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Abstract
Representation learning of brain activity is a
key step toward unleashing machine learning
models for use in the diagnosis of neurological
diseases/disorders. Diagnosis of different neu-
rological diseases/disorders, however, might re-
quire paying more attention to either spatial
or temporal resolutions of brain activity. Ac-
cordingly, a generalized brain activity learner
requires the ability of learning from both reso-
lutions. Most existing studies, however, use do-
main knowledge to design brain encoders, and
so are limited to a single neuroimage modal-
ity (e.g., EEG or fMRI) and its single reso-
lution. Furthermore, their architecture design
either: (1) uses self-attention mechanism with
quadratic time with respect to input size, mak-
ing its scalability limited, (2) is purely based on
message-passing graph neural networks, miss-
ing long-range dependencies and temporal res-
olution, and/or (3) encode brain activity in each
unit of brain (e.g., voxel) separately, missing the
dependencies of brain regions. In this study, we
present BrainMamba, an attention free, scal-
able, and powerful framework to learn brain ac-
tivity multivariate timeseries. BrainMamba
uses two modules: (i) A novel multivariate
timeseries encoder that leverage an MLP to fuse
information across variates and an Selective
Structured State Space (S4) architecture to en-
code each timeseries. (ii) A novel graph learn-
ing framework that leverage message-passing
neural networks along with S4 architecture
to selectively choose important brain regions.
Our experiments on 7 real-world datasets with
3 modalities show that BrainMamba attains
outstanding performance and outperforms all
baselines in different downstream tasks.

Data and Code Availability All the datasets
used in this study are publicly available. The fMRI
and MEG THINGS datasets are publicly available at

this link. The HCP-Age and HCP-Mental datasets
can be found in this link. The MPI-EEG dataset is
publicly available at this link. The Temple Univer-
sity Hospital EEG Seizure Corpus (TUSZ) is publicly
available at this link. The implementation of this
work is available at this link.

Institutional Review Board (IRB) this study
does not require IRB approval as all the used datasets
were previously published and publicly available.

1. Introduction

Recent advancements in neuroimaging have signif-
icantly enriched our understanding of the human
brain, offering detailed insights into its function-
ing and structure (Poldrack and Gorgolewski, 2014).
Representation learning of brain activity based on
the neuroimaging data is a key step toward analyz-
ing the provided information, and unleashing deep
learning techniques for use in understanding of cog-
nitive process and the diagnosis of neurological dis-
eases/disorders. The recent progress in deep learn-
ing techniques has led to powerful models for study-
ing neuroimaging data, enabling the understanding
of behaviors (Schneider et al., 2023), brain func-
tions (Yamins and DiCarlo, 2016) and/or detecting
neurological diseases (Uddin et al., 2017). These
methods, however, use domain knowledge to design
brain encoders that are suitable for a specific tasks,
and so there is a lack of a universal model with the
ability of being employed for different neuroimage
modalities.

The main challenge towards such a universal ar-
chitecture is the different data-modeling approaches
that are required to capture temporal and spatial res-
olutions. For example, Electroencephalogram (EEG)
is a non-invasive technique to measure electrical ac-
tivity in the brain with a high temporal resolu-
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tion (Subha et al., 2010). That is, EEGs have high
sampling rate and can measure brain activity close
to the timing of the actual activity. EEGs, however,
have a poor spatial resolution, meaning they are not
able to capture the exact location of the electrical ac-
tivity (Subha et al., 2010). On the other hand, func-
tional Magnetic Resonance Imaging (fMRI) has a sig-
nificantly better spatial resolution while it has poor
temporal resolution and responds to changes in the
brain activity relatively slowly (Greve et al., 2013).

In the literature, neuroimage modalities with: 1
high temporal resolution (e.g., EEG and MEG1) of-
ten are modeled as multivariate timeseries (Potter
et al., 2022; Tang et al., 2023; Behrouz et al., 2023),
focusing on high sampling rate and temporal aspect,
and 2 high spatial resolution (e.g., fMRI and struc-
tural MRI) often are modeled as graphs (Kan et al.,
2022b; Li et al., 2021), focusing on spatiotemporal
dependencies. A natural way to overcome this chal-
lenge is to use two encoders, each focuses on one as-
pect of data (Behrouz et al., 2023; Tang et al., 2023).
However, the existing methods use Transformers-like
architectures (Vaswani et al., 2017), which are based
on self-attention mechanism (Bahdanau et al., 2015),
and so require quadratic time and memory with re-
spect to the input data. This complexity is a signifi-
cant obstacle for high-dimensional neuroimaging data
as different modalities either have i long-range time-
series (e.g., in EEG and MEG), or ii a large number
of spatial units (e.g., voxels in fMRI). To overcome
this, studies often use aggregation of local brain re-
sponse to obtain higher-level Region of Interest (ROI)
activity (Kan et al., 2022b; Yang et al., 2023; Li et al.,
2021), choose highly active local units (Behrouz et al.,
2023), or reduce the dimension of temporal data (Pan
et al., 2022); all results in sub-optimal performance
and missing information.

To overcome the above challenges, motivated by
the recent success of state space models in language
modeling and timeseries data (Gu and Dao, 2023;
Zhang et al., 2023; Behrouz et al., 2024), we present
BrainMamba. To learn the dynamics of brain activ-
ity and its temporal properties, BrainMamba uses
Brain Timeseries Mamba (BTMamba). Recently,
state space models show promising performance in
challenging long sequence modeling tasks (Zhang
et al., 2023) and classification of biosignals (Tang
et al., 2023). However, they suffer from two main
limitations when applying on neuroimaging data: 1

1. Magnetoencephalography

They treat each variate of the multivariate timeseries
separately while in neuroimaging data, the dependen-
cies across different brain regions are important to
understand brain activity patterns that might cause
a brain disease/disorder (Behrouz et al., 2023) (See
§5). 2 Their recurrent process is input independent
and so the learning process is time-invariant, meaning
that they use the same parameters for all input during
the recurrent scan. In task-dependent neuroimaging
data, however, it is important to adjust the process
based on the context of the input data. Accordingly,
time-invariant process results in missing the context
and so suboptimal performance (Gu and Dao, 2023).
To address these challenges, BTMamba first uses a
simple Multilayer Perceptron (MLP) to bind the in-
formation across variates, capturing the dependencies
between the timeseries corresponds to different brain
units. Then, it employs an input-dependent selective
state space model to select informative timestamps
during recurrent scans.

To learn from the underlying graph structure of
brain activity, which help to better capture spatio-
temporal dependencies, BrainMamba uses Brain
Network Mamba (BNMamba), a novel graph learn-
ing framework that uses message-passing neural net-
work (MPNN) to first learn the local dependencies
of brain units (e.g., voxels or channels), then treats
nodes as graph tokens, and finally uses an input-
dependent selective state space model to select and
aggregate informative brain regions in linear time.
This input-dependent selection mechanism is spe-
cially important for brain networks as for different
disease/disorder or different tasks (in task-based neu-
roimaging), diagnosis requires more attention to spe-
cific parts of the brain (Franzmeier et al., 2020; Chat-
terjee et al., 2021).

