve similar benefits in a Riemannian case, we propose a
modification of the original Monge metric as

G(θ) =M +α2∇ℓ(θ)∇ℓ(θ)⊤, (6)

where M is the global precision estimated during warm-up and α is again a tunable warp
parameter. The first term can be interpreted as a reparametrization, effectively performing
sampling in the space such that the global covariance is identity. The gradient transforms as
co-vector, therefore the outer product of gradient follows the transformation rule of metrics.
M also follows the transformation rule of metrics for linear transformations. The differential
geometry derivation can be found in Appendix A.1.

3.2. Stopping criteria

Let vt = G
−1(θt)pt and recall that θ̇t = vt. The Euclidean u-turn criterion aims at stopping

the Hamiltonian dynamics at a time t when the velocity vector vt at θt and the vector
θt−θ0 form an angle larger than π/2. Meaning that the position θt of a moving particle
starts to decrease its distance from its starting point θ0, hence the name u-turn. Formally,
the criterion minimizes the Euclidean distance between the original and updated position.
The distance starts to decrease for the first time t such that,

∂

∂t

1

2
∥θt−θ0∥2 = ⟨vt,θt−θ0⟩ =

〈
vt,

∫ t

0
vs

〉
≤ 0, (7)

where the integral is approximated by the sum of the computed velocities, i.e.
∫ t
0 vs ≈

∑
s vs.

This can be generalized for Riemannian manifolds, but there is no unique clear generalization.
Mathematically speaking, it is not obvious how to compare different tangent vectors at
different tangent spaces (see Boothby, 2002, Chapter 4). Betancourt (2013b) generalized by
considering the momentum variables in a similar fashion as the original NUTS,〈

pt,
∑
s

ps

〉
G(θt)−1

=

〈
vt,
∑
s

ps

〉
=
∑
s

⟨vt,vs⟩G(θs)
.
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We propose an alternative generalization to a Riemannian manifold by changing the Euclidean
inner product in Equation 7 with the inner product on the tangent space at θt,〈

vt,
∑
s

vs

〉
G(θt)

=

〈
pt,
∑
s

vs

〉
.

We refer to the stopping criteria as Euclidean (original No-U-Turn), Betancourt and Rie-
mannian, respectively. In Appendix A.2 we take a closer look at the criterion proposed by
Betancourt (2013b) and its close relation to ours. These methods have not been evaluated
in practical settings, which we do in the following sections.

4. Experiments

Rather than focusing directly on specific algorithms or metrics, we conducted the empirical
experimentation in an exhaustive manner, similar in nature to the early influential empirical
comparisons of supervised machine learning algorithms (Bauer and Kohavi, 1999; Caruana
and Niculescu-Mizil, 2006; Caruana et al., 2008). We consider a range of problems, covering
synthetic distributions of known complex geometry, a prototypical machine learning model
of Bayesian logistic regression, and a series of inference problems from the posteriordb

(Magnusson et al., 2023) database that provides gold standard posterior estimates for a
range of probabilistic programs. For each problem, we cover the Cartesian product over
the mutually compatible choices of the integrator, metric, tuning parameters, and stopping
criterion. This results in a total around 300 combinations. For additional analysis, the full
results (as well as the algorithm implementations) are available at https://github.com/
williwilliams3/expgeomjax.

For each scenario, we carried out five inference runs for different random seeds, and for
each we computed a range of performance metrics. The set of alternatives for each choice,
as well as the metrics, are briefly described below, and in Section 5 we summarize the main
findings via a few isolated examinations of the overall result collection. Additional details
on the setup are provided in Appendix B.

4.1. Inference tasks

Synthetic target distributions For θ ∈ RD, Neal’s Funnel distribution (Neal, 2003) is

π(θ) = N (θD |0, σ2)N (θ1:D−1 |µ, exp{θD} ID−1),

for σ > 0 and µ ∈ RD. The two dimensional Rosenbrock distribution is given by

π(θ) = N (θ1 |a,
1

2
)N (θ2 |θ21,

1

2b
),

for a ∈ R, b > 0. Both have been used as benchmarks in previous works, and even
though they do not depend on observed data both can be constructed as a Gaussian
reparametrization which admits a Fisher Information metric, derived from the transformation
rule of Riemannian metrics (Yu et al., 2024); see Appendix A.3. The diffeomorphism ϕ
allows us to obtain reference samples by sampling ψ(1), ..,ψ(N) ∼ N (0, I) and then mapping
them using ϕ to obtain ϕ(ψ(n)) = θ(n).
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Figure 1: Euclidean (NUTS) and Riemannian (LMC-NUTS) comparison of samples in
two dimensional toy distributions, LMC-NUTS go further down the neck of Neal’s Funnel
distribution and higher in Rosenbrock’s distribution. This results in smaller distance to the
true samples and higher effective sample size. The stopping criteria are Euclidean stopping
and Riemannian stopping, respectively.

