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Stéphane Marchand-Maillet stephane.marchand-maillet@unige.ch

University of Geneva, Switzerland

Abstract

This paper presents FlowCyt, the first com-
prehensive benchmark for multi-class single-
cell classification in flow cytometry data. The
dataset comprises bone marrow samples from
30 patients, with each cell characterized by
twelve markers. Ground truth labels iden-
tify five hematological cell types: T lym-
phocytes, B lymphocytes, Monocytes, Mast
cells, and Hematopoietic Stem/Progenitor Cells
(HSPCs). Experiments utilize supervised in-
ductive learning and semi-supervised transduc-
tive learning on up to 1 million cells per
patient. Baseline methods include Gaussian
Mixture Models, XGBoost, Random Forests,
Deep Neural Networks, and Graph Neural Net-
works (GNNs). GNNs demonstrate superior
performance by exploiting spatial relationships
in graph-encoded data. The benchmark al-
lows standardized evaluation of clinically rele-
vant classification tasks, along with exploratory
analyses to gain insights into hematological cell
phenotypes. This represents the first public
flow cytometry benchmark with a richly an-
notated, heterogeneous dataset. It will em-
power the development and rigorous assessment
of novel methodologies for single-cell analysis.

Data and Code Availability This paper uses the
flow cytometry dataset provided by our University

∗ These authors contributed equally.

Hospital, which is available in our GitHub bench-
mark’s repository along with our code1.

Institutional Review Board (IRB) This study
was reviewed and approved by the Institutional Re-
view Board of our University Hospital.

1. Introduction

In the constantly changing field of analyzing hema-
tologic cell populations, multi-class classification re-
mains a challenging task, requiring innovative diag-
nostic strategies capable of understanding the com-
plexities of diverse cellular manifestations. Among
various diagnostic tools, flow cytometry has become
a key element in clinical practices, providing quick
insights into cell populations and enabling the identi-
fication and characterization of abnormal cell types.
However, the diagnostic potential of flow cytometry is
counterbalanced by the formidable challenges posed
by the complexity and heterogeneity of hematologic
populations, requiring a shift in analytical method-
ologies.

We endeavor to offer the first public benchmark for
flow cytometry data, providing automated solutions
for hematological relevant tasks, such as multi-class
single-cell classification. It is noteworthy that this is
the first available benchmark for flow cytometry data,

1. FlowCyt Webpage
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equipped with ground truth, baseline models and ad-
vanced deep learning methods. This benchmark aims
to provide a standardized platform for evaluating the
performance of various algorithms and models, facil-
itating the development of novel, more efficient, and
accurate diagnostic strategies.

1.1. Flow Cytometry

Flow cytometry (FC) is a laboratory technique used
to detect and measure physical and chemical charac-
teristics of population of cells or particles in a solu-
tion. In medicine, particularly in hematology and im-
munology, flow cytometry is mainly applied to char-
acterize and count types of white blood cells in the
evaluation of infectious diseases, autoimmune disor-
ders, immunodeficiencies, or in the diagnosis of blood
cancers such as leukemias or lymphomas.
Typically, samples obtained from the blood or bone

marrow of patients are thereby labeled with anti-
bodies that recognize specific surface proteins ex-
pressed by the cell populations present. The antibod-
ies are coupled to fluorochromes so that when they
are passed before a laser beam light is absorbed and
then emitted in a band of wavelengths. Tens of thou-
sands of cells can be quickly examined by modern flow
cytometers in a matter of seconds and the data gath-
ered subsequently processed by a computer. Highly
complex data sets are thereby generated with data
from up to several million cells and information about
the presence or not of between 15 to 50 different cell
proteins. Despite originating in the 1960s (Fulwyler,
1965; Gray et al., 1975), the fundamental structure
of flow cytometry has undergone minimal alteration.
Nevertheless, ongoing enhancements to both flow cy-
tometers and fluorescent dyes have substantially ac-
celerated cell analysis and expanded the range of de-
tectable protein markers. In the 2000s, cytometry by
time of flight (CyTOF), also referred to as mass spec-
trometry, was invented (Bandura et al., 2009; Bendall
et al., 2011). CyTOF can identify isotope peaks with-
out notable spectrum overlap with the use of heavy
metal isotope coupled antibodies. This enables the
simultaneous profiling of over 50 protein markers. In
this work, we focus on providing and describing flow
cytometry data, along with baseline performance of
automated analysis technique.

1.2. Manual FC Data Analysis

Traditional manual gating employs a series of two-
dimensional plots for data visualization and employs

hierarchical gates to identify cell populations (Salama
et al., 2022). It has the advantage that it can in-
tegrates prior knowledge into cytometry data analy-
sis, encompassing the functionality of protein markers
and the developmental correlation among cell popula-
tions. However, it remains a challenge to analyse the
cytometry data due to its large cell numbers, high di-
mensionality, human bias and heterogeneity between
datasets.

