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Abstract

Shared Decision Making (SDM) has become a predominant element of patient-centered
healthcare delivery in recent years. In SDM, multiple agents, including a patient and a
clinician interact to make a joint decision that is aligned with the patient’s preferences.
Despite its popularity, previous SDM studies lack structured decision modeling approaches
applied to this problem. This paper presents Influence Diagram (ID) models for SDM
agents, and proposes graphical operations for IDs to model the interaction between the
agents. Using a case study, we demonstrate that widely used conceptual models for SDM
such as the Three Talk Model are aligned with the proposed ID models and operations. The
case study also shows that SDM is a cooperative decision making setting that is also present
in non-clinical domains. The proposed influence diagrams and interaction operations enable
SDM to be studied based on structured and quantitative decision models.

Keywords: Shared Decision Making; Influence Diagrams; Multi-agent Models; Coopera-
tive Decision Making; Clinical Decision Making

1. Introduction

Shared Decision Making (SDM) stands as a cornerstone of patient-centered care, empha-
sizing collaborative decision-making between patients and clinicians (Charles et al., 1997).
It involves at least two agents –a patient and a clinician– who aim to make a joint deci-
sion based on the preferences of the patient. The clinician has a richer and more accurate
model of the problem domain, but they may have an incomplete understanding of the pa-
tient’s preferences. The agents interact about the problem domain and preferences to make
better decisions. SDM describes a special case of cooperative decision making in which
both agents focus on the same decision, one agent’s preferences is essential and there is
information asymmetry regarding the preferences and random variables.

Despite its recognized importance, the definition of SDM and its associated concepts
lacks structured quantitative models as previous SDM studies mainly focussed on qualitative
conceptual models (Bomhof-Roordink et al., 2019; Makoul and Clayman, 2006; Stiggelbout
et al., 2015). This paper aims to model SDM agents and interactions using Influence
Diagrams (IDs). The proposed IDs provides a structured modelling approach that is aligned
with previous conceptual models of SDM. We represent SDM agents with separate IDs
and present graphical operations to modify these IDs based on the interactions between
these agents in SDM. We apply the proposed ID models and operations to a case study
to demonstrate their use and alignment with a widely used guideline for SDM practice
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(Elwyn et al., 2012, 2017). While several extensions of IDs are available multi-agent settings
(Detwarasiti and Shachter, 2005; Suryadi and Gmytrasiewicz, 1999; Koller and Milch, 2003;
Gal and Pfeffer, 2008; Zeng and Poh, 2009), these approaches do not capture the properties
and interactions that take place throughout SDM. Our approach is the first attempt to
model SDM using ID representations, offering a novel perspective on this widely studied
topic from both clinical decision making and probabilistic graphical model domains.

In the remainder of this paper, Section 2 provides an overview of SDM, Section 3 reviews
existing ID frameworks designed for multi-agent settings. Section 4 presents the ID models
and operations for SDM. Sections 5 and 6 applies the proposed ID and operations to a case
study, presents our conclusions respectively.

2. Shared Decision Making

The Shared Decision-Making concept was coined in the seminal paper of Charles et al.
(1997) but the clinical acceptance of SDM happened more recently (Stiggelbout et al.,
2015). Charles et al. (1997) described the four main characteristics of SDM as follows.
Firstly, SDM should involve at least two parties: the clinician and the patient. In addi-
tion, family members, friends, or other domain experts can also be involved depending on
the type of clinical decision. Secondly, there should be information sharing between the
clinician and the patient. The clinician provides the relevant medical information such as
the outcomes and side-effects of treatment options. The patient can share their preferences
related to the treatment options. The clinician assist the patient in comparing the risks and
benefits. Thirdly, both parties should be involved in the decision making. The degree of
involvement can vary depending on the patient’s preferences and the nature of the clinical
decision problem. Fourthly, both parties need to discuss and build a consensus on the treat-
ment decision. There have been variations in the SDM definitions (Stiggelbout et al., 2015)
and systematic reviews were conducted to unify their key components (Bomhof-Roordink
et al., 2019; Makoul and Clayman, 2006). These key components include information ex-
change, patient participation, learning about the patient’s preferences, discussion of options,
advocating patient’s views, partnership, and patient education.