Bayesian Logistic Regression The model is given by

p(yi |θ,xi) = Bernoulli(yi |s(x⊤
i θ)), p(θ) = N (θ |0, α ID),

for i = 1, .., N where α = 100 and s(·) is the Sigmoid function. We consider three datasets
(Henery and Taylor, 1992): Australian (D = 15), German (D = 25) and Heart (D = 14).
Reference samples are computed following the procedure of posteriordb. That is, we run
Stan for 10 chains to produce 10, 000 samples with a thinning of 10. We assure the effective
sample size on each dimension is close to 10, 000 and R̂ < 1.01.

Posteriordb models We consider 3 different models from the Posteriordb database
Magnusson et al. (2023). These are eight schools non-centered (8sn), garch-11 (gar) and
low dimensional gaussian mixture (ldg). Reference samples obtained by carefully tuned
NUTS have been provided. For these models the derivation of the Fisher Information is
possible but involves computing difficult expectations, and hence we do not use FIM in the
experiments since it is not readily available in the implementation.

4.2. Inference method details

The experiments are run for all valid combinations of the following dimensions:

• Sampling algorithms (Section 2.1): Euclidean metric: Hamiltonian Monte Carlo,
Riemannian metrics: Riemannian Manifold HMC and Lagrangian Monte Carlo;

• Metrics (Section 3.1): Euclidean, Fisher, Softabs, and two variants of the Monge
metric (Monge-I and Monge-M);

• Stopping rules (Section 3.2): Euclidean, Betancourt, and Riemannian;

• Tuning parameters: For Monge metrics, we additionally cover α2 ∈ {0.001, 0.01, 0.1.1.0}.
For SoftAbs we use constant α = 1e6, based on Betancourt (2013b).
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4.3. Evaluation Metrics

For each combination of a method and an inference problem, we compute the following
metrics explained here only briefly, while reporting the wall clock time in seconds. In the
result tables we use the notation [mean, std], where the deviation is over the five runs.

• Effective sample size (ESS): Measures the number of independent samples produces
by a set of dependent samples of the MCMC simulation; higher is better (Neal, 1993).
ESS is computed for each dimension at a time, and hence we report both the minimum
value and the average value. The minimum ESS provides information on the most
challenging marginals and is important in ensuring robustness.

• 1-Wasserstein distance to reference samples: Measures the cost in Euclidean distance
of transporting the samples to the reference samples; lower is better. Similar evaluation
criterion is used in e.g. Zhang et al. (2022). For more details, see Flamary et al. (2021).

5. Results

We first summarize the overall results by selecting for each combination of a sampler and
metric the method with the best accuracy (lowest Wasserstein distance to reference) over the
possible choices of the stopping criterion. We keep Euclidean NUTS for comparison. Tables 1
to 3 report the results for the three sets of tasks. Note that if we would further select the
best one among the three alternative stopping criteria, we obtain the best overall method for
each task. This investigation provides information on two things: (a) The relative quality of
the different metrics and samplers and (b) The effect of the stopping criterion. Below, we
summarize the main observations from both perspectives.

The choice of the metric The first key observation is that in the whole set of results,
the Euclidean metric may reach the same accuracy as the Riemannian metrics but not once
surpasses the best Riemannian metric. This confirms that the Riemannian metrics are
generally useful, outperforming the commonly used Euclidean choice as long as the metric
is suitable. For the synthetic (Table 1) and logistic regression (Table 2) problems where
the Fisher metric is available we always obtain the best overall result with a Fisher metric.
However, the Softabs metric also performs well, and for the posteriordb examples (Table 3)
it is always the best.

