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Abstract
We introduce a novel hierarchical Bayesian per-
mutation entropy (PermEn) estimator designed
to improve biomedical time series entropy as-
sessments, especially for short signals. Unlike
existing methods requiring a substantial num-
ber of observations or which impose restric-
tive priors, our non-centered, Wasserstein op-
timized hierarchical approach enables efficient
MCMC inference and a broader range of Per-
mEn priors. Evaluations on synthetic and sec-
ondary benchmark data demonstrate superior
performance over the current state-of-the-art,
including 13.33-63.67% lower estimation error,
8.16-47.77% lower posterior variance, and 47-
60.83% lower prior construction error (p ≤
2.42× 10−10). Applied to cardiopulmonary ex-
ercise test oxygen uptake signals, we reveal a
previously unreported 1.55% (95% credible in-
terval: [0.62%, 2.52%]) entropy difference be-
tween obese and lean subjects that diminishes
as exercise capacity increases. For individu-
als capable of completing at least 7.5 minutes
of testing, the 95% credible interval contained
zero, suggesting potential insights into physio-
logical complexity, exercise tolerance, and obe-
sity. Our estimator refines biomedical signal
PermEn estimation and underscores entropy’s
potential value as a health biomarker, opening
avenues for further physiological and biomedi-
cal exploration.

Data and Code Availability We used three main
datasets for this paper: a synthetically generated sig-
nal set, electrocardiogram (ECG) signals obtained
from the 2001 paroxysmal atrial fibrillation (PAF)
challenge dataset available in the PhysioNet database
(Goldberger et al., 2000), and data obtained from

a ramp-incremental treadmill cardiopulmonary exer-
cise testing (CPET) protocol involving 603 partic-
ipants (Age: 43.98 ± 9.46 years; BMI: 33.20 ± 6.85;
Sex: 38.9% male, 61.1% female) (Adams et al., 2019).
The CPET data is not publicly available.

The code used for benchmarking with the synthetic
signal set and the ECG signal set are included as
supplemental material, and the code for the CPET
analysis is not available for public distribution.

Institutional Review Board (IRB) Per
45CFR46.104 the study was determined to be
exempt by the University of Virginia IRB.

1. Introduction

Permutation entropy (PermEn) is a measure, first
proposed by Bandt and Pompe (2002), for analyzing
the predictability or irregularity of a time series sig-
nal. It has become essential in various biomedical ap-
plications, including but not limited to epilepsy mon-
itoring (Veisi et al., 2007; Ra et al., 2021; Kbah et al.,
2022), anaesthesia tracking (Olofsen et al., 2008; Jor-
dan et al., 2008; Franka et al., 2023; Zanner et al.,
2023), and heart rate variability and beat dynam-
ics classification Bian et al. (2012); Yin et al. (2020).
Formally, PermEn quantifies the probability of rank-
ordered templates within a signal and computes the
Shannon entropy of these permutations.

1.1. PermEn Computation Overview

PermEn computation is a two-step process. Initially,
a time series signal x ∈ RN , consisting of N obser-
vations, is transformed into a permutation symbol
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count vector c ∈ Zm!
+ with m referring to the “em-

bedding dimension.” This transformation effectively
summarizes the original signal’s patterns into a dis-
crete set of symbols, aimed at capturing dynamical
changes over time (Bandt and Pompe, 2002). Sub-
sequently, PermEn is estimated by calculating the
Shannon entropy of this symbol distribution.

The first stage of transforming a signal, x, into a
count vector, c, is summarized in Algorithm 1.

Algorithm 1: Computing Permutation Symbol
Counts

1. Instantiate y ∈ ΦN−m+1 and c ∈ Zm!
+

2. For i = 1 to N −m+ 1

(a) Template selection: x
(i)
m := x[i : (i+m−1)]

(b) x̃(i)
m := Ascending rank ordering of x

(i)
m

(c) yi := g
(
x̃(i)
m

)
, mapping x̃(i)

m to its permu-

tation symbol

3. For j = 1 to m!

(a) cj :=
∑N−m+1

i=1 1 [yi = ϕj ]

4. Return c

In Algorithm 1, m determines the length of sub-
vectors extracted from x and, consequently, the size
of the permutation symbol set Φ = {ϕ1, . . . , ϕm!},
representing all unique rank-ordered patterns or per-
mutations. The cardinality of this set is m! because
there is factorial relationship between the length of
a sequence and the number of ways it can be per-
muted. Each rank-ordered sub-vector is mapped to
a unique permutation symbol through a function g.
For a visual guide to this mapping and their con-
nection to permutation symbols, refer to Figure 4 in
Appendix A.