Finally, BrainMamba uses a learnable gate to
combine the information obtained from the encoders.
In pre-training setups, we adapt the training proce-
dure proposed by Behrouz et al. (2023) and maximize
the mutual information of the output of the encoders.
The overview of BrainMamba is illustrated in Fig-
ure 1. Our extensive experiments on seven datasets,
three different modalities, and on four downstream
tasks show that not only BrainMamba achieves su-
perior performance with respect to the state-of-the-
art methods, but each of its encoders alone also
outperforms their corresponding baselines. Notably,
the superior performance is achieved while Brain-
Mamba requires less memory and time compared to
baselines.
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Figure 1: Schematic of the BrainMamba. (A) The overview of the BrainMamba framework. (B) The
architecture of BNMamba: It first ordered brain units based on their corresponding functional system, and
then use Mamba to select informative brain units. (C) The architecture of BTMamba, where it first bind
information cross variates by an MLP and then use Mamba to encode each variate of the time series. (D)
The architecture of the bidirectional Mamba readout.

Contributions. Our main contributions are:

• We present BNMamba, a graph learning
method that use special traits of brain networks
to efficiently and effectively encode spatiotempo-
ral brain networks. It leverages: 1 MPNNs to
encode local dependencies of brain units, 2 a to-
kenizer and ordering mechanism to order nodes
with respect to their functionality in the brain,
2 a selective structured state space model to
efficiently select informative and relevant brain
regions, and 4 a simple adaptive readout block
to learn the brain-level encoding.

• We propose BTMamba, a multivariate time-
series encoders for brain signals that leverages:
1 an MLP block to bind temporal information
across brain units, 2 a time-dependent S4 block
to selectively encode each variate, and 3 the
same readout function as BNMamba to obtain
brain-level encoding.

• We extensively evaluate the BrainMamba and
each of its encoders, BTMamba and BN-
Mamba, on seven datasets with three different
modalities, and on three different downstream
tasks. The results show that not only Brain-
Mamba achieve superior performance compared
to state-of-the-art models, but each of its en-
coders alone also outperform their correspond-
ing baselines.

2. Related Work and Background

2.1. Multivariate Timeseries Learning

Attention mechanisms (Bahdanau et al., 2015) are
powerful models to learn long-range dependencies
in data. Accordingly, Transformer-based models
have attracted much attention in time series fore-
casting (Zerveas et al., 2021; Li et al., 2019). De-
spite their power, their quadratic time complexity
is a critical challenge when applying on large-scale
datasets. Accordingly, several studies aim to reduce
the time and memory usage of these methods by using
sparse attentions (Wu et al., 2020; Zhou et al., 2021).
Concurrently, to improve the efficiency of timeseries
forecasting, inspired by the recent success of MLP-
Mixer (Tolstikhin et al., 2021), Li et al. (2023) and
Chen et al. (2023) presented two variants of MLP-
Mixer for timeseries forecasting.

State Space Models. State Space Models (SSMs),
a type of sequence models, are usually known as lin-
ear time-invariant systems that map input sequence
x(t) ∈ RL to response sequence y(t) ∈ RL (Aoki,
2013). Specifically, SSMs use a latent state h(t) ∈
RN×L, evolution parameter A ∈ RN×N , and projec-
tion parameters B ∈ RN×1,C ∈ R1×N such that:

h′(t) = A h(t) + B x(t),

y(t) = C h(t). (1)

235



BrainMamba

Due to the hardness of solving the above differen-
tial equation in deep learning settings, discrete space
state models (Gu et al., 2020; Zhang et al., 2023)
discretize the above system using a parameter ∆:

ht = Ā ht−1 + B̄ xt,

yt = C̄ ht, (2)

where

Ā = exp (∆A) ,

B̄ = (∆A)
−1

(exp (∆A− I)) .∆B. (3)

Gu et al. (2020) shows that discrete-time SSMs are
equivalent to the following convolution:

K̄ =
(
C̄B̄, C̄ĀB̄, . . . , C̄ĀL−1B̄

)
,

y = x ∗ K̄, (4)

and accordingly can be computed very efficiently.
Discrete space state models show promising perfor-
mance on timeseries data (Zhang et al., 2023; Tang
et al., 2023), but they suffer from two main lim-
itations: 1 They lack selection mechanism, caus-
ing missing the context as discussed by Gu and Dao
(2023) 2 They treat each variate of the multivariate
timeseries seperately, missing the inter-variate depen-
dencies. Recently, Gu and Dao (2023) introduce an
efficient and powerful architecture, called Mamba,
with a novel selection mechanism for 1-d sequences
(e.g., language and DNA) that potentially can ad-
dress the first limitation. BTMamba can be seen as
an adapted selective state space model proposed by
Gu and Dao (2023) to multivariate timeseries data.

2.2. Graph and/or Timeseries Learning for
Brain

With the success of graph neural networks in graph
data analysis, they have become powerful and pop-
ular methods to analyze the brain functional con-
nectivity (Behrouz and Seltzer, 2023a; Behrouz and
Hashemi, 2023) and to diagnosis of neurological dis-
ease/disorder (Kan et al., 2021; Tang et al., 2023;
Kan et al., 2022b). The first group of studies use the
statistical correlation of signals to construct the un-
derlying graph and then employ pure MPNN to learn
the node (brain regions) encodings (Kan et al., 2021;
Zhu et al., 2022; Li et al., 2021). The second group
of studies try to learn the structure of the underlying
graph from the brain activity (Behrouz and Hashemi,
2023; Tang et al., 2023). While this approach poten-
tially provide a more flexible paradigm, it has more

parameters and requires more data, which is costly
in neuroimaging (Bassett and Sporns, 2017). Re-
cently, attention-based and transformer-based mod-
els attracts attention (Behrouz et al., 2023; Kan et al.,
2022b; Hu et al., 2023). While these methods show
promising performance, their attention mechanism
has quadratic time complexity, limiting their appli-
cability to voxel-level activity of the whole brain.

On the other hand, several studies focus on purely
brain signals (multivariate timeseries data) to detect
neurological diseases (Pan et al., 2022; Tang et al.,
2022; Shoeibi et al., 2021; Craik et al., 2019). For
example, Cai et al. (2023) designed a self-supervised
learning framework to detect seizures from EEG and
SEEG data. However, all these methods are use do-
main knowledge and also suffer from a subset of the
following limitations: they are designed for 1 a par-
ticular task (e.g., brain classification), 2 a particular
neuroimaging modality (e.g., fMRI or EEG) or 3 su-
pervised settings, and cannot capture 4 long-range
dependencies in the timeseries data, and/or 5 inter-
variate dependencies of timeseries. Our BTMamba
can be used on any neuroimage modalities that pro-
vide multivariate timeseries recorded from multiple
units across the brain. Further, its efficient linear-
time selection mechanism helps it to select informa-
tive timestamps and so capture the long-range depen-
dencies across time.

Table 1 summarizes the differences of Brain-
Mamba with recent brain activity encoders. While
there are several studies, for the sake of presentation,
we discuss a sample of recent and state-of-the-art
methods that are a good representative of all studies.
One of the important properties of BrainMamba is
its linear time complexity, making it a powerful back-
bone for the architecture of foundation models for use
in encoding brain activity.