Special software has been developped which allow
cytometrists to analyse this multi-dimensional data,
to focus on specific cell populations, and to estab-
lish the phenotypic profile of a cell or cell population.
This manual analysis is time-consuming, laborious,
needs a high expertise, but still remains subjective
and user-dependent.

Methods are therefore urgently needed which allow
the analysis of this data in an efficient, rapid and
precise way.

1.3. Related Work

There already exist numerous mathematical and sta-
tistical tools to analyze cytometric multi-dimensional
data sets such as cell population identification (Hu
et al., 2018; Mosmann et al., 2014; Finak et al.,
2009; Aghaeepour et al., 2011; Van Gassen et al.,
2015; Dorfman et al., 2016), data visualization (Amir
et al., 2013; Becht et al., 2019; Qiu et al., 2011), sam-
ple classification (Bruggner et al., 2014; Van Gassen
et al., 2016; Arvaniti and Claassen, 2017; Hu et al.,
2020), batch normalization (Schuyler et al., 2019;
Van Gassen et al., 2020), quality control (Monaco
et al., 2016) and trajectory inference (Dai et al.,
2021). These tools employ a wide range of compu-
tational methods which range from rule-based algo-
rithms to machine learning models.

2. Dataset Description

In this section, we present an overview of FlowCyt,
which is the first benchmark for single-cell multi-class
classification using flow cytometry data. It utilizes a
curated dataset comprising samples from 30 different
patients.

2.1. Biological Description

Tabular data, especially in the field of biological data
analysis, has a distinct and complicated structure.
Each row in the table represents a single cell, which
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is characterized by several parameters like size, gran-
ularity, and fluorescence intensity. These parame-
ters collectively constitute a high-dimensional feature
space that captures the intricate biological variations
among the cells. This data’s inherent structure often
contains underlying relationships and dependencies
that are not immediately apparent.

In this research, we begin by collecting raw data
from the bone marrow of patients using a cytome-
ter. The cytometer assesses the physical and chemi-
cal features of cells in a fluid as it passes through a
laser beam. The surface molecules are fluorescently
labeled and then activated by the laser to emit light
at different wavelengths. Detectors collect the emit-
ted light and transform it into electric signals. The
raw data obtained from the cytometer are saved in
Flow Cytometry Standard (FCS) files. Each FCS file
comprises multidimensional data that corresponds to
thousands of cells, with each cell characterized by var-
ious parameters such as size, granularity, and fluores-
cence intensity.

Thirty bone marrow (BM) samples were obtained
from patients who underwent a flow cytometric
analysis for diagnostic purposes. All samples were
processed by the Diagnostics laboratory of the
University Hospital and no malignant disease was
detected. Samples were stained with the following
antibodies: CD14=FITC, CD19=PE, CD13=ECD,
CD13=PerCP5.5, CD34=PC7, CD117=APC,
CD7=APC700, CD16=APC750, HLA-DR=PB
and CD45=KO. Between 250′000 and 1′000′000
cells were acquired from each sample on a 10-color
Navios cytometer (Beckman&Coulter) and analyzed
manually with the KALUZA software (B&C).

After the exclusion of cell debris, dead cells, and
doublets, cell counts were established for the follow-
ing five different cell populations: B lymphocytes
(CD19pos), T lymphocytes (CD7pos), monocytes
(CD14pos and CD33pos), mast cells (CD117 strongly
pos), and HSPCs (hematopoietic stem and progenitor
population, CD34pos). Therefore, we characterized
in our dataset the following populations:

1. T Lymphocytes: These are a specific type of
white blood cell that plays a pivotal role in the
adaptive immune system, which is the response
that involves the activation of immune cells to
fight infection. They are responsible for directly
killing infected host cells, activating other im-
mune cells, producing cytokines, and regulating
the immune response.

2. B Lmphocytes: These cells are significant con-
tributors to the adaptive immune system. They
are responsible for producing antibodies against
antigens, which are substances that the immune
system recognizes as foreign. Each mature B cell
is programmed to make one specific antibody.
When a B cell encounters its triggering antigen,
it gives rise to many large cells known as plasma
cells, each of which is essentially an antibody fac-
tory.

3. Monocytes: These are a type of white blood cell
and a part of the innate immune system. They
play a vital role in the body’s defense against
infections and other foreign invaders. Mono-
cytes circulate in the bloodstream, and when
they migrate into tissues, they differentiate into
macrophages or dendritic cells, which are ca-
pable of engulfing and digesting pathogens and
apoptotic cells.

4. Mast cells: These are a type of immune cell
that plays a crucial role in the body’s response
to allergies and certain infections. Mast cells
are found in most tissues, but especially in ar-
eas close to the external environment, such as
the skin and mucous membranes. They contain
granules filled with potent chemicals, including
histamine, which they release in response to con-
tact with an allergen. This release triggers in-
flammation, which can lead to allergic reactions.