Computational models have been mainly used for aiding SDM by computing risks of out-
come variables, training clinicians in SDM interactions and guiding SDM policy. Quaglini
et al. (2013) used decision trees with embedded Markov models to produce expected val-
ues of outcome variables to aid SDM. Veloso (2013) used agent-based simulation models
to inform Multiple Sclerosis (MS) patients about the possible progress of the disease dur-
ing SDM. Petukhova et al. (2019) used cognitive agents based on the ACT-R architecture
to model the negotiation stage of SDM between patients and doctors. The agents were
designed to train doctors and to enhance their social and cognitive negotiation abilities
in SDM. Tuncalp et al. (2023) used a simple utility-based model to compare the perfor-
mances of three decision-making processes, namely SDM, Evidence-Based Medicine, and
Case-by-Case, under different paradigms, such as perfect rationality or bounded rationality.
Their main finding is that if both parties are perfectly rational, SDM outperforms other
decision-making processes.

Several models have been developed to describe the key components of SDM in clinical
practice. Hargraves et al. (2020) proposed a five-step process called the SHARE approach in
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which doctors explore and compare the treatment options in terms of benefits, and harms
through interactions about what matters most to the patient. The steps of SHARE are
1) Seek your patient’s participation, 2) Help your patient explore and compare treatment
options, 3) Assess your patient’s values and preferences, 4) Reach a decision with your pa-
tient, 5) Evaluate your patient’s decision. The SHARE Approach aims to guide clinicians
to involve patients into the treatment decision-making process, by focusing on general com-
munication skills and interpersonal behaviors. Elwyn et al. (2012) proposed the Three-Talk
Model (TTM) as a guideline for achieving SDM in clinical practice. They later evaluated
and revised this model with clinical experts (Elwyn et al., 2017). TTM consists of three
steps. The first step is the choice talk in which the clinician gives an overview of the deci-
sion making process, briefly describes the treatment options, and asks about the patient’s
preferences. The second step is the option talk in which the patient and the clinician discuss
treatment alternatives and their outcomes. The third step is the decision talk in which the
patient and the clinician make a joint decision based on the informed preferences. All these
three steps together ensure that treatment decisions are aligned with the patient’s values
and preferences. TTM aims to guide clinicians based on these three stages, thereby pro-
moting patient-centered care and enhancing treatment decision outcomes. Although these
models provide valuable insights into its principles and practice, the application of struc-
tured decision modelling approaches to SDM remains largely unexplored. In the following
section, we review the influence diagrams and their extensions into multi-agent settings,
and assess their advantages and limitations in capturing the SDM process.

3. Influence Diagrams

A Bayesian Network (BN) is a graphical probabilistic model that is composed of a Directed
Acyclic Graph (DAG) and local probability distributions (Pearl, 1988). DAG is composed
of nodes X = {X1, . . . , Xn} representing random variables and edges representing direct de-
pendencies between the nodes. DAG encodes conditional independence assertions between
the random variables. A node Xi is conditionally independent of their non-descendants
given their parents par(Xi). The domain of a node describes the possible values it can take
dom(X) = {x1, . . . , xk}. Every node Xi has a local conditional probability distribution
conditioned on its parents P (Xi | par(Xi)). These probability distributions are often repre-
sented as Conditional Probability Tables (CPTs) when Xi and par(Xi) are discrete, A BN
represents a joint probability distribution that factorizes as follows:

P (X1, . . . , Xn) =

n∏
i=1

P (Xi | par(Xi))

Influence Diagrams (IDs) are an extension of Bayesian Networks (BN) for decision prob-
lems (Howard and Matheson, 2005). An ID is a DAG that is composed of decision nodes
D, chance nodes X and utility nodes U that are often drawn as rectangles, ellipses and
rhombuses respectively in graphical illustrations. Chance nodes in IDs are equivalent to
the nodes in a BN. Let Y be any chance, decision or utility node in an ID. Parents of Y
can be decision or chance nodes par(Y ) ⊆ D ∪ X . Utility nodes cannot be the parent of
other nodes. Incoming arcs to a decision node, called information arcs, represent that the
state of the parent is known at the time of decision making. Information arcs between
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decision nodes model the sequential order of decisions. Information arcs from chance nodes
to decision nodes denote the chance nodes that are observed before decision making. The
domain of a decision node represents the decision alternatives.