3. Problem Setup

We represent the multivariate timeseries of brain ac-

tivity as X = {X (t)}Tt=1, where X (t) ∈ R|V|×T̃ (t) rep-
resents the neural data in time window 1 ≤ t ≤ T ,
V is the set of brain units, and T̃ (t) is the length of
the timeseries in time window t. In task-dependent
data, each time window t corresponds to a task, and
in resting state data, we have T = 1. We fur-
ther let tmax = maxt=1,...,T T̃ (t), representing the
maximum length of timeseries. Using the multivari-
ate timeseries data, in each time window t, we fol-
low the literature (e.g., (Kan et al., 2022b; Behrouz
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Table 1: The comparison of recent brain activity encoders.

Mvts BNTransformer GraphS4mer Ptgb BrainMixer BrainMamba
(Potter et al., 2022) (Kan et al., 2022b) (Tang et al., 2023) (Yang et al., 2023) (Behrouz et al., 2023) (This work)

Data
EEG fMRI EEG† fMRI All‡ All‡

(Timeseries) (Graph) (Timeseries + Graph) (Graph) (Timeseries + Graph) (Timeseries + Graph)

Brain Unit Channels ROIs Channels ROIs
Highly active voxels All voxels
(Channels in EEG) (Channels in EEG)

Spatial Encoding -

Temporal Encoding - -

Inter-variate
- - - -

Information Fusing

Pre-training - -

Long-range Sequence - - - -

Time Complexity Quadratic Quadratic Quadratic Quadratic Quadratic Linear
† Although GraphS4mer can potentially be employed on neuroimage modalities with low sampling frequency (e.g. fMRI), it is best suited for timeseries with

long-range temporal dependencies (e.g., EEG) as discussed by Tang et al. (2023).
‡ All fMRI, EEG, MEG, and generally any neuroimaging modalities that provide multivariate timeseries recorded from multiple units across the brain.

and Seltzer, 2023a)) and construct the brain network

(functional connectivity graph) G(t)
F = (V, E(t)) such

that E(t) ⊆ V × V is the set connections between
brain units. The connections are constructed based
on the Pearson correlation of corresponding time-

series. That is, (u, v) ∈ E(t) iff X (t)
u and X (t)

v have
high correlation.

In this work, we aim to learn a low dimensional vec-
tor representation for (1) each brain unit and (2) the
brain, which we later will use for binary (i.e., anomaly
detection) and multi-class classification tasks.

4. Model: BrainMamba

BrainMamba consists of two main modules: 1 BN-
Mamba and 2 BTMamba.

4.1. Brain Network Encoder

The main goal of this encoder is to encode spatio-
temporal properties of the brain networks, obtained
from the neuroimaging data. A natural choice to
learn the node encodings of a graph is to use MPNNs.
However, as discussed earlier, the relevance of the ac-
tivity of each brain unit for each neurological disease
or disorder is different and a simple MPNN will treat
all the nodes the same. They further suffer from over-
squashing (Di Giovanni et al., 2023), making them
limited in capturing long-range dependencies. Alter-
natively, Graph Transformers (Yun et al., 2019) are
powerful architectures that can learn both long-range
dependencies as well as the importance of brain units
via its attention mechanism. They, however, have
quadratic time complexity, limiting their applicabil-
ity to large-scale neuroimage datasets.

Inspired by the success of Mamba architecture in
1-d sequential data (Gu and Dao, 2023), Brain Net-
work Mamba uses discrete state space models with a
selection mechanism. To adapt Mamba in this con-
text, there are two critical challenges: 1 Mamba is
a sequential encoder and cannot simply be applied
on complex structures like graphs. 2 Simply treat-
ing a graph as a sequence of nodes requires a specific
ordering of nodes and also will miss the local depen-
dencies. To address the above challenges, BNMamba
uses MPNN, learning local dependencies, simultane-
ously with a new selective graph SSM architecture,
learning long-range dependencies.

Tokenization. Inspired by Graph Transformer (Yun
et al., 2019; Behrouz and Hashemi, 2024), we tok-
enize the brain network as a sequence of nodes each of
which is associated with a positional encoding and an
initial feature vector. To encode the position of each
node, we use a special traits of the brain. The hu-
man brain is comprised of functional systems (Schae-
fer et al., 2018), which are groups of brain units (e.g.,
voxels) that perform similar functions (Smith et al.,
2013). To capture the position of a brain unit, we
consider its distance to all other brain units within
its corresponding functional systems. The main chal-
lenge in graph-structured data is the lack of orders
for nodes. In BNMamba, we suggest functional or-
dering, which is sorting nodes with respect to the size
of boundary edges2 in their corresponding functional
system . The intuition of this approach comes from
the recurrent architecture of the SSMs. In SSMs,
including Mamba (Gu and Dao, 2023), the hidden
states are updated based on prior elements in the se-

2. i.e., edges between inside and outside.

237



BrainMamba

quence. Accordingly, earlier tokens has less informa-
tion about the other tokens in the sequence. In the
proposed functional ordering earlier tokens has less
connections to other tokens, meaning that they have
less functional correlation with other brain units and
so are less dependent to others. On the other hand,
later tokens are brain units with large number of con-
nections, meaning that they are more dependent to
the encodings of others.

While the functional ordering uses a special trait
of the brain to group and order brain units, the order
of brain units in a functional system is still unknown.
To this end, during the training phase, we randomly
shuffle the order of brain units within a functional
system to make the model robust to permutation.

Selective SSM Module. In the previous part, we
tokenize the brain network into a sequence of nodes.
Next, we discuss the selective SSM module. Given
u ∈ V and 1 ≤ t ≤ T , let ϕ(t)

u represents the initial
feature vector of u, obtained from the concatenation
of the node positional encoding and its corresponding

brain activity time series X (t)
u . We define Φ(t) as the

matrix whose rows are ϕ(t)
u , ordered by the functional

ordering discussed above. Given 1 ≤ t ≤ T , we define
our selective SSM as follows:

Φ
(t)
input = σ

(
Conv

(
Winput LayerNorm

(
Φ(t)

)))
,

B(t) = WB Φ
(t)
input, C(t) = WC Φ

(t)
input,

∆(t) = W∆ Φ
(t)
input,

Ā(t) = DiscreteA

(
A(t),∆

)
,

B̄(t) = DiscreteB

(
B(t),∆

)
,

y(t) = SSMĀ,B̄,C

(
Φ

(t)
input

)
,

y
(t)
out=Wout

(
y(t)⊙ σ

(
WLayerNorm

(
Φ(t)

)))
, (5)

where W,WB,WC,W∆, and Wout are learnable
parameters, σ(.) is nonlinear function, LayerNorm(.)
is layer normalization (Ba et al., 2016), SSM(.) is the
state space model discussed in Equations 2 and 4,
and Discrete(.) is discretization process discussed in
Equation 3. In the above formulation, all parameters
of SSM(.), i.e., B,C, and ∆ are functions of the input

Φ
(t)
input and so the recurrent process is time-variant

and can select the relevant information based on the
input as discussed by (Gu and Dao, 2023). As dis-
cussed earlier, this selective SSM is particularly im-
portant for capturing long-range dependencies in the
neuroimaging data.