5. Hematopoietic stem and progenitor cells
(HSPC): These are a type of stem cell found in
the bone marrow and cord blood. They have the
unique ability to give rise to all other types of
blood cells, including red blood cells, platelets,
and all types of white blood cells. This makes
them crucial for maintaining the body’s blood
supply and immune system.

Each sample in the dataset includes ground truth la-
bels indicating the corresponding hematological cell
type. Researchers can use these labels to train and
evaluate classification models aimed at discerning
different cell types. Moreover, the dataset enables
exploratory analyses such as clustering and dimen-
sionality reduction, allowing comprehensive investi-
gations into the heterogeneity and dynamics of hema-
tological cell populations.
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2.2. Technical Description

Table 1 displays the features that we utilized for all
the analysis and tasks. All files have been gated by
hematologists according to the list of cell types (la-
bels) provided below.

Table 1: Flow cytometry data markers.

Class Marker Description

0 FS INT Forward Scatter (FSC) - Cell’s size
1 SS INT Side Scatter (SSC) - Cell’s granularity
2 CD14-FITC Cluster of Differentiation 14 - Antigen
3 CD19-PE Cluster of Differentiation 19 - Antigen
4 CD13-ECD Cluster of Differentiation 13 - Antigen
5 CD33-PC5.5 Cluster of Differentiation 33 - Antigen
6 CD34-PC7 Cluster of Differentiation 34 - Antigen
7 CD117-APC Cluster of Differentiation 117 - Antigen
8 CD7-APC700 Cluster of Differentiation 7 - Antigen
9 CD16-APC750 Cluster of Differentiation 16 - Antigen
10 HLA-PB Human Leukocyte Antigen
11 CD45-KO Cluster of Differentiation 45 - Antigen

Data and labels: Flow cytometry data is primar-
ily tabular data. Each sample is represented by a
N ×D matrix of values. It is therefore equivalent to
aD-dimensional point cloud that cytometrists visual-
ize via 2D projections. The result of such operations
is the definition and quantification of different cell
populations according to their phenotype.
The dataset we propose contains samples from 30

patients; each sample with an average of N = 500′000
cells (see supplementary material for the detailed
count) and D = 12 dimensions (markers, according
to Table 1). At that stage, data has not undergone
any other normalization than the one provided by the
flow cytometry apparatus.
While we acknowledge that our study utilizes a

dataset with 12 markers, this number is well within
the range of typical flow cytometry panels used in
clinical practice. Many previous studies have suc-
cessfully demonstrated the utility of machine learning
techniques on similar or even lower dimensional flow
data. For instance, Arvaniti and Claassen (2017) ap-
plied representation learning on a 10-marker dataset
to detect rare disease populations. Bruggner et al.
(2014)identified stratifying signatures across 13 sur-
face markers, while Finak et al. (2009) proposed a
mixture model-based approach for cell population
identification on a datasets with 8-12 markers, show-
casing the effectiveness of their method in accurately
identifying cell populations across diverse marker
panels. Moreover, the key challenge in FC analy-
sis does not solely stem from high dimensionality but
rather from the inherent heterogeneity, complexity,
and rarity of cell populations of interest amidst a ma-
jority of irrelevant cells. Our dataset, comprising over

1 million cells per patient, with 5 and 6 distinct and
unbalanced cell types, accurately reflects these real-
world challenges faced by cytometrists.

Files: Files have been anonymized and stored in
“Flow Cytometry Standard” (FCS)2 format that is
generically produced by the flow cytometer. Readers
for such format include the FlowCal Python library3

or the flowCore package in the larger bioconductor
R library4.

Subsequently data files were cleaned manually with
the help of the KALUZA software so that cell de-
bris and dead cells were eliminated. The populations
of interest were then defined manually and stored as
separate files for each patient. For each patient, we
obtained therefore seven data files:

• Case A.fcs which contained the total cell pop-
ulation,

• Case O.fcs (first class) contained only T lym-
phocytes,

• Case N.fcs (second class) contained only B lym-
phocytes,

• Case G.fcs (third class) contained only mono-
cytes,

• Case P.fcs (fourth class) contained only mast
cells,

• Case K.fcs (fifth class) contained only
hematopoietic (HSPCs) cells,

• Case B.fcs (sixth class) contained all the re-
maining cells denoted as {B} = {A} \
{O,N,G,P,K}.

Labels were kept aside and stored in basic “Comma
Separated Value” (CSV) format that is easy to parse
in any language. This offers the possibility to add
new labels to the same data. The correspondence
between cells (lines of FCS files) and their labels (lines
in CSV files) is simply made by line numbering.

Overall, the data repository includes files for a total
volume of around 1.3 GB. The data is distributed in
our convenient group repository5.