Stopping criteria Except for the synthetic data, the exact stopping criterion is largely
inconsequential; we reach effectively identical Wasserstein distance with all three choices,
despite using Riemannian metric in the sampling. For the synthetic cases (Table 1) there
are small differences between the choices, but the ranking is not consistent.

Problem dimensionality A good metric is more important for complex distributions,
and one way of increasing the difficulty is increasing the dimensionality. Figure 2 compares
the Euclidean and Riemannian methods for the dimensionality in {2, 4, 8, . . . , 64}, again
splitting the results over the three stopping criteria. The Riemannian methods fare well
in all dimensionalities, and we again observe no difference between the stopping criteria.
Euclidean NUTS here fails for the higher-dimensional problems, even though it still appears
to be working well from the perspective of mean ESS since it manages to explore the bulk
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model sampler metric stop Wass min ESS avg ESS t(s)

funnel nuts euc euc [1.21, 0.52] [149, 75] [289, 36] 1.3
D=2 nutslmc softabs euc [0.82, 0.24] [741, 111] [777, 121] 9.2

nutslmc fisher bet [0.81, 0.24] [1929, 207] [2857, 558] 2.6
nutslmc fisher riem [0.88, 0.17] [1877, 210] [2406, 231] 2.1

rosenbrock nuts euc euc [0.17, 0.15] [427, 406] [521, 400] 2.3
D=2 nutslmc softabs euc [0.1, 0.04] [1139, 138] [1282, 174] 10.6

nutslmc fisher bet [0.11, 0.04] [669, 57] [718, 66] 3.1
nutslmc fisher riem [0.09, 0.04] [620, 88] [645, 90] 3.1

Table 1: Synthetic distributions. For each stopping criterion we select the best combination
of sampler and metric in terms of the 1-Wasserstein distance to reference samples.

Figure 2: Left: Funnel’s Wasserstein distance to marginal θD for NUTS, LMC-NUTS and
different stopping criteria for varying D. Middle and right: Minimum and average ESS.

of the distribution well. The minimum ESS, corresponding to the funnel dimensions, is
extremely low, as the method does not sample from the right target.

Monge metric Fisher and Softabs metrics were generally the best in previous results. The
Monge metric has a computational advantage over these and hence we inspect separately
its behavior in the posteriordb problems in Table 4, to better understand the reasons.
We observe that the newly proposed Monge-M is more robust for the choice of the tuning
parameter, with α2 = 1 being best in all cases. For one of the tasks, ldg, it also achieves
better overall accuracy. Comparing the final accuracies against the ones reported in Table 3
reveals that the metric tensors are actually comparable, with no discernible difference
between the best Monge metric and the best overall solution. In other words, the Monge
and Softabs metrics are in practice equally accurate assuming the tuning parameter α is
chosen well. The Monge metric is clearly faster per iteration, whereas Softabs has higher
ESS that approximately compensates it.

6. Conclusions

Although the concept of geometric MCMC has already been around for roughly two decades
and there are both theoretical and empirical evidence that they can help in difficult inference
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model sampler metr stop Wass min ESS avg ESS t(s)

aus nuts euc euc [1.13, 0.02] [1610, 116] [2574, 129] 2.9
D=15 nutslmc α2=1.0(M) euc [1.13, 0.02] [1221, 173] [1932, 149] 2.9

nutsrmhmc softabs bet [1.13, 0.02] [635, 53] [816, 30] 4.9
nutslmc softabs riem [1.13, 0.02] [657, 39] [839, 26] 8.5

ger nuts euc euc [0.43, 0.0] [10897, 732] [15233, 1076] 2.9
D=25 nutslmc fisher euc [0.43, 0.0] [18600, 653] [21438, 527] 3.5

nutslmc softabs bet [0.43, 0.0] [19773, 355] [23133, 691] 8.8
nutslmc fisher riem [0.43, 0.0] [20263, 765] [23918, 706] 3.5

hrt nuts euc euc [0.59, 0.0] [10174, 1269] [12942, 1524] 1.7
D=4 nutsrmhmc softabs euc [0.59, 0.0] [17297, 839] [19147, 399] 4.6

nutsrmhmc fisher bet [0.6, 0.0] [17409, 732] [19078, 448] 3.5
nutsrmhmc softabs riem [0.6, 0.0] [17102, 860] [19172, 398] 5.1

Table 2: Logistic Regression. For each stopping criterion we select the best combination of
sampler and metric in terms of the 1-Wasserstein distance to reference samples.