Message-Passing. To capture the local dependen-
cies in the brain network, we use a message-passing
graph neural network model. Given u ∈ V and

1 ≤ t ≤ T , let ψ(t)(0)

u = ϕ(t)
u be the initial feature

vector of u, as defined above. Then ℓ-th layer of
message-passing neural network can be written as:

m(ℓ)
v→u = W

(ℓ)
localConcat

(
ψ(t)(ℓ−1)

u , ψ(t)(ℓ−1)

v

)
ψ(t)(ℓ)

u = Sum
({
m(ℓ)

v→u|v ∈ N (t)(u)
})

+ψ(t)(ℓ−1)

u (6)

where W
(ℓ)
local is a learnable matrix and N (t)(u) is

the set of all neighbors of u in timestamp t. i.e.,
N (t)(u) = {v|(u, v) ∈ E(t)}. We let Ψ(t) be the out-
put of the above message-passing procedure after the
last layer whose rows are ψ(t)

u for u ∈ V. Next, to take
the advantage of both local and long-range dependen-
cies, we aggregate the output of the message-passing
process with the selective SSM:

H(t) = Agg
(
Ψ(t),y

(t)
out

)
, (7)

where Agg(.) is aggregation function (we use summa-

tion in our experiments). We use h
(t)
u to refer to the

corresponding row of the H(t) to node a u ∈ V.

Readout Function (Mamba Readout). Given
the encoding of brain units obtained from the above
procedure, the main goal of the readout function is to
learn the global encoding, i.e., low-dimensional rep-
resentation of the brain. To this end, we aim to use a
selective SSM on the sequence of nodes and treat the
last output as the graph-level representation. Ac-
cordingly, the selection mechanism filters irrelevant
brain units to the brain-level downstream task, pro-
viding a high quality encoding. Contrary to Equa-
tion 7, in which we aim to learn node encodings, we
do not need the output for middle states and we only
look at the final output of the recurrent scan. Accord-
ingly, the procedure is more sensitive to the choice of
ordering and the proposed functional ordering is not
useful. To this end, inspired by Wang et al. (2023),
we use a bidirectional procedure. That is, given an
ordered sequence of nodes obtained from the func-
tional ordering, we use two selective state space mod-
els, each with the same architecture as Equation 7,
and feed the ordered sequence forward and backward.
This procedure helps decreasing the sensitivity to the
ordering of nodes. We use η(t)

BN
to refer to the brain

network level encoding.
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4.2. Multivariate Brain Signal Encoder

The main goal of this encoder is to learn the tem-
poral properties and long-range dependencies in the
multivariate timeseries of brain activity. As discussed
earlier, while state space models are powerful meth-
ods for efficiently modeling timeseries data, they suf-
fer from two limitations: 1 they cannot bind in-
formation across variates in multivariate timeseries
data and 2 they are time-invariant and use the same
mechanism for all input tokens. In this section, we
present a new architecture that can address the above
limitations.

Inter-variate Information Fusing. In multivari-
ate timeseries data, there are dependencies across
both time and variate dimensions. In the first mod-
ule, given 1 ≤ t ≤ T , to bind and fuse information
across variates, we suggest using a simple MLP on
the transpose of timeseries matrix X (t):

Z(t) = WTime1σ
(
WTime2LayerNorm

(
X (t)⊤

))⊤
, (8)

where WTime1 and WTime2 are learnable parameters.
This module mixes the information across rows of ma-
trix X (t), capturing the variates wise dependencies.

Variate Encoder. Next, given a brain unit u ∈ V,
to encode its corresponding timeseries data, we use
the same architecture as Equation 7 with input Z(t)

u .

We use Υ(t) to denote the output of this step, where
Υ(t)

u is the encoding of the timeseries associated with
a brain unit u ∈ V.

Readout Function. In graph-level downstream
tasks, we use the same readout function as BN-
Mamba, which is discussed earlier, to obtain the
global encoding. We use η

BT
to refer to this global

encoding.

4.3. Dynamics Across Time Windows

In resting state neuroimage data, we have T = 1,
i.e., there is only one time window. In task-based
neuroimage data, however, we have different time
windows and the dynamics of brain activity across
all time windows can be a key to diagnosis a dis-
ease/disorder (Fiorenzato et al., 2019). In the above
procedures, we calculate the encodings based on only
the current time window, missing the dynamics across
all time windows. We use a similar approach as GRU
mechanism (Chung et al., 2014) but with state space
models. Given u ∈ V, to update the brain unit
encodings in brain network over time windows, we

treat h
(1)
u , . . . ,h

(T )
u as corresponding tokens of node

u and use a selective SSM, the same architecture as
Equation 7, to update the node encodings over time
windows in a recurrent manner. We use the same
procedure on Υ(1)

u , . . . ,Υ(T )
u to update timeseries en-

codings over time. We use Ĥ, a matrix whose rows
corresponds to nodes’ encodings, to denote the final
output of the brain network encoding process and Υ̂
to refer to the final output of the timeseries encoding
process.

To take advantage of both temporal and spatio-
temporal encodings, respectively obtained from Υ̂
and Ĥ, we concatenate them and use an MLP to
calculate the final encodings:

Ω = MLP
(
Ĥ∥Υ̂

)
, (9)

where ∥ is row-wise concatenation.

4.4. Training

Supervised and Semi-Supervised Settings. In
semi-supervised settings, given a pre-trained or ran-
domly initialize model, we end-to-end train our model
using provided labels or contrastive learning, dis-
cussed by Behrouz et al. (2023). When the initial
model is pre-trained, we freeze all modules except
Equation 9, letting the MLP(.) learn how to incorpo-
rate the temporal and spatia-temporal information.

Pre-training Setup. In the pre-training setup,
since our model is capable of obtaining brain activ-
ity encodings from two different views (i.e., tempo-
ral and spatio-temporal views), we use the frame-
work proposed by Behrouz et al. (2023), and max-

imize the mutual information between Ĥ and Υ̂ us-
ing Noise-Contrastive Estimation (NCE) (Gutmann
and Hyvärinen, 2010) and minimize the following loss
function:

Loss = E(Υ̂,Ĥv,i)

[
EN

[
L(Υ̂, Ĥv,i,N )

]]
+ E(Ĥ,Υ̂v,j)

[
EN

[
L(Ĥ, Υ̂v,j ,N )

]]
, (10)

where N is the set of negative samples, (Υ̂, Ĥ
(t)
v,i) and

Ĥ, (Υ̂)v,j) are the positive sample pairs, and L is a
standard Log-Softmax function.