2. International Society for Advancement of Cytometry
3. Python FlowCal library
4. R FlowCore package
5. FlowCyt Webpage
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3. Structure of the Benchmark

FlowCyt aims to facilitate the flow cytometry pro-
cess undertaken by hematologists by promoting re-
producibility and extensibility in single-cell classifi-
cation research. The benchmarking framework and
dataset are openly accessible, allowing researchers
to explore novel methodologies and algorithms while
reproducing existing results. By providing a stan-
dardized evaluation framework and a richly anno-
tated dataset, FlowCyt empowers researchers to push
the boundaries of single-cell analysis in hematologi-
cal/immunological flow cytometry data.

3.1. Classification Task:

The main focus of our benchmark is to classify dif-
ferent cell types present in the heterogeneous sam-
ples. To make a fair comparison and evaluation of
the performance of different baseline methods, we
have provided various metrics, such as accuracy, pre-
cision, recall, and F1 score. Since it is a multi-class
problem, these metrics are essential for ensuring ro-
bustness and comparability of the results. Moreover,
being the dataset strongly imbalanced, we have com-
puted the ratio of the correctly predicted labels for
each class in each patient. These measures will assist
researchers in precisely evaluating and comparing the
classification models.

3.1.1. Sub-Population Classification:

We offer a specialized evaluation that focuses only
on the classification of cells that belong to the
{O,N,G,P,K} population. This analysis allows re-
searchers to examine the effectiveness of classification
techniques in differentiating the variations within this
specific subset of hematological cells. By isolating
this distinct cell population, researchers can better
understand the capacity of classification models to
accurately identify and classify cells that are clini-
cally relevant.

3.1.2. Total Population Classification:

To evaluate the learning robustness and generaliza-
tion capabilities of the classification models, Flow-
Cyt includes a classification task that involves the
entire population A for each patient. By evaluating
the models with the inherent complexity and diver-
sity present within population A, researchers can de-
termine how well the classification methodologies can
work in real-world clinical scenarios.

3.2. Other Tasks:

The benchmark we’ve created for flow cytometry
data analysis goes beyond classification and can be
used for various analytical tasks, such as clustering,
dimensionality reduction, trajectory inference, and
anomaly detection. The dataset can be explored by
researchers to gain insights into cellular types, mak-
ing it a versatile resource for researchers working on
FCS data. FlowCyt is therefore a resource that we
aim to enrich with new data, labels, and task defini-
tions (see Section 5.1).
It will also de facto get enriched by the community
via its usage.

4. Experiments

We now discuss the details of our experimental de-
sign, which includes both inductive (IL) and trans-
ductive learning (TL) tasks. By combining these
two learning methodologies, we aim to utilize their
strengths to conduct a comprehensive analysis of our
data. This approach also ensures that our results are
more reliable and robust.

4.1. Techniques

To solve our tasks, which are mainly related to multi-
class classification, we utilized well-known classifica-
tion techniques as our baseline. All of these base-
lines were tested in the inductive learning framework,
which was the basis for our medical evaluation, as
depicted in Figure 1 and fully described in Section
4.1.2. Additionally, we tested the best-performing
models in a transductive learning scenario to further
evaluate the robustness of the learning process. This
last scenario should be considered as an extension of
the classification (inductive) task, where the reliabil-
ity of the models was proven under semi-supervised
learning, rather than full-supervised one.

4.1.1. Baselines

FlowCyt offers a variety of methods for single-cell
classification, ranging from traditional techniques like
Gaussian Mixture Models (GMM), XGBoost (XGB),
and Random Forest (RF) to more advanced meth-
ods like Deep Neural Networks (DNNs) and Graph
Neural Networks (GNNs). GNNs stand out in terms
of performance, demonstrating the ability of graph
learning techniques to identify patterns in a cell’s
neighborhood and their interactions. This enhances
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our understanding of hematological situations by uti-
lizing spatial information and network structures.
To use these graph learning methods, FlowCyt pro-

vides the option to convert tabular data to graph-
structured data that can be fed into the various pro-
posed GNNs. We achieved this by treating each cell
as a node in the graph space, withNi representing the
set of k-nearest neighbors for node i (where k = 7)
using the L2 metric in the feature space. For each
node, we built all possible pairs of its neighbors and
added them to the edge set of the graph, resulting
in a fully connected graph for each patient-graph in-
stance. After experimenting with different values, we
decided to use k = 7 to strike a balance between mak-
ing the graph too sparse (which could miss important
connections) and too dense (which could include ir-
relevant connections). This approach enabled us to
capture both the local structure (individual neigh-
bors) and higher-order relationships (combinations of
neighbors) in the data, helping us identify the most
relevant relationships without adding noise. More-
over, constructing the graph via the k-nearest neigh-
bor is intrinsically local and does not force us to make
any assumptions about the distribution of the data,
making it a good choice for datasets like ours where
the full distribution of the data could be unknown.