IDs model a decision making problem from the perspective of a single decision maker.
Several extensions to IDs have been proposed to model multi-agent decision problems. Det-
warasiti and Shachter (2005) modeled team decision making with IDs assuming that a team
has a common knowledge model and utility function. A team also makes decentralized de-
cisions and has imperfect information sharing. They model these properties as a single ID
for the team assuming that the chance, utility, and decision nodes are shared between the
team members but information about previous decisions is not shared. The resulting ID
represents a Markov Decision Problem with imperfect recall where some of the information
links between sequential decisions are missing to reflect decentralized decisions and incom-
plete information sharing. Although the clinician and the patient in SDM can be seen as a
team, Detwarasiti and Shachter (2005)’s model is not suitable for SDM as the clinician and
the patient do not have a shared knowledge model and utilities about the decision problem.

Suryadi and Gmytrasiewicz (1999) use IDs to model agents that learn from each other
in the multi-agent decision making setting. Each agent has their own ID decision model.
The decisions of other agents can be included in those IDs as chance nodes. If an agent has
detailed information about the other agent’s decision making process, it can be modeled
as a nested ID within the agent’s decision model. This nested ID represents the agent’s
mental model of the other agent’s decision making process. Suryadi and Gmytrasiewicz
also show examples of learning the beliefs, decisions and utilities in this nested ID based on
observations of an agent’s decisions. For example, when Agent 1 makes a decision that is
not available in Agent 2’s mental model, a corresponding state can be added to the decision
node in this model. When Agent 1 makes a decision that is irrational according to Agent
2’s mental model, the chance and utility nodes can be updated in this model. Suryadi and
Gmytrasiewicz focus on a competitive decision making setting, and they do not present
a general systematic approach that can be fully used for SDM. Yet, their approach for
learning the decision and utility nodes provide useful insights about how the treatment and
preferences could be learned in different stages of SDM.

Zeng and Poh (2009) model a cooperative multi-agent decision making setting with
Multiply Sectioned Influence Diagrams (MSID) and Hyper Relevance Graphs (HRG). In
MSID, each agent has a separate ID which is composed of their own belief, decision, and
utility nodes. Agents communicate through chance nodes that are shared between those
IDs representing public information. HRG models the organizational relationships regard-
ing information sharing between the agents. If the information provided for a chance by
one of the agents influences the decision of another agent, this indicates a control type
of relationship in HRG. If the information shared is not a prerequisite for a decision, this
indicates a communication relationship in HRG. Information sharing is a main element of
SDM but modeling it with shared chance nodes does not cover the extent of communication
between the SDM parties. The clinician has deeper knowledge about the clinical problem
and communicates relevant parts of his knowledge with the patient who updates his own
knowledge model accordingly. If we model both the clinician’s and patient’s domain knowl-
edge as separate DAGs, the clinician will select the most informative parts of their DAG
and communicate them to the patient. The patient may modify or expand their DAG based
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on this information. This kind of communication may require structural DAG operations
rather than just using shared chance nodes.

Koller and Milch (2003) present Multi-Agent Influence Diagrams as a general extension
of IDs for non-cooperative multi-agent games. Syntactically, a MAID is a DAG that is
composed of chance, decision and utility variables as in a conventional ID. Each decision
and utility node in a MAID is associated with a certain agent. Miller and Koller presents and
algorithm for computing Nash equilibrium in MAIDs by using local independence assertions
of the model. MAID assumes that the agents have a shared model of the real world.

Gal and Pfeffer (2008) present Networks of Influence Diagrams (NID) that represent
the decision-making processes and beliefs of other agents from an agent’s perspective. They
represent each agent’s mental model and model of the real world from the modeler’s per-
spective as separate MAIDs. These MAIDs are represented as nodes that are connected in
a NID. The root of the NID, called top-level, is the real-world model. Mental models of
other agents are included as chance nodes in the top-level model. An agent can be uncer-
tain about other agents’ decision models and operate based on an incorrect model of the
world. In SDM, the clinician has a mental model of the patient’s preferences and decision
model. The clinician learns the patient’s preferences to update his mental model and guides
the patient in terms of decision alternatives and outcomes according to this mental model.
NIDs provide a suitable representation for modeling the clinician and patient as agents who
have an incomplete model of the world and other agents respectively. In order to capture
the whole SDM process, mental models in NID may need to be modified and expanded
based on what agents learn from each other throughout SDM.