5. Experiments and Results

Datasets. We use seven real datasets with three
different modalities (i.e., fMRI, MEG, EEG): 1
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Bvfc (Behrouz et al., 2023) is a task-based fMRI
dataset that includes voxel activity timeseries and
functional connectivity of 3 subjects when looking at
the 8460 images from 720 categories. 2 Bvfc-MEG
is the MEG counterpart of Bvfc. 3 ADHD (Mil-
ham et al., 2011) consists of fMRI of 250 subjects in
the ADHD group and 450 subjects in the typically
developed (TD) control group. 4 The Seizure detec-
tion TUH-EEG dataset (Shah et al., 2018) contains
EEG data (with 31 channels) of 642 subjects. 5
HCP-mental (Van Essen et al., 2013) contains data
from 7440 neuroimaging samples each of which is as-
sociated with one of the seven ground-truth mental
states. 5 HCP-age (Van Essen et al., 2013) contains
the same data but we aim to predict the age of human
subjects using their fMRI. 7 MPI-EEG (Babayan
et al., 2019) consists of 204 EEG data (two healthy
groups (1) young with age 25.1±3.1 and (2) elderly
with age 67.6 ± 4.7) with 62 chennels. The details of
the dataset can be found in Appendix A

Evaluation Tasks. We focus on three tasks:
1 Brain Classification (multi-class classification) 2
Brain Unit Anomaly Detection (AD), and 3 Brain
AD (binary classification). For the brain unit AD
tasks, we follow previous studies (Ma et al., 2021;
Behrouz and Seltzer, 2023a; Behrouz and Hashemi,
2023), and corrupt 1% and 5% of the data. For brain
AD, the ground truth anomalies in Bvfc are the
brain responses to not recognizable images and for
ADHD and TUH-EEG datasets are brain activity of
people living with ADHD and seizure, respectively.
For brain classification, we focus on the prediction
of ii age prediction and mental state decoding (in
HCP-Age, and HCP-Mental), and i categories of im-
ages seen by the subjects (in Bvfc, and Bvfc-MEG).
We perform statistical comparison with baselines via
paired t-tests and shade significance results (p-value
≤ 0.05) with blue and others with gray.

In binary classification tasks, due to the poten-
tial of imbalanced data, we follow the literature (Ma
et al., 2021; Tang et al., 2023; Behrouz et al., 2023)
and report Area Under Precision-Recall Curve (AUC-
PR). For multi-class classification, we report the ac-
curacy of the methods.

Baselines. We compare BrainMamba with state-
of-the-art time series, graph, and brain activity en-
coder models: 1 Graph-based methods: GOut-
lier (Aggarwal et al., 2011), NetWalk (Yu et al.,
2018), Graph MLP-Mixer (GMM) (He et al., 2023),
GraphMixer (Cong et al., 2023). 2 brain-network-

Table 2: Performance on multi-class brain classifica-
tion: Mean ACC (%) ± std. We shade significance
results with blue and others with gray.

Methods Bvfc Bvfc-MEG HCP-Mental HCP-Age

Usad 48.52±1.94 50.02±1.13 73.49±1.56 39.17±1.68

HyperSAGCN 51.92±1.47 51.19±1.88 90.37±1.61 47.38±1.96

GMM 53.11±1.44 53.04±1.73 90.92±1.83 47.75±1.26

GraphMixer 53.17±1.21 53.12±1.18 91.13±1.44 48.32±1.11

BrainNetCnn 49.10±1.83 50.12±1.57 83.58±1.68 42.26±2.03

BrainGNN 50.63±1.67 51.08±0.96 85.25±2.17 43.08±1.54

FbNetGen 50.18±0.98 50.94±1.39 84.47±1.88 42.83±1.78

Admire 54.36±1.39 54.87±1.92 89.74±1.93 47.82±1.72

PTGB 55.89±1.78 55.11±1.62 92.58±1.31 48.41±1.47

BNTransformer OOM† 55.17±1.74 91.71±1.48 47.94±1.15

GraphS4mer OOM† 74.39±0.92 82.30±1.83 46.32±1.09

BrainMixer OOM† 62.58±1.12 96.32±0.29 57.83±1.03

BrainMamba 75.19±1.98 78.03±1.69 96.57±1.05 59.62±1.71

† OOM: Out of Memory.

based methods: BrainGnn (Li et al., 2021), FbNet-
Gen (Kan et al., 2022a), BrainNetCnn (Kawahara
et al., 2017), ADMire (Behrouz and Seltzer, 2023b),
BNTransformer (Kan et al., 2022b), PTGB (Yang
et al., 2023), and BrainMixer (Behrouz et al.,
2023). 3 Time-series-based methods: Usad (Au-
dibert et al., 2020), Time Series Transformer
(TST) (Zerveas et al., 2021), Mvts (Potter et al.,
2022), and GraphS4mer (Tang et al., 2023). For
the sake of fair comparison, we use the same train-
ing, hyperparameter tuning, and testing procedure as
BrainMamba.

Brain Classification. Table 2 reports the per-
formance of BrainMamba and baselines on multi-
class brain classification task. BrainMamba out-
performs all the baselines with three significant im-
provement our of the four datasets. By average
BrainMamba achieve 9.94% performance improve-
ment over the best baselines. The best improve-
ment (24.68%) comes from the Bvfc-MEG data with
high sampling rate, resulting in long-range brain sig-
nals. The reason for this superior performance is five
fold: 1 Compared to three state-of-the-art methods,
BrainMamba is the most efficient methods and can
scale to large-scale datasets (e.g., Bvfc). 2 Com-
pared to GraphS4mer, BrainMamba has the ca-
pability of learning from data with both high (e.g.,
MEG) and low (e.g., fMRI) temporal resolution. 3
Compared to PTGB and BrainMixer, which are ca-
pable of pre-training, BrainMamba shows superior
performance, supporting the significance of the archi-
tecture design. For example, PTGB only uses MPNN
networks which are important in capturing local de-
pendencies, but miss the long-range dependencies.
On the other hand, BrainMixer misses local de-
pendencies due to the lack of message-passing mech-
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Table 3: Performance on anomaly detection: Mean AUC-PR (%) ± standard deviation. OOM: Out of
Memory. We shade significance results (corrected p-value ≤ 0.05) with blue and others with gray.

Methods
Bvfc Bvfc-MEG

HCP ADHD TUH-EEG MPI-EEG

Anomaly % 1% 5 % 1% 5 % 1% 5 % 1% 5 %

B
ra

in
U

n
it

-l
ev

el
A

D

Usad 68.27±1.16 62.73±1.27 65.49±1.31 65.01±1.18 72.79±1.48 72.19±0.94 72.81±1.42 71.36±1.03 67.75±1.02 67.59±1.53

TST 70.62±1.48 68.57±1.81 69.18±1.64 69.11±1.32 74.81±1.14 73.99±1.47 73.71±1.55 73.03±1.47 68.37±1.59 67.81±1.94

Mvts N/A N/A N/A N/A N/A N/A 77.48±1.81 77.02±1.29 74.16±1.20 73.59±1.68

GOutlier 64.66±2.38 60.17±1.25 63.59±1.62 63.07±1.52 68.97±1.16 67.12±0.93 65.18±1.09 65.01±1.57 61.89±2.01 60.88±2.23

NetWalk 68.73±1.16 63.61±1.31 66.98±1.44 66.04±1.63 75.16±1.23 74.73±1.01 72.21±0.91 71.62±1.46 72.18±1.15 71.77±1.49

GraphMixer 76.94±1.68 71.44±1.39 81.55±1.82 81.07±1.27 81.37±1.09 80.83±1.16 72.95±1.26 72.01±0.82 78.95±1.33 78.51±1.84