4.1.2. Inductive Learning

To accomplish this specific task, we used the dataset
from our cohort of 30 patients. To ensure a reliable
evaluation methodology, we employed a randomized
approach. We carried out a 7-fold test procedure and
we selected 10% of each training fold uniformly at
random as a validation set to evaluate the predicted
labels ŷi by our model. This approach means that
out of 30 patients, 4 or 5 are for testing, 2 or 3 for
validation, and the rest for training. It’s important
to note that the testing graphs are completely unseen
during training.
We trained our model and adjusted the hyperpa-

rameters on the validation set to assess performance
on the test set. We ran our models five times with five
different seed initialization to ensure the robustness
of our results.

Transductive Learning Motivated by the best re-
sults produced in Section 4.1.2, we further proved
the effectiveness of the models by using the trans-
ductive learning methodology outlined in Yang et al.
(2016), where during the training phase the mod-
els were given access to the feature vectors of all

(a) 7-fold test procedure diagram

(b) Train/Val splitting

Figure 1: The dataset was split into seven segments for anal-
ysis. Six of these segments were used as training
data, while one was reserved as test data. Ad-
ditionally, 10% of each training segment was ran-
domly selected to create a validation set.

nodes. While the concept of transductive learning
has been explored in various domains, its applica-
tion to flow cytometry data is relatively novel, and
there is little literature explicitly discussing its im-
plications in this field. Hu et al. (2020) and Zhang
et al. (2019) proposed a robust and interpretable end-
to-end deep learning model for cytometry data and
scRNA-Seq analysis, incorporating elements of self-
supervised and semi-supervised learning. They dis-
cuss the advantages of leveraging unlabeled data to
improve model generalization and robustness, which
is crucial in the context of heterogeneous and high-
dimensional cytometry data to reduce the need for
extensive manual gating and annotation.

In FlowCyt, our primary goal was to classify the
status of cells, distinguishing between the five dif-
ferent classes, while also evaluating the reliability of
the classification performances in a semi-supervised
setup utilizing up to one million cells per patient. To
achieve this, we conducted five different seed itera-
tions using our models. We randomly assigned 10%
of the nodes for validation and 10% for testing while
keeping the classes’ ratio balanced, the same as in the
full dataset. Since our model is strongly imbalanced,
we used a weighted negative log-likelihood loss func-
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tion. Then we randomly masked the labels of 50% of
the training, validation, and test set. We can there-
fore think of our problem as having a large graph
where half of the graph is unlabeled, and our goal is
to predict the labels based on the ones that we have.

4.2. Results

In the following sections, we provide a detailed ac-
count of our experimental setup. We present the
classification results for both sub and total cell pop-
ulations (see Section 3.1) in the inductive scenario.
Additionally, we present the TL results for the previ-
ous best models.

4.2.1. Sub-Population IL

We present here the results of the classification task
as discussed in Section 3.1.1. We measure the per-
formance in terms of accuracy, precision, recall, and
F1 score as reported in Table 2. We compare state-

Table 2: Average metrics across all 30 patients on sub-
population. All the results are averaged with ±0.01,
and the names are shortened.

Model Accuracy Precision Recall F1-Score

GAT 0.97 0.99 0.98 0.98
SAGE 0.98 0.97 0.98 0.98
GCN 0.96 0.96 0.95 0.95
DNN 0.86 0.88 0.84 0.80
RF 0.94 0.91 0.83 0.88
XGB 0.97 0.96 0.98 0.97
GMM 0.47 0.77 0.36 0.50

of-the-art methods for tabular data classification,
such as DNNs, XGB, RF, and GMM, with popu-
lar GNNs like GraphSAGE (SAGE) (Hamilton et al.,
2017), Graph Convolutional Networks (GCNs) (Kipf
and Welling, 2016), and Graph Attention Networks
(GATs) (Veličković et al., 2017).
We calculate these metrics for each class i, using

the following formula (where TP stands for True Pos-
itive, FN for False Negative, and FP for False Posi-
tive):

Precisioni =
TPi

TPi + FPi
,

Recalli =
TPi

TPi + FNi
,

F1 Scorei = 2× Precisioni × Recalli
Precisioni +Recalli

.

(1)

We have similar equations for i = 1, 2, 3, 4, 5. Encour-
aged by the predictive ability of some of the models,
we take a deeper look, and in Table 3 and Table 4
we show the (correct) predicted label across patients
and cell types.

Table 3: Comparison of the average correct ratios across all
30 patients on the sub-population. Results are av-
eraged with ±0.01.

Type GAT DNN RF XGB GMM

T Cells 99.18 96.71 93.25 97.02 63.71
B Cells 90.53 73.62 90.60 82.63 51.00

Monocytes 97.89 90.28 90.38 93.01 25.06
Mast 98.28 88.78 1.74 49.28 30.00
HSPC 92.36 83.68 84.07 88.76 30.76

Table 4: Cont’d of Table 3 on the sup-population classifica-
tion task.