model sampler metr stop Wass min ESS avg ESS t(s)

8sn nuts euc euc [16.74, 0.21] [4697, 460] [9740, 205] 1.9
nutsrmhmc softabs euc [16.73, 0.21] [2613, 309] [10551, 1240] 5.8
nutslmc softabs bet [16.73, 0.21] [2032, 197] [14062, 459] 9.1
nutslmc α2=1.0(I) riem [16.72, 0.2] [133, 36] [792, 88] 2.8

gar nuts euc euc [0.21, 0.01] [4743, 436] [5585, 59] 1.6
nutslmc softabs euc [0.21, 0.01] [2632, 295] [5142, 209] 38
nutslmc softabs bet [0.22, 0.01] [3283, 369] [5916, 310] 47.6
nutslmc softabs riem [0.21, 0.01] [3421, 243] [6239, 328] 33.6

ldg nuts euc euc [0.02, 0.0] [10019, 574] [11332, 498] 2.2
nutsrmhmc softabs euc [0.02, 0.0] [16294, 898] [20723, 849] 26.1
nutsrmhmc softabs bet [0.02, 0.0] [24017, 1513] [25548, 752] 28.3
nutsrmhmc softabs riem [0.02, 0.0] [24344, 1005] [25946, 853] 25.8

Table 3: Posteriordb models. For each stopping criterion we select the best combination of
sampler and metric in terms of the 1-Wasserstein distance to reference samples.

tasks, the methods are rarely used in practice. We believe this is largely due to the lack of
easy-to-use and reliable alternatives, and in part due to a lack of empirical evidence on the
practical value. Our work addresses both of these issues, by discussing how we can automate
some of the tuning parameter choices of geometric samplers, by relying on the established
techniques in NUTS, and by showcasing some alternative choices for the most obvious
question of which metric to use. We avoid deep theoretical aspects of Riemannian geometry
to keep the paper accessible to practitioners. We then complement the methodological
overview by exhaustive empirical evaluation of the different choices, in a series of different
kinds of inference problems, making the first attempt at quantifying the performance of
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model Monge param stop Wass min ESS avg ESS t(s)

8sn M α2=1.0 bet [16.74, 0.2] [376, 113] [750, 56] 2.7
M α2=1.0 euc [16.73, 0.21] [3216, 358] [7597, 499] 2.9
M α2=1.0 riem [16.74, 0.21] [430, 108] [767, 65] 2.2
I α2=1.0 bet [16.74, 0.2] [131, 22] [848, 85] 2.9
I α2=1.0 euc [16.73, 0.21] [1430, 58] [9724, 153] 2.6
I α2=1.0 riem [16.72, 0.2] [133, 36] [792, 88] 2.8

gar M α2=1.0 bet [0.23, 0.03] [472, 78] [593, 61] 4.2
M α2=1.0 euc [0.22, 0.02] [2065, 232] [2404, 246] 3.6
M α2=1.0 riem [0.23, 0.02] [495, 62] [641, 29] 3.6
I α2=0.01 bet [3.77, 0.13] [4, 0] [5, 1] 4.2
I α2=1.0 euc [0.22, 0.01] [1370, 119] [3097, 160] 4.4
I α2=0.01 riem [3.73, 0.07] [4, 0] [5, 1] 4.2

ldg M α2=1.0 bet [0.02, 0.0] [1128, 117] [1335, 103] 4.6
M α2=1.0 euc [0.02, 0.0] [6764, 110] [7862, 484] 4.8
M α2=1.0 riem [0.02, 0.0] [1296, 134] [1508, 141] 4.5
I α2=0.1 bet [3.26, 0.01] [4, 0] [5, 0] 5
I α2=0.001 euc [3.27, 0.03] [4, 0] [5, 0] 6.6
I α2=0.001 riem [3.27, 0.01] [4, 0] [5, 0] 4.8

Table 4: LMC-NUTS with Monge-I and Monge-M metrics, reporting the best result over
α ∈ {0.001, 0.01, 0.1, 1, 0} for each stopping criterion.

geometric methods in more general settings. We considered a small set of problems, but
the evaluation could easily be extended to a wider range of target densities, new metrics, or
other sampler variants.