BrainNetCnn 80.17±1.49 73.91±1.54 82.75±1.27 82.21±1.73 82.79±1.08 81.12±1.16 73.98±1.24 73.01±1.08 N/A N/A
BrainGnn 79.92±1.63 73.25±1.94 82.99±1.65 82.13±1.66 81.14±1.05 80.83±0.87 73.06±1.14 72.74±0.86 N/A N/A
FbNetGen 79.17±2.04 72.35±1.84 82.26±1.37 81.62±1.49 80.91±1.12 80.94±1.74 72.53±1.48 72.06±1.29 N/A N/A
PTGB 85.18±1.83 76.16±1.08 85.72±1.14 84.95±1.33 86.43±1.16 86.36±1.15 77.54±1.37 77.32±1.21 N/A N/A
BNTransformer OOM 75.67±1.14 85.02±0.96 84.36±1.59 86.13±1.21 86.11±1.82 77.96±1.32 77.08±1.06 N/A N/A
GraphS4mer OOM 81.09±0.57 84.19±0.85 83.99±1.41 82.95±1.13 83.06±1.49 78.33±1.26 79.01±1.08 84.19±1.00 83.98±1.72

BrainMixer OOM 81.52±1.32 89.27±1.61 88.94±1.24 89.97±1.14 89.81±1.27 79.45±1.19 79.23±0.94 84.07±1.13 84.14±1.26

BrainMamba 91.58±1.24 82.07±1.10 91.04±0.89 90.97±1.33 91.26±1.00 91.03±1.64 80.22±1.02 80.18±1.57 85.99±0.63 85.46±1.05

B
ra

in
-l

ev
el

A
D

Usad 71.93±1.15 61.32±1.71 67.79±2.28 67.36±2.61 82.87±2.03 80.52±1.84 72.03±1.17 71.48±1.05 75.19±1.52 73.60±0.91

TST 72.47±1.23 67.12±2.07 67.94±1.69 67.22±1.17 83.54±1.38 83.04±1.12 72.96±1.39 72.11±1.58 74.26±1.33 73.95±1.98

Mvts N/A N/A N/A N/A N/A N/A 83.53±1.91 82.41±1.02 86.44±1.78 83.92±1.63

NetWalk 72.16±1.44 69.57±1.73 69.14±1.49 68.66±1.52 83.11±1.02 82.81±1.61 71.06±1.05 69.94±1.12 75.19±1.41 74.60±1.26

GMM 81.79±1.24 77.84±1.52 74.87±1.58 74.02±1.10 85.89±0.98 85.03±1.18 76.62±1.17 76.11±1.26 77.73±1.82 77.35±0.99

GraphMixer 82.56±1.19 77.91±1.26 75.03±1.72 74.46±1.53 86.02±1.15 85.64±1.09 77.49±1.09 76.63±1.22 76.52±1.07 75.93±1.06

BrainNetCnn 78.47±1.18 73.12±1.27 70.73±1.77 70.12±1.86 85.84±0.96 85.07±1.52 73.92±0.97 73.07±1.51 N/A N/A
BrainGnn 79.81±1.57 75.28±1.61 72.98±1.55 72.41±1.16 84.59±1.26 83.72±1.35 72.41±1.38 71.55±1.16 N/A N/A
FbNetGen 78.94±1.24 74.49±1.33 71.62±1.53 71.06±1.48 84.67±1.26 84.08±1.37 72.69±1.18 71.87±1.12 N/A N/A
ADMire 83.72±1.18 78.83±1.56 75.52±1.81 74.59±1.12 86.27±1.72 85.18±1.56 78.12±1.47 77.59±1.68 N/A N/A
PTGB 84.08±1.35 79.68±1.62 76.01±1.07 75.13±1.48 87.59±1.12 86.99±0.96 79.17±1.36 78.64±1.55 N/A N/A
BNTransformer OOM 79.03±1.78 75.64±1.82 75.09±1.18 87.54±1.04 86.92±1.48 79.36±1.71 78.08±1.16 N/A N/A
GraphS4mer OOM 86.15±0.42 72.88±0.94 71.77±1.05 84.33±0.79 83.95±0.88 89.95±0.34 88.69±0.73 89.44±1.17 89.25±1.68

BrainMixer OOM 84.59±1.70 80.67±1.13 80.49±1.07 91.38±0.94 90.98±1.02 85.74±1.16 85.63±1.23 90.82±1.51 89.74±1.89

BrainMamba 88.49±1.01 87.23±0.92 81.26±1.05 81.57±1.80 91.41±0.46 91.95±1.02 92.17±1.31 91.76±0.99 92.28±0.76 91.07±1.24

anism. The architecture of BrainMamba, however,
is capable of learning both local and long-range de-
pendencies. 4 Compared to static methods (e.g.,
BrainGNN, BrainNetCNN, etc.), BrainMamba
can take advantage of dynamics of the brain activ-
ity over time. 5 Finally, compared to timeseries
encoder, BrainMamba takes advantage of underly-
ing graph structured data of brain signals, learning
spatio-temporal properties.

Anomaly Detection. We further evaluate the
performance of BrainMamba in anomaly detection
tasks. Table 3 reports the performance of Brain-
Mamba and baselines on anomaly detection tasks
at different scales: i.e., brain unit-level and brain-
level. BrainMamba achieves the best AUC-PR on
all datasets with 1.43% and 1.75% average improve-
ment over the best baseline in brain unit-level AD,
and brain-level AD, respectively. The main reasons
for this superior performance are the same as the rea-
sons we discuss above.

Ablation Study. We conduct ablation studies
on our model using the Bvfc, Bvfc-MEG, HCP,
and ADHD datasets to validate the effectiveness of
BrainMamba’s critical components and their con-
tributions in its performance. Table 4 shows AUC-
PR for Brain-Unit AD and accuracy (ACC) for brain

multi-class classification tasks. The first row reports
the performance of the complete BrainMamba im-
plementation with pre-training. Each subsequent
row shows results for BrainMamba with one mod-
ule modification: row 2 removes the pre-training
phase, row 3 is the brain network encoder alone
(BrainMamba without timeseries encoder), row 4
removes message-passing from the BNMamba, row
5 replaces functional ordering with random ordering
in the training phase, row 6 is the brain timeseries
encoder alone (BrainMamba without brain network
encoder), row 7 removes cross-variate MLP, and row 8
replace the bidirectional readout function with a sim-
ple unidirectional readout (using state space model
discussed in Eq.7). The results show that each
component and choice of architecture design is crit-
ical for achieving BrainMamba’s superior perfor-
mance. The greatest contribution comes from BN-
Mamba, message-passing mechanism, BTMamba,
cross-variate MLP, functional ordering, bidirectional
readout, respectively. Note that the readout function
is only used in brain classification tasks and its mod-
ification cannot affect the performance in unit AD.

Also, comparing the performance of the BNMamba
with graph learning methods and BTMamba with
time series encoders in Tables 2 and 3 shows that
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Table 4: Ablation study on BrainMamba. AUC-PR scores for brain AD and ACC for classification.