Type GAT SAGE GCN

T Cells 99.10 98.18 99.12
B Cells 90.53 86.86 84.22

Monocytes 97.19 93.71 96.55
Mast Cells 98.28 99.50 97.24

HSPC 92.36 93.25 92.14

4.2.2. A-Population IL

We summarise in Table 5 the results on the total cell
population (Section 3.1.2) for each patient, and we
show in Table 6 of Appendix A the hyperparame-
ters used throughout all the experiments. It is im-
portant to note that some models were not able to
scale up on larger populations of up to one million
nodes while maintaining a good ratio of correctly pre-
dicted labels. This indicates that only graph models,
which are based on graph-encoded data, can capture
the cell relations that are crucial for the classifica-
tion task. While we only mentioned here GAT as a
graph model, please refer to the code repository for
all the results obtained using various GNNs related
to Table 5. Moreover, moved by the extremely accu-
rate results provided by GAT, we also interpret the
choices made by the model, analyzing which markers
(features) were considered more important than oth-
ers, as shown in Figure 2 where the top 10 are shown.
As we can see, the features that are given the most
importance (at least above 55%) are 2,1,5,0 and 6,
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Figure 2: Feature importance as highlighted by the model.
For the sake of simplicity, we remind the reader to
match the labels with the corresponding Table 1
for future explanations.

therefore we break down the choice of the model for
each one. In order of importance, we have:

• CD14-FITC. The first important feature demon-
strates the expression level of CD14. CD14 is a
cell surface receptor that binds to lipopolysac-
charide (LPS), which is a component of the bac-
terial cell wall. CD14 is mainly expressed by
monocytes, macrophages, and activated granu-
locytes. It plays a role in the immune response
against bacterial infections. A high importance
of this feature may imply that our model can dis-
tinguish between cells that are involved in innate
immunity and those that are not, detecting the
presence of bacterial infection in the sample.

• Side Scatter (SSC)-Cell’s granularity. This fea-
ture denotes the level of light scatter at a 90-
degree angle in relation to the laser beam. SSC
reflects the internal complexity or granularity of
the cell, encompassing features like the presence
of granules, nuclei, or other organelles. A high
importance of this feature may suggest that ei-
ther our model can differentiate between cells
that have different degrees of complexity, such
as lymphocytes, monocytes, and granulocytes,
or our model can identify cells that have abnor-
mal granularity, such as blast cells or malignant
cells.

• CD33-PC5.5. This feature indicates the
expression level of CD33, a cell surface

receptor that belongs to the sialic acid-
binding immunoglobulin-like lectin (Siglec) fam-
ily. CD33 is expressed by myeloid cells, such
as monocytes, macrophages, granulocytes, and
mast cells, and it modulates the immune re-
sponse by inhibiting the activation of these cells.
A high importance of this feature may sug-
gest that our model can distinguish between
myeloid and non-myeloid cells, or that our model
can detect the expression of CD33 as a marker
for certain types of leukemia, such as acute
myeloid leukemia (AML) or chronic myelomono-
cytic leukemia (CMML).

• Forward scatter (FSC)-Cell’s size. This feature
indicates the level of light scatter along the path
of the laser beam. FSC is proportional to the
diameter or surface area of the cell, and it can
be used to discriminate cells by size. Placing
emphasis on this feature may suggest that our
model can differentiate between cells that have
different sizes, such as small lymphocytes and
large monocytes.

• CD34-PC7. This feature indicates the expres-
sion level of CD34, which is a cell surface gly-
coprotein that belongs to the sialomucin family.
CD34 is expressed by HSPCs, and functions as a
cell-cell adhesion molecule. The importance on
this feature suggests that the model can identify
the presence of HSPCs in the sample.

Table 5: Comparison of the average correct ratios across all
30 patients on the A-population. Results are aver-
aged and rounded with ±0.01.

Type GAT DNN RF XGB GMM

T Cells 97.91 91.86 62.67 81.45 72.04
B Cells 95.17 56.60 - 6.33 -

Monocytes 98.03 89.31 - 72.63 68.74
Mast 97.40 47.09 - 15.54 -
HSPC 90.79 32.79 - 24.89 -
Others 87.77 94.82 91.07 80.03 -

4.2.3. Populations on TL

In this section, we discuss the results obtained for
the sub-population on TL set-up (see Section 3.1.1).
We have evaluated our metrics and found that the
F1 score is around {0.94± 0.01} for GAT, GCN, and

333



FlowCyt

SAGE, which confirms the robustness of graph mod-
els and graph encoded data even for semi-supervised
approach with large graphs. The results for the em-
ployed models have been obtained using those hy-
perparameters to fit the constraints of 1 GPU with
11GB memory (RTX 2080 Ti), as shown in Table 7
of Appendix A. To highlight the strength of graph
models, Figure 3 shows the t-SNE (Van der Maaten
and Hinton, 2008) embeddings visualization of GAT
for one random patient (patient 23 has been randomly
picked). Despite the difficulties due to the mask setup
that is typical of transductive learning, we can see
how the graph model has clustered the five classes
into its final embedding layer. To view the results for
the sub-population under the TL framework, please
refer to our code repository.