4. Influence Diagrams for Shared Decision Making

We focus on SDM involving two agents: a patient and a clinician. The agents aim to make
shared decisions, but their understanding of the problem domain and preferences may differ.
Hence, we have separate IDs that represent the decision making problem from each agents’
perspective. Decision alternatives, chance nodes, preferences that describe the utility node,
and relationships between the nodes may differ between those IDs reflecting the differences
in how agents understand the decision problem. Typically, clinicians have more accurate
and detailed domain knowledge regarding the decision problem. Patient preferences are
central to SDM yet clinicians may lack complete understanding of the variables influencing
patient’s preferences and utility function. Considering these properties, the main properties
of the IDs of SDM agents are : 1) Decision nodes in both IDs represent the same decision but
their domain can be different. For example, the patient may not be aware of some possible
treatment alternatives that the clinician knows, 2) The parents of the decision nodes in
each ID are the same as the agents have access to the same observed variables by the time
of decision, 3) Utility node in the patient’s ID represents the patient’s utility function.
Utility node in clinician’s ID represents the clinician’s understanding of the patient’s utility
function. If there are multiple utility nodes in an ID they are added.

In SDM, agents interact to have a shared understanding of the decision problem and
make shared decisions. We model these agent interactions as graphical operations that revise
ID structure and parameters based on the other agent’s ID. Figure 1 gives an overview of
these operations. The clinician’s interaction about the treatment alternatives corresponds
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Figure 1: Overview of agent interactions in SDM

to revision of decision alternatives and chance nodes associated with the outcomes and
side effects of those alternatives in the patient’s ID. The patient’s interaction about the
preferences corresponds to updating of the utility node and the ancestors of those chance
nodes in the clinician’s ID. In the following sections, we present the properties of SDM IDs
and structured operations for modelling these interactions. In Section 5 we demonstrate
that these operations can simulate TTM: a widely used guideline for achieving SDM in
practice (Elwyn et al., 2012, 2017).

4.1. IDs for SDM Agents

In SDM, a clinician and a patient have IDs, IC and IP , respectively. Decision nodes in
IC and IP are DC = {DC

1 , D
C
2 . . . } and DP = {DP

1 , D
P
2 , . . . } respectively. DC and DP

represent the same decisions from the clinician’s and patient’s point of view. However,
their domains can be different as the patient may not be aware of some of the decision
alternatives that the clinician knows. The parents of decision nodes are the same in both
models as both parties have shared understanding of information available before decisions.
UC = {UC

1 , UC
2 , . . . } and UP = {UP

1 , UP
2 , . . . } represent the utility nodes in IC and IP

respectively. In SDM, the patient’s preferences are essential. Hence, UP represent patient’s
true preferences, and UC represents clinicians understanding of the patient’s preferences.
The parents of a utility node define the decision and chance node that characterizes the
preferences. The parents par(UC) and par(UP ) can be different as the clinician may not
be aware of some of the main factors in the patient’s preferences. In other words, par(UP )
may have additional nodes that do not exist in par(UC). Chance nodes in IC and IP are
denoted by XC = {XC

1 , XC
2 , . . . } and XP = {XP

1 , XP
2 , . . . }. Both IC and IP may have

chance nodes that do not have an equivalent node in the other model. In SDM, the clinician
has a more detailed understanding regarding the disease, hence IC can have chance nodes
that are unknown to the patient. The clinician may not be aware of some of the criteria
influencing patient’s preferences. Hence, some chance nodes that are parents or ancestors
of UP may not be available in IC .

Due to these differences in chance, utility and decision nodes, the maximum expected
utility decisions in IP and IC may not be the same even when both agents reason about the
same decisions and they both focus on the patient’s preferences. In order to achieve SDM,
the patient and clinician interact regarding the decision alternatives, patient preferences
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and the random variables in the problem domain. In IDs these interactions correspond
to revision of the model structure and parameters based on the other agent’s ID. In the
remainder of this section, we present three operations to revise decision, chance and utility
nodes in SDM interactions.