Methods Bvfc Bvfc-MEG HCP ADHD

Unit-level AD Classification Unit-level AD Classification Unit-level AD Classification Unit-level AD Classification

BrainMamba 91.58±1.24 75.19±1.98 82.07±1.10 78.03±1.69 91.04±0.89 96.57±1.05 91.26±1.09 -
w/o Pre-training 86.15±0.92 68.55±1.93 79.84±1.22 77.00±0.81 88.59±1.08 93.19±1.35 89.37±1.44 -

BNMamba 86.19±1.03 71.02±0.98 77.14±1.19 67.41±1.33 88.65±1.28 94.19±0.94 86.98±1.53 -
w/o MPNN 84.09±1.25 70.83±0.24 74.11±1.60 66.02±1.39 85.99±1.19 92.68±0.88 85.26±1.20 -
w/o Functional Ordering 85.97±0.98 70.88±1.06 76.85±1.00 65.49±1.23 87.12±1.67 93.74±0.80 86.19±0.61 -

BTMamba 89.44±1.09 73.29±1.15 80.37±0.92 71.38±0.89 90.57±1.42 94.10±1.46 89.74±0.71 -
w/o Cross-variate MLP 85.98±1.12 71.16±1.39 79.22±1.66 67.82±1.73 89.52±1.68 92.85±0.32 88.54±1.16 -

Unidirectional Readout 91.58±1.24 74.88±1.00 82.07±1.10 77.14±1.14 91.04±0.89 94.91±0.97 91.23±1.09 -
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Figure 2: The effect of the number of brain units and
the number of timestamps on the training time.
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Figure 3: The effect of the number of brain units and
the number of timestamps on the memory usage.

each of these two components alone can outperform
their corresponding baselines.

Efficiency. We further evaluate the scalability and
memory usage of BrainMamba with respect to the
input size (either high spatial or temporal resolu-
tion). To this end, we change the number of voxels in
BVFC and the number of samples from the timeseries
in BVFC-MEG. Figures 2 and 3 report the results.
BrainMamba time and memory scales linearly with
respect to both the number of brain units and the
number of samples in the time series. This scalabil-
ity allow us to use BrainMamba on large datasets,
making BrainMamba a potentially powerful back-
bone for the foundation models on neurosignals.

The Effect of Selection. In this part, we use
corrupted data with different percent of corruption
and report the performance of BrainMamba with
and without selection (i.e., we use time-invariant
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Figure 4: The effect of selection mechanism on noisy
data.

state space model). Results are reported in Fig-
ure 4. BrainMamba with selective state space mod-
ule is more robust to the corrupted data than Brain-
Mamba without selection (i.e., time-invariant mech-
anism). These results show the importance of the
architecture design of BrainMamba, specifically for
noisy neuroimage data.

6. Conclusion

In conclusion, in this paper, we developed Brain-
Mamba, a general and efficient encoder for model-
ing spatio-temporal long-range dependencies in mul-
tivariate brain signals. Its design allows for encod-
ing the actual brain signals, using an timeseries en-
coder, and their spatial dependencies, using a graph
encoder, making it a powerful model for variety of
neuroimaging data. While using two encoders, its ef-
ficient design based on selective state space models
make its time complexity linear with respect to the
input data, enabling training on large-scale data. Our
experimental evaluations on various tasks, includ-
ing seizure, ADHD, mental state detection, and with
three different modalities show that BrainMamba
outperforms all the baselines, while using less time
and memory.
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Appendix A. Details of Datasets

A.1. Datasets

We use seven real-world datasets with different neu-
roimage modalities and downstream tasks, whose de-
scriptions are as follows:

• BVFC (Behrouz et al., 2023): BVFC is a task-
based fMRI dataset that includes voxel activ-
ity timeseries and functional connectivity of 3
subjects when looking at the 8460 images from
720 categories. For the multi-class classification
task, we aim to predict the label of the seen
image (9 labels) using the fMRI response of a
human subject (3 subjects). For the node-level
anomaly detection tasks, we use synthetic in-
jected anomalies and for the graph anomaly de-
tection, we aim to detect GAN generated images
using the fMRI response. We label brain activi-
ties that correspond to seeing a GAN generated
image (resp. natural image) as “Anomalous”
(resp. “Normal”). In multi-class classification
tasks, the labels are “Food”, “Human Body”,
“Car”, “Fruit”, “Animals”, “Verdure”, “Acces-
sories”, “Fish”, and “Misc.”.

• BVFC-MEG (Behrouz et al., 2023): BVFC-
MEG is the MEG counterpart of the BVFC. For
the multi-class classification task, we aim to pre-
dict the label of the seen image (9 labels) us-
ing the MEG response of a human subject (4
subjects). For the node-level anomaly detection
tasks, we use synthetic injected anomalies and
for the graph anomaly detection, we aim to de-
tect natural scenes using the MEG response. We
label MEG response that correspond to seeing
natural scenes as “Anomalous” and seeing other
objects as “Normal”. The labels in multiclass
classification tasks are the same as BVFC.

• ADHD (Milham et al., 2011): ADHD (Milham
et al., 2011) contains resting-state fMRI of 250
subjects in the ADHD group and 450 subjects
in the typically developed (TD) control group.
We follow the standard pre-processing steps (Cui
et al., 2022) to obtain brain networks. For the
edge and node anomaly detection tasks, we use
synthetic anomalies, while for the graph anomaly
detection task we label brain networks of the typ-
ically developed control group as “Normal” and
brain networks of the ADHD group as “Anoma-
lous”.

• TUH-EEG (Shah et al., 2018): The seizure de-
tection TUH-EEG dataset (Shah et al., 2018)
consists of EEG data with 31 channels of 642
subjects. For the edge and node anomaly detec-
tion tasks, we use synthetic anomalies, while for
the graph anomaly detection task we label brain
networks of people with and without seizure as
“Anomalous” and “Normal”, respectively.

• MPI-EEG: MPI-EEG (Babayan et al., 2019)
consists of 204 EEG data (two healthy groups
(1) young with age 25.1±3.1 and (2) elderly with
age 67.6 ± 4.7) with 62 chennels.

• HCP (Van Essen et al., 2013): HCP (Van Essen
et al., 2013) contains data from 7440 neuroimag-
ing samples each of which is associated with one
of the seven ground-truth mental states. Follow-
ing previous studies (Said et al., 2023), we define
two downstream multi-class classification tasks:
1 Mental states prediction, in which we aim
to predict the mental state using the fMRI. In
these tasks, the labels are “Emotion Processing”,
“Gambling”, “Language”, “Motor”, “Relational
Processing”, “Social Cognition”, and “Working
Memory”. 2 We aim to predict the age of hu-
man subjects using their fMRI. In this tasks, we
split the age into 5 groups, balancing the num-
ber of samples in each class. Similar to other
datasets, we use synthetic anomalies for the edge
and node anomaly detection tasks.

Appendix B. Details of Baselines

Since BrainMamba combines functional connectiv-
ity and voxel timeseries activity, we compare our
method to fourteen previous state-of-the-art methods
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Table 5: Datasets statistics.

Datasets Number of Graphs Average Number of Nodes Average Number of Edges
Number of Classes Ground-Truth Anomaly

(Multi-class Classification) (Binary Classification)

BVFC 25380 11776 352479 9 Yes
BVFC-MEG 88992 272 9841 9 Yes
ADHD 700 400 6194 - Yes
TUH-EEG 642 31 252 - Yes
MPI-EEG 204 62 2419 - Yes

HCP
7440

1000
7635 7 (Mental states)

Yes
1067 8041 5 (Age)

and baselines on the timeseries, functional connectiv-
ity, and graph encoding:

1. BrainMixer (Behrouz et al., 2023): BrainMixer
uses two encoders, one for timeseries encoding
and one for graph encoding based on the MLP-
Mixer architecture. Then maximizes the mutual
information of these two encoders to learn the
timeseries encodings.