Figure 3: t-SNE projection for one random patient, for the
transductive learning task.

5. Discussion of FlowCyt

FlowCyt provides a valuable resource for researchers
in the field of hematological cell populations. The
dataset is extensively annotated and captures the
complexity and heterogeneity of these cell popula-
tions. The high-dimensional tabular data allows
for various analytical tasks, such as dimensional-
ity reduction, clustering, and trajectory analysis,
to be performed beyond classification. By utilizing
their domain knowledge, researchers can explore the
biological relationships and hierarchical structures
among the cell types based on the provided labels.
The feasibility of developing automated solutions

to assist cytometrists has been demonstrated through

multi-class classification experiments throughout Sec-
tion 4. The effectiveness of graph neural networks in
modeling spatial patterns and inter-cell dependencies
via graph encoding has been highlighted by the re-
sults obtained. This benchmark represents the first
public flow cytometry benchmark that empowers rig-
orous assessment of novel methodologies. It will facil-
itate research that pushes the boundaries and clinical
translation of automated single-cell analysis to sup-
plement traditional manual examination. Through
collaborative efforts, this versatile dataset may un-
cover additional tasks and biological insights, thus
contributing to advancing the field of hematological
cell populations (Bini et al., 2024).

5.1. Future Research

This benchmark is a solid foundation for expand-
ing research in flow cytometry through diverse data
and advanced analytical tasks. To better rep-
resent real clinical scenarios and improve model
robustness, it is important to increase our pa-
tient cohort and include patients with hemato-
logic/immunologic diseases, such as leukemias (e.g.
Acute Myeloid Leukemia-AML). Obtaining longitu-
dinal samples that track patients over treatment
courses could also reveal informative dynamics and
could help to understand how cell populations evolve
in response to therapies.

Advanced tasks should be defined in collaboration
with hematologists/immunologists to ensure clini-
cal relevance. There are opportunities to develop
methodologies that support rather than replace man-
ual analysis, providing a supplemental perspective.
For example, automated strategies for quality con-
trol, across-patient normalization, batch effect correc-
tion, and data visualization could aid cytometrists.
Beyond improving existing practices, innovative new
paradigms could extract novel biological insights.

Moreover, there are numerous learning paradigms
for flow cytometry: hierarchical relationships be-
tween hematopoietic cells could be modeled (Nas-
sajian Mojarrad et al., 2024), aligning with develop-
mental pathways to identify pathological deviations
from healthy cell distribution patterns. Hybrid ap-
proaches could combine unsupervised representation
learning with supervised diagnosis.

Another promising direction is single-cell tra-
jectory inference (TI), where apart from provid-
ing insights into phenotypes of different blood cell
types, FlowCyt’s dataset can also be used for bet-
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ter understanding the developmental trajectories of
hematopoietic precursors. The use of our dataset is
not limited to supervised classification problems and
can be extended to benchmarking different trajectory
inference methods, which so far have been reviewed
for transcriptomics (Saelens et al., 2019) and not flow
cytometry data. In such a case, access to cell type
annotations will be valuable to evaluate the quality of
the reconstructed trajectories and compare the per-
formance of different TI methods suitable for non-
time resolved data. Moreover, our cohort data will
allow us to establish a healthy trajectory model that
will serve in the future as a reference to comprehend
in more detail the differences between healthy and
malignant hematopoiesis.

6. Conclusion

Overall, this benchmark enables diverse analytical
approaches from conventional supervised learning to
emerging paradigms in flow cytometry research. Col-
laborative efforts to generate new labeled datasets,
formulate meaningful clinical questions, and develop
inventive computational methodologies will catalyze
impactful discoveries in hematology and immunology.
By fostering rigorous yet creative investigations lever-
aging its versatility, this benchmark aims to acceler-
ate the advancement of automated single-cell analy-
sis.

Acknowledgments

The Swiss National Science Foundation partially
funds this work under grant number 207509 ”Struc-
tural Intrinsic Dimensionality”.

References

N. Aghaeepour, R. Nikolic, H.H. Hoos, and R.R.
Brinkman. Rapid cell population identification in
flow cytometry data. Cytom Part J Int Soc Anal
Cytol, 79:6–13, 2011.

E.A.D. Amir, K.L. Davis, M.D. Tadmor, E.F. Si-
monds, J.H. Levine, S.C. Bendall, D.K. Shenfeld,
S. Krishnaswamy, G.P. Nolan, and D. Pe’er. visne
enables visualization of high dimensional single-
cell data and reveals phenotypic heterogeneity of
leukemia. Nature biotechnology, 31(6):545–552,
June 2013.

E. Arvaniti and M. Claassen. Sensitive detection of
rare disease-associated cell subsets via representa-
tion learning. nature communications. Nature com-
munications, 8(1):14825, April 2017.