The main conclusions are that Riemannian MCMC methods work in practice and in most
cases it is possible to outperform Euclidean samplers. All three metrics were found useful,
with small differences in accuracy. We also observed that although the exact definition of
a Riemannian u-turn is non-trivial, the exact stopping criterion does not seem to matter
much. However, our results are only exploratory in the sense that we did not consider the
question of how the metric would be chosen in practice; we showed that a combination of
choices exists that works better than the commonly used Euclidean NUTS. Nevertheless, we
did not yet study how a practitioner could make the choices without relying on knowledge
(the true posterior) that would not be available in real cases. Simulation-Based Calibration
(Modrák et al., 2023) could provide an alternative when reference samples are unavailable,
by assessing the ability of the sampler in a model learned from synthetic samples, but further
experimentation would be required to validate the approach.
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Appendix A. Mathematical derivations

A.1. Derivation of Monge Metric

One can estimate the global precision by using e.g. empirical samples, and use it as a fixed
preconditioner. Probabilistic programming languages include this, which has been shown to
be beneficial for certain problems (Carpenter et al., 2017; Cabezas et al., 2024). We therefore
improve the formulation of the metric to account for such information. The metric can be
derived from a differential geometric transformation view point. Consider a parametrization
ψ, such that the global covariance becomes identity. It can be transformed back to the
current θ parametrization using a linear transformation θ = Lψ where L is a fixed matrix,
with Jacobian L satisfying Lij = ∂ θi

∂ψj
, which can be viewed as a transformation applied

globally. Since the transformation results in the global covariance of θ, we have

M−1 = Var(θ) = LVar(ψ)L⊤ = LL⊤ .
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Using notations based on Kristiadi et al. (2023), we write the following. The transformation
law for gradients 14 gives ∇θℓ(θ) = L−⊤∇ψℓ(θ)|θ=Lψ. The inverse mass metric is M =
L−⊤L−1. Therefore, the proposed metric is

G(θ) =M +α2∇θℓ(θ)∇θℓ(θ)⊤ = L−⊤
(
I +α2 ∇ψℓ(θ)∇ψℓ(θ)⊤

∣∣∣
θ=Lψ

)
L−1 .

In practice we may replace M with m = diag(M), i.e. a diagonal metric. This facilities
the implementation of the algorithm to not store any matrices in memory, only vectors.
Note that the second term in proposed metric is not the results of the transformation law of
metrics from the original Monge metric, nevertheless gave good results in practice.

A.2. Derivation of alternative Riemannian stopping criterion for Lagrangian
Flow

In the following, we provide a high-level sketch for the derivation of the alternative Rie-
mannian stopping criterion. Let us adopt the notation of Betancourt (2013b) and follow
along similar steps. The difference being that we consider Lagrangian dynamics instead of
Hamiltonian dynamics. Denote positions by q, and velocities by v. We denote an element
in the tangent bundle by S ∈ T M and its projection to the manifold by R = π(S). The
inner product

⟨v(Rt),ρ(Rt)⟩G(q(Rt))
,

is defined on the tangent space, where ρ(Rt) =
∫ t
0 v(Rs)ds. The canonical one form

θ =
∑

j v
j ∂
∂ qj

is a horizontal form in T M. It can be dragged along the Lagrangian flow
denoted H,

θ∗t = θ +

∫ t

0
LHθdτ.

Where LH θ is the Lie derivative. Following the steps by Betancourt (2013b), we obtain the
value of the components of the Lie Derivative,

(LH θ)j =
∑
k

[
d qk

dt

∂

∂ qk
+

dvk

dt

∂

∂ vk

]
θj +θk

∂

∂ qj
d qk

dt

=
∑
k

[
d qk

dt

∂

∂ qk
+

dvk

dt

∂

∂ vk

]
vj +vk

d

dt

∂ qk

∂ qj

=
∑
k

d qk

dt

∂ vj
∂ qk

+
d vk

dt
δjk + vk

d

dt
δkj

=
∑
k

d qk

dt
0 +

d vk

dt
δjk + vk 0

=
dvj

dt
.
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Lie dragging is defined against the flow, if we drag from beginning to end of the trajectory
we drag along the flow. Giving us,

θ∗−t(St)j =

(
vj(St) +

∫ 0

t

dvj

dt

)
∂

∂qj

=
(
vj(St) + v

j(S0)− vj(St)
) ∂

∂qj

= vj(S0)
∂

∂qj
.