2. Graph MLP-Mixer (GMM) (He et al., 2023):
Graph MLP-Mixer uses graph partitioning algo-
rithms to split the input graph into overlapping
graph patches (subgraphs) and then employs a
graph neural network to encode each patch. It
then uses an MLP to fuse information across
patch encodings. The model with code can be
found in here. Note that Graph MLP-Mixer can-
not take advantage of temporal properties of the
graph as it is designed for static networks.

3. GraphMixer (Cong et al., 2023): Graph-
Mixer is a simple method that concatenates
the 1-hop temporal connections and their time
encoding of each node as its representative ma-
trix. It then uses an MLPMixer to encode each
representative matrix to obtain node encodings.
The model with code can be found in here.

4. FbNetGen (Kan et al., 2022a): FbNetGen is
a graph neural network based generative model
for functional brain networks from fMRI data
that includes three components: a dimension
reduction phase to denoise the raw time-series
data, a graph generator for brain networks gen-
eration from the encoded features, and a GNN
predictor for predictions based on the generated
brain networks. The model with code can be
found in here.

5. BrainGnn (Li et al., 2021): BrainGnn is
a graph neural network-based framework that

maps regional and cross-regional functional con-
nectivity patterns. Li et al. (2021) propose a
novel clustering-based embedding method in the
graph convolutional layer as well as a graph node
pooling to learn ROI encodings in the brain. The
model with code can be found in here.

6. BrainNetCnn (Kawahara et al., 2017):
BrainNetCnn is a CNN-based approach that
uses novel edge-to-edge, edge-to-node and node-
to-graph convolutional filters that leverage the
topological locality of structural brain networks.

7. ADMire (Behrouz and Seltzer, 2023b): AD-
Mire is a random walk-based approach that
models brain connectivity networks as multiplex
graphs. It uses inter-view and intra-view walks
to capture the causality between different neu-
roimage modalities or different frequency band
filters.

8. BNTransformer (Kan et al., 2022b): BN-
Transformer adapts Transformers (Vaswani
et al., 2017) to brain networks, so it can use
unique properties of brain networks. BNTrans-
former use connection profiles as node fea-
tures to provide low-cost positional information
and then learns pair-wise connection strengths
among ROIs with efficient attention weights. It
further uses a novel READOUT operation based
on self-supervised soft clustering and orthonor-
mal projection. The model with code can be
found in here.

9. PTGB (Yang et al., 2023): PTGB is an unsuper-
vised pre-training method designed specifically
for brain networks using contrastive learning and
maximizing the mutual information between an
anchor point of investigation X from a data dis-
tribution H and its positive samples, while min-
imizing its mutual information with its negative
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samples. The model with code can be found in
here.

10. Usad (Audibert et al., 2020): Usad is an unsu-
pervised representation learning method in time
series, which utilizes an encoder-decoder archi-
tecture within an adversarial training framework
that allows it to take advantage of both.

11. Time Series Transformer (TST) (Zerveas et al.,
2021): TST is a transformer-based framework
for unsupervised representation learning of mul-
tivariate time series, which is capable of pre-
training and can be employed on varius down-
stream tasks.

12. Mvts (Potter et al., 2022): Mvts is an unsu-
pervised transformer-based model for time se-
ries learning, which utilizes special properties
of EEGs for seizure identification. It uses an
autoencoder mechanism involving a transformer
encoder and an unsupervised loss function for
training.

We use the same hyperparameter selection process
as BrainMamba. Also, we fine tune their training
parameters as their original papers using grid search.
For the sake of fair comparison, we use the same
training, testing and validation data for all the base-
lines (including same data augmentation and negative
sampling). Also, for PTGB (Yang et al., 2023) and
BrainMixer (Behrouz et al., 2023), which also are ca-
pable of pre-training, we use the same datasets and
settings as we use for BrainMamba.

Appendix C. Model Size

To show the efficiency of BrainMamba and to
compare it with competitors with respect to the
model size, we report the number of parameters
of BrainMamba, BrainMixer, and BNTrans-
former in Figure 5. Mamba backbone of Brain-
Mamba avoids attention module and with less
number of parameters provides better performance.
These results futher support that the superior perfor-
mance of BrainMamba over baselines is not because
of the large number of parameters, but it is because
of its architectural design.
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Figure 5: The number of parameters in Brain-
Mamba and its main competitors, BrainMixer and
BNTransformer.

Appendix D. Details of Training

In the training of BrainMamba, We randomly
split 70% of the datasets for training, 10% for
validation, and the remaining 20% are utilized as
the test set (making sure that there is no over-
lap between training and test sets.). We employ
AdamW (Loshchilov and Hutter, 2019) with a mo-
mentum of 0.9, and a weight decay of 0.05 to opti-
mize BrainMamba. The batch size is set as 64.
While we use the same batch size for all baselines,
particularly, BNTransformer, GraphS4mer, and
BrainMixer face out of memory issue on BVFC
dataset. The main reason is the number of voxels
in this dataset (> 10000), which due to the quadratic
space complexity of Transformers used in these mod-
els results in OOM issue. For this method, we also
tried batch size of 8, which did not solve this OOM
issue.

Appendix E. Limitations & Future
Work

The success of BrainMamba in binary and multi-
class classification tasks raises many interesting direc-
tions for future studies: 1 Wider variety of neurolog-
ical conditions: For the sake of space and time, the
current experiments are limited to benchmark stud-
ies on ADHD, Seizure, and mental state detection, as
well as visual cortex decoding. To further show the
usefulness of BrainMamba in wider variety of neu-
rological conditions, we plan to apply BrainMamba
for Alzheimer’s disease, Autism Spectrum Disorder
(ASD), and Schizophrenia, which all are known to be
correlated with functional connectivity. 2 The cur-
rent method is based on pre-defined brain network
connectivity using Pearson’s correlation. In our fu-
ture study, we plan to learn the functional connec-
tivity network in a data-driven and end-to-end man-
ner. This end-to-end design results in more flexibility
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and generalizibility of the framework. 3 The cur-
rent framework treats each subject the same in the
training process, while the neuroimaging of a subject
might be noisy, due to special conditions in the time
of data collection. To address it, one future direc-
tion is to investigate the possibility of robust training
across different populations using attention mecha-
nism. 4 BrainMamba is based on sequence encod-
ing and translates both voxel activity and functional
connectivity to sequences. Potentially, this idea can
be extended to other modalities like historical med-
ical record (text), and/or multimodal neuroimages
(fMRI + structural MRI, fMRI + EEG, etc.). One
future direction is to extend BrainMamba frame-
work to support multiple modalities, which can help
to improve the generalizibility and performance. 5
The evaluation of the robustness of BrainMamba
with respect to distribution shifts is left for future
studies. We hypothesize that due to the nature of
architecture design of existing methods as well as
BrainMamba, they all might perform poorly with
respect to distribution shifts; We expect, however,
BrainMamba, due to its selection mechanism, gen-
eralize better than existing methods (Behrouz et al.,
2023; Kan et al., 2022b) and further our suggestion
in 3 can make the model more robust with respect
to distribution shifts. For the sake of space, we leave
this evaluation for future work.
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