D.R. Bandura, V.I. Baranov, O.I. Ornatsky,
A. Antonov, R. Kinach, X. Lou, S. Pavlov, S. Voro-
biev, J.E. Dick, and S.D. Tanner. Mass cytome-
try: technique for real time single cell multitarget
immunoassay based on inductively coupled plasma
time-of-flight mass spectrometry. Analytical chem-
istry, 81(16):6813–6822, August 2009.

E. Becht, L. McInnes, J. Healy, C.A. Dutertre, I.W.
Kwok, L.G. Ng, F. Ginhoux, and E.W. Newell.
Dimensionality reduction for visualizing single-cell
data using umap. Nature biotechnology, 37(1):38–
44, January 2019.

S.C. Bendall, E.F. Simonds, P. Qiu, E.A.D.
Amir, P.O. Krutzik, R. Finck, R.V. Bruggner,
R. Melamed, A. Trejo, O.I. Ornatsky, and R.S.
Balderas. Single-cell mass cytometry of differen-
tial immune and drug responses across a human
hematopoietic continuum. Science, 332(6030):687–
696, May 2011.

L. Bini, F. Nassajian Mojarrad, T. Matthes, and
S. Marchand-Maillet. Hemagraph: Breaking bar-
riers in hematologic single cell classification with
graph attention. arXiv preprint, arXiv:2402.18611,
2024.

R.V. Bruggner, B. Bodenmiller, D.L. Dill, R.J. Tib-
shirani, and G.P. Nolan. Automated identification
of stratifying signatures in cellular subpopulations.
Proceedings of the National Academy of Sciences,
111(26):E2770–E2777, July 2014.

Y. Dai, A. Xu, J. Li, L. Wu, S. Yu, J. Chen,
W. Zhao, X.J. Sun, and J. Huang. Cytotree: an
r/bioconductor package for analysis and visualiza-
tion of flow and mass cytometry data. BMC bioin-
formatics, 22(1):1–20, 2021.

D.M. Dorfman, C.D. LaPlante, and B. Li. Flock clus-
ter analysis of plasma cell flow cytometry data pre-
dicts bone marrow involvement by plasma cell neo-
plasia. Leukemia Research, 48:40–45, September
2016.

G. Finak, A. Bashashati, R. Brinkman, and R. Got-
tardo. Merging mixture components for cell pop-
ulation identification in flow cytometry. Advances
in bioinformatics, 2009, 2009.

335



FlowCyt

M.J. Fulwyler. Electronic separation of biologi-
cal cells by volume. Science, 150(3698):910–911,
November 1965.

J.W. Gray, A.V. Carrano, L.L. Steinmetz, M.A.
Van Dilla, D.H. Moore 2nd, B.H. Mayall, and M.L.
Mendelsohn. Chromosome measurement and sort-
ing by flow systems. Proceedings of the National
Academy of Sciences, 72(4):1231–1234, April 1975.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive
representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Z. Hu, C. Jujjavarapu, J.J. Hughey, S. Andorf, H.C.
Lee, P.F. Gherardini, M.H. Spitzer, C.G. Thomas,
J. Campbell, P. Dunn, and J. Wiser. Metacyto:
a tool for automated meta-analysis of mass and
flow cytometry data. Cell reports, 24(5):1377–1388,
July 2018.

Z. Hu, A. Tang, J. Singh, S. Bhattacharya, and A.J.
Butte. A robust and interpretable end-to-end deep
learning model for cytometry data. Proceedings of
the National Academy of Sciences, 117(35):21373–
21380, September 2020.

T.N. Kipf and M. Welling. Semi-supervised classifi-
cation with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

G. Monaco, H. Chen, M. Poidinger, J. Chen, J.P.
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Appendix A. Hyperparameters

Tables 7 and Table 6 below show the default hyper-
parameters used in all the experiments:

Table 6: Default hyperparameters used in all inductive ex-
periments. For XGBoost, Random Forest, and
Gaussian Mixture Model we used the sklearn pack-
age as shown in our code repository.

Params GAT SAGE GCN DNN

Layers 3 3 3 3
Hidden-ch 64 64 64 256
Att-heads 8 - - -
Optimizer Adam Adam Adam Adam
Lr-sched [0.01,1e-7] [0.01,1e-7] [0.01,1e-7] [0.01,1e-7]

Weigh-decay 0.0005 0.005 0.005 0.005
Dropout 0.3 0.4 0.4 0.5
Epochs 1000 1000 1000 1000

Early-stop 40 50 50 40

Table 7: Default hyperparameters used in all transductive
experiments to fit our memory GPU constraints.

Parameter GAT SAGE GCN

Layers 3 3 3
Hidden-ch 8 16 16
Att-heads 8 - -
Optimizer Adam Adam Adam

Lr scheduler [0.01,1e-7] [0.01,1e-7] -
Weight decay 0.0005 0.005 0.005

Dropout 0.3 0.5 0.5
Train epochs 1000 1000 1000
Early stopping 40 50 50
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