4.2. Decision Alternative Transfer

An agent’s interaction about a decision node corresponds to revision of the domain of
the decision node in the other agent’s ID. If a decision alternative known by a clinician,
di ∈ dom(DC), is not known by the patient di /∈ dom(DP ), we add the decision alternative
to the patient’s decision node dom(DP ) := di ∪ dom(DP ). When the decision alternative
is added, the CPTs of the children of DP will expand and new conditional probabilities
need to be defined. Let XP

d be a child of DP . We need to enter the conditional probability
distributions for P (XP

d | di ∪ (par(XP
d ) \DP )). These conditional probability distributions

can be initialised by using uniform distributions, sample a categorical distribution from
Dirichlet priors or from a donor pool of probability distributions. Note that, the revision
of the CPTs of the chance nodes based on the information from the other agent’s ID is
described in the following section.

4.3. Chance Node Transfer

An agent’s interaction about chance node corresponds to copying or revision of that chance
node in the other agent’s ID. Suppose the clinician describes the likelihood of a side effect
XC

i which is represented as a chance node IC . We first check if XP
i is available in IP .

If not, we add XP
i and revise its domain dom(XP

i ) := dom(XC
i ). For each parent of

XC
j ∈ par(XC

i ), we check if the parent node XP
j is available in IP . If not, we add the node

XP := XP
j ∪XP , add the arc XP

j → XP
i , and revise its domain as dom(XP

j ) := dom(XC
j ).

When we add a new parent node XP
j we initialize its probability distributions by using

uniform distributions, sample a categorical distribution from Dirichlet priors or from a
donor pool of probability distributions. If XP

i has some parents that are not shared by
XC

i , i.e. XP
k ∈ par(XP

i ) and XC
k /∈ par(XC

i ), then we remove the arc XP
k → XP

i in IP .
Finally, we copy the CPT of XC

i to XP
i as the parents and domains of the nodes are same

at this point. When copying the CPT, we can add some random noise to reflect imperfect
communication between the agents. A possible option to add randomness is to obtain
random samples from a Dirichlet distribution that has the same expected value as the CPT
of XC

i .

4.4. Preference Transfer

An agent’s interaction about preferences corresponds to revision of the utility node and its
parents in the other agent’s ID. Decision criteria that define the preferences of a decision
maker are represented as parents of utility nodes in IDs. When the clinician does not know
some of the important criteria regarding patients, par(UC) may not be the same as par(UP ).
In this case, the patient’s interaction about the criteria will be reflected as an updating of
par(UC) in IC .
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Let XP
u ∈ par(UP ). We first check if parent node XC

u is available in IC , if not we
add the parent node XC := XC

u ∪ XC , and define its domain dom(XC
u ) := dom(XP

u ).
We add the arc XC

u → UC . If UP has some parents that are not shared by UC , i.e.
XC

k ∈ par(UC) and XP
k /∈ par(UP ), then we remove the arc XC

k → UC in IC as the
patient preferences are essential. Finally, when the utility nodes UC and UP has the same
number of parents representing the same random variables, par(UC) = {XC

1 , . . . , XC
m} and

par(UP ) = {XP
1 , . . . , XP

m}, the utility function can be transferred from patient to clinician
UC := UP . Some noise could be added to model imperfect communication between the
clinician and patient such as UC := UP +N (0, σ), where N (0, σ) is a Gaussian distribution
with mean 0 and standard deviation σ.

In some cases, the patient may not share information about all criteria affecting their
preferences. In other words, the patient may share only some of the parents of UP with
the clinician. In this case, UP will have parents that do not exist in UC i.e. par(UC) =
{XC

1 , . . . , XC
u } and par(UP ) = {XP

1 , . . . , XP
u , XP

u+1. . . , X
P
m}. Let PdP = {XC

u , XC
u+1. . . , X

C
m}

be the parents of UP that do not have an equivalent node in IC . In order to transfer the
utility function IC we need to marginalize the utility function by PdP as follows

UC(x1, . . . , xu) :=
∑

(xu+1,...,xm)∈dom(PdC)

P (xu+1, . . . , xm)UP (x1, ..., xm)

When the utility function is parameterized as a weighted linear function UP (x1, ..., xm) =
wP
1 x1 + · · · + wP

mxm, the associated weights are transferred in preference transfer. For ex-
ample, when the patient shares information about XP

i ∈ par(UP ), this corresponds to
transferring of the associated weight wC

i := wP
i to UC . Similarly, some noise could be

added to model imperfect communication wC
i := wP

i +N (0, σ).