It defines a unique vector v∗(Rt) with components v∗j(Rt) = v
j(R0). Then define ρ(Rt) :=∫ t

0 v
∗j(Rs)ds, which is approximated by sum of the velocities given through the numerical

integration

⟨v(Rt),ρ(Rt)⟩G(q(Rt))
≈

〈
v(Rt),

∑
s

v∗(Rs)

〉
G(q(Rt))

.

This is the Riemmanian stopping criterion in the main paper.

A.3. Derivation of the Fisher Information metric

Synthetic distributions Consider Neal’s Funnel and Rosenbrock distribution introduced
in Section 4. While not being probabilistic models dependent on observed data y, they
can both be constructed from a transformation in whose original space, the related random
variable follows a Gaussian distribution. As observed by Yu et al. (2024), we can still define
a metric-tensor inspired by the FIM through the transformation rule of Riemannian metrics.
Let θ = ϕ(ψ) be a diffeomorphism. If for ψ ∼ N (ψ |µ,Σ), then the transformation rule 13
yields

G(θ) =
∂ϕ−1(θ)

∂ θ

⊤
Σ−1∂ϕ

−1(θ)

∂ θ
. (8)

Let ψ ∼ N (0, ID), the transformation for Neal’s Funnel and the inverse Jacobian are

ϕ(ψ) =

[
expσψD /2ψ1:D−1

σψD

]
,

∂ϕ−1(θ)

∂ θ
=

[
exp−θD /2 I −1

2 exp
−θD /2 θ1:D−1

0 1
σ

]
.

The two dimensional Rosenbrock distribution has the diffeomorphism and inverse Jacobian,

ϕ(ψ) =

[
a+ 1√

2
ψ1

θ21+
1√
2b
ψ2

]
,

∂ϕ−1(θ)

∂ θ
=

[ √
2 0

−2
√
2bθ1

√
2b

]
.

These diffeomorphisms allow for the computation of reference samples by sampling first
ψ(1), ..,ψ(N) ∼ N (0, I) and mapping ϕ(ψ(n)) = θ(n).

Proposition 1 The Riemannian metric in equation 8, coincides with the FIM of the
probabilistic model

p(µ |θ,Σ) = N (µ |ϕ−1(θ),Σ),

pJ(θ) =
√
detG(θ).

Where pJ is Jeffrey’s prior. Furthermore the target distribution coincides with the posterior
distribution of the model over the change of variables.
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Proof The FIM of the model is

Eµ
(
−∇2

θN (µ |ϕ−1(θ),Σ)
)
=

∂ϕ−1(θ)

∂ θ

⊤
Σ−1∂ϕ

−1(θ)

∂ θ
.

Which coincides with equation 8. Now let us proof that the posterior coincides with the target
distribution. Notice that Jeffrey’s prior encodes the change of variable of the transformation
ϕ(ψ),

√
detG(θ) =

(
det

∂ϕ−1(θ)

∂ θ

⊤)1
2 (

detΣ−1
)1
2

(
det

∂ϕ−1(θ)

∂ θ

)1
2
=

(
det

∂ϕ−1(θ)

∂ θ

)(
detΣ−1

)1
2 .

Then the posterior yields,

p(θ |µ,Σ) ∝ N (µ |ϕ−1(θ),Σ)
√
detG(θ)

∝ N (ϕ−1(θ)|µ,Σ)

∣∣∣∣det ∂ϕ−1(θ)

∂ θ

∣∣∣∣ .
Where the last line is the distribution of θ under the transformation. We conclude the
posterior p(θ |µ,Σ) of the model matches the target p(θ = ϕ(ψ)).

Logistic regression The derivation of the Fisher Information metric for Logistic Regres-
sion can be found in Girolami and Calderhead (2011). The right hand side adds the Hessian
of the prior, which is positive definite. It is given by

G =X⊤ΛX +α−1 I,

where the covariates are stacked in a N × D matrix X = [x1, ..,xN ]⊤ and the diagonal
N ×N matrix Λnn = σ(x⊤

i θ)
(
1− σ(x⊤

i θ)
)
.