5. Case Study: Course Selection as SDM

This section applies the ID models and interaction operations to a SDM case study. Al-
though SDM is mainly studied in the clinical domain, it is relevant to other domains where
at least two agents make joint decisions primarily based on one of the decision makers’
preferences. To illustrate this, we present a non-clinical SDM example between a student
and an academic advisor regarding university course selection. Our example focuses on
a senior undergraduate student in his final semester, seeking guidance from her academic
advisor to select an elective course before graduation. The advisor provides expertise on
academic content of the decision alternatives and university regulations but she may not
have a complete understanding of the student’s preferences. Similar to SDM in clinical
setting, the student and the advisor collaborate to make decisions that are aligned with
the student’s preferences and also consistent with the curriculum requirements. Our ex-
ample is aligned with the SDM properties (Charles et al., 1997) outlined in Section 2 as
1) it involves two agents engaged in collaborative decision-making, 2) there is information
exchange between the agents as the student gives information about her preferences and
the advisor provides information about course content, academic outcomes and regulations,
3) both parties actively participate in the decision-making process, 4) the final decision is
made with mutual agreement. The problem is also aligned with the fundamental concepts
of SDM identified in the systematic literature reviews of (Bomhof-Roordink et al., 2019;
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Makoul and Clayman, 2006), including learning about the student’s preferences, discussion
of options and advocating the student’s views.

Figures 2(a) and 2(b) show the ID models for the advisor IA and student IS that
correspond to the clinician and patient IDs models described in Section 4.1 respectively.
All chance nodes represent categorical variables in this example. Some chance nodes differ
between the models reflecting that may different understanding of the decision problem. In
this example, the advisor has more detailed knowledge about the course contents and their
potentials for career development, while the student has a more detailed and accurate model
in terms of her preferences. The advisor and student interact about decision alternatives,
preferences and other factors to reach an SDM regarding course selection. We describe how
each ID operation described in Sections 4.2, 4.3 and 4.4 are applied to this case study.

(a) IA (b) IS

Figure 2: Initial IDs of Advisor and Student

5.1. Decision Alternative Transfer

The decision alternative transfer represents informing an agent about the decision alterna-
tives when she has an incomplete knowledge about the domain of the decision node. For
example, when the student does not know some of the courses available to her, the advisor
can inform her the possible courses she can take. In our example, let dom(courseA) =
{416, 424, 481} and dom(courseS) = {416, 424}. Applying decision alternative transfer
make dom(courseS) := {416, 424, 481}. In other words, the advisor informs the student
about the course with code 481 that she can take. The CPTs of the children of courseS need
to be revised as we changed the domain of their parent. We need to initialize the conditional
probability distribution of P (friends | course = 481) and P (difficulty | course = 481)
in their CPTs. We can use a uniform distribution, predefined distribution or sample a
categorical distribution from a Dirichlet prior to initialise these conditional probability dis-
tributions.
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5.2. Chance Node Transfer

The chance node transfer corresponds to informing an agent about one of the random
variables based on the knowledge of the other agent. Suppose the advisor talks about
the content variable that represents whether the content of a course is suitable for the
student’s considering their academic background. The possible values that contentA can
take are dom(contentA) = {suitable, unsuitable}. Since content is not available in IS ,
we firstly add this node and make its domain dom(contentS) := {suitable, unsuitable}.
The parent of contentA is courseA in IA. The courseS node is also available in IS and
its domain is the same as courseA due to the decision transfer step. Next, we add the
arc courseS → contentS . At this stage, the domains of content and its parents are the
same, hence we can copy the CPT of contentA to contentS . We can copy the CPT by
adding random noise to reflect imperfect communication between the agents. For example,
we added random noise from N(0,0.1), clipped them between [0,1] and normalised the
results to ensure that they are probability distributions. Figure 3(a) shows the revised IS

after transferring contentA from IA. Note that, chance node transfer does not make any
modification to the children of the transferred node. To link, difficultyS to contentS and
update its CPT, we need to apply chance node transfer to difficultyS next, as shown in
Figure 3(b).