A.4. Derivation of the Lagrangian Monte Carlo dynamics with modified Monge
metric

In this subsection we derive the numerical integrator for Lagrangian Monte Carlo with
the modified Monge metric. The numerical integrator of Lan et al. (2015) for Lagrangian
dynamics has the half step update of the volume term and the velocity given by,

log detJ = log det J + log det
(
G(θ(n))− ε

2
Ω̃(θ(n),v(n))

)
,

v(n+1/2) =
[
G(θ(n)) +

ε

2
Ω̃(θ(n),v(n))

]−1[
G(θ(n))v(n)−ε

2
∇ϕ(θ(n))

]
,

log detJ = log det J − log det
(
G(θ(n)) +

ε

2
Ω̃(θ(n),v(n+1/2))

)
,

(9)

where ϕ(·) is defined in Equation 1. The matrices Ω(θ,v) and Ω̃(θ,v) are defined as

Ω(θ,v)kj : =

D∑
i=1

vi Γk
i,j(θ), (10)

Ω̃(θ,v) : = G(θ)Ω(θ,v). (11)
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Where Γk
ij are the Christoffel symbols under the Levi-Citiva connection (Lee, 2018). Let us

consider the Modified Monge metric,

G(θ) = diagm+α2∇ℓ(θ)∇ℓ(θ)⊤.

From this point onward we drop dependency on θ to reduce notation cluster. Define
Lα := 1 + α2

∥∥1/√m⊙∇ℓ
∥∥2. The symbol ⊙ defines the Hadamard (element-wise) product

between the two vectors. The Sherman-Morrison formula gives,

G−1(θ) = diag(1/m)− α2

Lα
( 1
m ⊙∇ℓ)( 1

m ⊙∇ℓ)⊤.

detG = Lα

D∏
i=1

mi .

The Energy functional It is given by E(θ,v) = − log p(v |θ)p(θ), this is,

E(θ,v) = −ℓ(θ)− 1
2 log detG(θ) + 1

2∥v∥
2
G

= −ℓ(θ)− 1
2(logLα +

∑
logmi) + 1

2(
∥∥√m⊙ v

∥∥2 + α2 ⟨v,∇ℓ⟩2).

The Christoffel symbols The modified Monge metric has associated the global chart
η(θ) = (

√
m ⊙ θ, αℓ(θ)). The Christoffel symbols can derived from the simpler formula,

where the inner product is w.r.t. the ambient space RD+1

Γk
ij = gkl

〈
∂2η

∂ θi ∂ θj
,
∂η

∂ θl

〉
=
∑
l

(
1
mk δ

l
k − α2

Lα
( 1
mk ∂kℓ)(

1√
ml

∂lℓ)
)〈

(0, .., 0, α∂i∂jℓ), (0, ..,m
l, .., α∂l)

〉
= α2∂2

ijℓ
∑
l

(
1
mk δ

l
k − α2

Lα
( 1
mk ∂kℓ)(

1
ml∂lℓ)

)
∂lℓ

= α2∂2
ijℓ
(
1− α2

Lα
∥∇ℓ∥2diag(1/m)

)
1
mk ∂kℓ

= α2

Lα
∂2
ijℓ

1
mk ∂kℓ.

They can be expressed in matrix form of size D ×D, for k = 1, .., D

Γk = α2

Lα
∇2ℓ 1

mk ∂kℓ.

Matrix Ω(θ,v) Lan’s integrator updates in Equation 9 depend on the matrix Ω(θ,v),
which is a matrix whose (k, j) element is given by vi Γk

i,j

Ωkj = v
i Γk

i,j = [Γk v]j = α2

Lα
[∇2ℓv]j [ 1

m ⊙∇ℓ]k.

It is the outer product of two vectors,

Ω = α2

Lα
( 1
m ⊙∇ℓ)(v⊤∇2ℓ).
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The matrix Ω̃(θ,v) = G(θ)Ω(θ,v) is an outer product as well,

Ω̃ = GΩ =
(
diagm+α2∇ℓ∇ℓ⊤

)
α2

Lα
( 1
m ⊙∇ℓ)(v⊤∇2ℓ)⊤

= α2

Lα
(1 + α2∥∇ℓ∥2

diag(
1
m )

)∇ℓ(v⊤∇2ℓ)⊤

= α2∇ℓ(v⊤∇2ℓ).