(a) IS after transferring content (b) IS after transferring difficulty

Figure 3: Chance node transfers from IA to IS

5.3. Preference Transfer

The preference transfer corresponds to informing an agent about the preferences of the
other agent. In our example, this corresponds to communication for understanding the
student’s preferences. We firstly check if the parents of the utility nodes of both agents
are aligned. In our example, par(US) = {grade, workload, career development, friends},
par(UA) = {grade, workload, career development}. We copy friends to IA with its do-
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main. Figure 4(a) shows the revised IA after preference transfer. After this operation, UA

and US share the same parents and we can copy the utility values from US to UA. We can
some random noise to reflect that the student may not clearly express their preferences.

Note that, the CPT of friendsA is initialised randomly when preference transfer is
applied. In order to revise the CPTs of the parents of UA, further chance node transfer
operations can be applied. Figure 4(b) shows the revised IA after applying chance node
transfer operations to friends and career development.

When the student does not inform the advisor about all criteria associated with her
preferences, only some of the parents of US are transferred to UA. In this case we need to
marginalise the utility distribution US before copying it to UA as described in Section 4.4

(a) IA after preference transfer (b) IA after transferring friends and
career development from IS

Figure 4: Preference and chance node transfers to IA

5.4. Simulating Three Talk Model using Influence Diagrams

The operations shown in Sections 4.2, 4.3 and 4.4 can be used to model all stages of TTM
which describes the core elements of SDM (see Section 2). Note that, the student and
advisor in our case study corresponds to the patient and clinician in TTM respectively.

The first stage in the TTM is the choice talk that involves the advisor presenting the
available options to the student. In our model, this corresponds to Decision Alternative
Transfer operation, consolidating decision node states into a joint decision node across
both. The second stage of TTM is the option talk. During this stage, the student and
advisor discuss the decision alternatives and their potential outcomes. The main role of the
advisor is getting to know which factors affect the student’s course preferences, and updating
any misinformation about those factors. In IDs, the option talk corresponds to applying
preference transfer operation to match the advisor’s utility node and its parents with IS .
Then, we apply chance node transfers recursively starting from the parents of utility nodes
IA for all chance nodes. Since we assume that the student’s preferences are essential, and the
advisor has a richer domain knowledge in SDM, we apply the preference transfer to IS and
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chance node transfers to IA. After the preference and chance node transfers, the advisor’s
utility node will be consistent with the student’s preferences, and student’s chance nodes
will be aligned with the advisor leading to the same maximum expected utility decisions
– shared decisions – from both IDs. Note that, communication is imperfect and time is
limited to talk about the entire knowledge of the advisor. Hence, noise could be added,
and limited nodes could be transferred respectively to reflect these conditions. The last
step of TTM is the decision talk, in which the advisor and student makes a joint decision.
This corresponds to computing the maximum expected utility decisions from both IDs and
comparing them.

6. Conclusion

This paper proposed a new ID modelling approach for SDM. We modelled SDM agents
with separate ID models, and proposed graphical operations to reflect interactions between
those agents enabling them to make a shared decision. We illustrated the use of proposed
operations in a case study and showed that they can model all stages of TTM which is
a widely used guideline describing the key components of SDM practice. Our case study
also showed that SDM is a cooperative decision making setting that is not specific to the
clinical domain. Although IDs have been extended to competitive multi-agent settings,
they have not been extended for SDM or similar cooperative decision-making problems (see
Section 3). One of the key contributions of this paper is to capture the iterative nature
of SDM interactions in ID models. SDM involves multiple stages including information
exchange, preference elicitation and joint decision making. The proposed operations models
these stages as iterative revisions between the IDs.

A limitation of our approach is that the agents do not prioritize which nodes to com-
municate through the proposed operations. In future work, we plan to incorporate decision
theoretic metrics such as the value of information to examine the effect of prioritising com-
munication in SDM. Direct transfer of utility function in our approach is another limitation
as humans often find it easier to express their preferences in indirect ways such as ranking
or sorting alternatives. The preference transfer operation can be expanded with indirect
preference elicitation approaches to overcome this limitation.
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