Gradient of potential energy The potential energy for LMC is ϕ(θ) = −ℓ(θ) +
1
2 log detG(θ) and we require the first order derivatives. The first term ∇ℓ depends on the
log-target and the second can be computed as

∂

∂ θ
log detG = 1

detG

∂

∂ θ
detG = 1

Lα

∂

∂ θ
Lα = α2

Lα

∂

∂ θ
∇ℓ⊤(diag 1

m)∇ℓ = 2α2

Lα
∇2ℓ( 1

m ⊙∇ℓ).

The last step uses the identity ∂
∂ x x

⊤B x = (B +B⊤)x. All together gives,

∇ϕ = −∇ℓ+ α2

Lα
∇2ℓ( 1

m ⊙∇ℓ) (12)

Inverse and Determinant updates The determinant det
(
G(θ)± ε

2 Ω̃(θ,v)
)
, andG(θ)+

ε
2 Ω̃(θ,v) which are necessary in the half-step integrator updates in equation 9, are expressed
as a matrix plus an outer product,

G(θ) + ε
2 Ω̃(θ,v) = diagm+α2∇ℓ∇ℓ⊤ + α2ε

2 ∇ℓ(v⊤∇2ℓ) = diagm+ ba⊤ .

Where b = ∇ℓ, a = α2(∇ℓ + ε
2 v

⊤∇2ℓ) and M = diagm. Sherman Morrison gives the
inverse and determinant.

det
(
G(θ) + ε

2 Ω̃(θ,v)
)
= det(M)(1 + a⊤M−1 b) = det(M)(Lα + α2ε

2

〈
v,∇ℓ⊙ 1

m∇2ℓ

〉
)

(G(θ) + ε
2 Ω̃(θ,v))

−1 =M−1−M−1 ba⊤M−1 /(1 + bM−1 a⊤).

Plug in all quantities in Equation 9 we have Lan’s numerical integrator on the modified
Monge metric. Note that all terms are given in closed form which reduces the cost from
cubic to linear in operations. Although the computation of the Hessian of the log-target with
automatic differentiation increases the cost with respect to HMC. The code implementation
uses Hessian vector products for second order derivatives.

A.5. Transformation laws

The transformation law for Riemannian tensors. Let ψ ∈ RD and θ = ϕ(ψ) be a
smooth bijective transformation such that ϕ : RD → RD. If G(ψ) is a Riemannian metric
tensor in the ψ-coordinates, then the metric tensor in the θ-coordinates, G(θ), transforms
according to the rule:

G(θ) =

(
∂ϕ−1(θ)

∂ θ

)⊤
G(ϕ−1(θ))

∂ϕ−1(θ)

∂ θ
=

(
∂ θ

∂ψ

)−T

G(ψ)|ψ=ϕ−1(θ)

(
∂ θ

∂ψ

)−1

. (13)
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The transformation law for Euclidean gradients. Let ℓ : RD → R be a smooth vector
function. The application of the chain rule,

∇θℓ(θ) =

(
∂ψ

∂ θ

)⊤
∇ψℓ(ϕ(ψ)) =

(
∂ θ

∂ψ

)−⊤
∇ψ ℓ(θ)|θ=ϕ(ψ) . (14)

Appendix B. Experimental setup

B.1. Adaptation and sampling

WhenM and the step-size are needed we use window adaptation as in Cabezas et al. (2024).
When only the step-size is needed we use dual-averaging. The adaptation period is of 1,000
iterations. We draw 8 chains of 10,000 samples for each configuration.

B.2. Cluster used

We ran the experiments in a cluster of CPUs Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz.

B.3. Total number of combinations

The sampler considered, with respective metric and stopping options are:

• NUTS: Metric: Euclidean
Stopping: Euclidean

• RMHMC-NUTS
Metrics: Fisher, Softabs
Stopping: Euclidean, Betancourt, Riemannian

• LMC-NUTS
Metrics: Fisher, Softabs, Monge-I, Monge-M (4 values α’s each)
Stopping: Euclidean, Betancourt, Riemannian

The models considered are Synthetic models (3 different models), Bayesian Logistic Regression
(3 datasets) and posteriordb (3 different models). Notice that Fisher Information metric
is not used in posteriordb. We have a count of 278 different combinations. For the
increasing dimension experiment we sample NUTS, LMC-NUTS (Fisher metric and Euclidean,
Betancourt, Riemannian) giving a total of 25 new combinations. The total count of different
combinations considered is 303.
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