After computing c, the most common way PermEn
is estimated is via the MLE method for Shannon en-
tropy. That is, for the jth permutation symbol, ϕj ,
we estimate its probability of occurrence through the
expression: π̂j =

cj
N−m+1 . This process is repeated

for all m! symbols and gives us the estimated per-
mutation symbol probability vector π̂. The PermEn,
then follows from the definition of Shannon entropy:

ĤMLE
m = − 1

logm!

m!∑

j=1

π̂j log π̂j . (1)

In Equation (1), we bound ĤMLE
m ∈ [0, 1] by rescal-

ing by a factor of 1/ logm!.

1.2. Challenges with Estimating PermEn in
the “Under-Sampled” Regime

A crucial condition for accurate PermEn estimation
using the MLE-based approach is that the number of
observations, N , must be significantly greater than
the number of possible permutation symbols, m!, to
ensure accurate estimation of the probability of ob-
serving the permutation symbols given the count data
(Bandt and Pompe, 2002; Riedl et al., 2013). How-
ever, the biomedical domain frequently encounters
situations where N ≤ m!, a scenario referred to as the
“under-sampled” regime (Knudson and Pillow, 2013).
This challenge becomes more pressing given the grow-
ing prevalence of short-duration physiological signals
in modern medical practice due to the need for rapid
diagnostics in clinical settings (Rahul and Sharma,
2022; Gupta et al., 2021; Rahul et al., 2021; Clifford
et al., 2017). This is particularly salient when an-
alyzing times series data from cardiopulmonary sys-
tems in patients or research participants where there
can be significant breath-by-breath (or beat-to-beat)
variability. These signals are typically averaged over
longer time domains (15-second to minute-averages)
to ease clinical analyses with attendant loss of in-
formation related to entropy that may be of value
(Wasserman et al., 1987).

The information theory community has recognized
the challenge of the under-sampled regime (and thus
by proxy short-duration signals) and made various at-
tempts to address this bias in entropy estimation us-
ing frequentist methods (Paninski, 2003; Hausser and
Strimmer, 2009). However, these methods still suffer
from the issue of negative bias, albeit to a lesser de-
gree, do not allow one to incorporate prior knowledge
about the system under investigation, and generally
do not have a natural way of estimating uncertainty
without additional computation or further paramet-
ric assumptions (Archer et al., 2014; Traversaro and
Redelico, 2018; Ricci and Perinelli, 2022). To ad-
dress these limitations, our paper introduces a novel
Bayesian approach to PermEn estimation, particu-
larly focusing on the under-sampled regime. Bayesian
methods, in contrast to frequentist ones, allow for the
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integration of prior information and provide a prob-
abilistic framework to quantify uncertainty, and may
be better suited to small-sample scenarios (McNeish,
2016).
Inspired by the work of Archer et al. (2014) and Ne-

menman et al. (2001), our Bayesian formulation offers
two advantages over traditional frequentist methods:
the ability to specify a prior over the PermEn space
and the implicit incorporation of uncertainty bounds
as a component of the estimation process. We believe
this Bayesian formulation presents a meaningful ad-
vancement over traditional frequentist methods, par-
ticularly in addressing the challenges presented by the
under-sampled regime in biomedical contexts.
In this study, we validated our proposed method

using two main components: established signal set
benchmarks and applying the model to CPET data.
The benchmark data serves as a reference point for
evaluating the estimation error and posterior variance
in comparison to existing implementations. Mean-
while, the CPET data underscores the practical util-
ity of our model.
Oxygen uptake (V̇O2) is the focus of our CPET

investigation. Derived from the Fick equation, V̇O2

represents the product of cardiac output and whole-
body oxygen extraction, offering a unified variable to
examine multiple physiological systems. Notably, the
importance of V̇O2,Peak as an independent predictor
of all-cause, cancer, and cardiovascular morbidity and
mortality (Gaesser and Angadi, 2021), as well as the
consequential data loss when excluding V̇O2 kinetics
from analyses, motivated us to explore the entropy
of V̇O2 signals aiming to study potential connections
between obesity and biological complexity.
The contributions of our paper are threefold:

1. We introduce a novel Bayesian hierarchical
model for PermEn, specifically designed for full
Markov Chain Monte Carlo (MCMC) posterior
approximation within standard embedding di-
mension sizes. Unlike existing Bayesian imple-
mentations, this model supports a wide spec-
trum of PermEn priors (see Sections 3.1 and 3.2).

2. Through synthetic and secondary data source
benchmarking, we demonstrate the superior per-
formance of our estimator in terms of estimation
error, variance, and prior construction compared
to existing methods (refer to Section 4.1).

3. By applying our method to CPET data, we con-
tribute fresh insights into the relationship be-

tween obesity and biological complexity. This
application showcases the real-world utility and
relevance of our estimator, as elaborated in Sec-
tion 4.2.

2. Bayesian PermEn Overview

Let π denote the probability vector for m! permuta-
tion symbols, and c, the permutation symbol count
vector obtained from Algorithm 1. By Bayes’ rule we
have:

p(π | c)︸ ︷︷ ︸
Posterior

∝ p(c | π)︸ ︷︷ ︸
Likelihood

× p(π)︸︷︷︸
Prior

. (2)

We model the likelihood p(c | π) using a multino-
mial distribution: c | π ∼ Mult(N −m + 1,π), and
approximate the PermEn distribution p (Hm, | c) us-
ing the posterior, p(π | c). Given a specific probabil-
ity vector, PermEn is deterministic.

Unfortunately, analytic derivation of p(π | c) is
typically infeasible. Nevertheless, sampling from
p(π | c) enables the approximation of p(Hm | c).
Thus, the critical step in Bayesian PermEn estima-
tion involves defining a suitable prior, p(π), consid-
ering two primary challenges.

First, the high-dimensionality of π complicates the
conceptualization of a “reasonable” prior, as it is im-
practical to favor specific permutation symbols a pri-
ori. Second, and more crucially, is the consideration
of what p(π) implies for the PermEn prior, p(Hm),
given the nonlinear and non-invertible relationship
between probability vectors and Shannon entropy.

2.1. Bayesian PermEn Conjugate Prior
Models

A common specification of p(π) is to leverage
Bayesian conjugate priors. Notably, Little et al.
(2022) and Pose et al. (2021) advocate for the prior:
π ∼ Dir(α) with α ∈ Rm!

++ being a strictly positive
concentration parameter. This choice allows for the
exploitation of the Dirichlet-Multinomial conjugacy,
yielding a posterior distribution π | c ∼ Dir(α + c).
Given the posterior’s analytical form, sampling to ap-
proximate p(Hm | c) is straightforward.
Nevertheless, a critical aspect of this model is se-

lecting the concentration parameter, α. Common
choices are the Laplace prior (α = 1; repeated for
all m! components of the vector) and Perks’ prior
(α = 1

m! ; similarly repeated for all m! components).
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The former implies a uniform prior over the proba-
bility simplex, while the latter approximates an ob-
jective Bayesian prior, as discussed by Berger et al.
(2015) and thus has tended to be favored in the liter-
ature (Pose et al., 2021). However, Nemenman et al.
(2001) demonstrated that fixed values for α result
in highly informative implied entropy priors that be-
come increasingly concentrated in higher dimensions.

2.2. NSB PermEn Estimator

To address the limitations of fixed Dirichlet priors,
Nemenman et al. (2001) proposed a non-informative,
hierarchical prior for the Dirichlet concentration pa-
rameter, α:

p(α) ∝ d

dα
E [Hm | α] = m! ·ψ1(m! ·α+1)−ψ1(α+1)

(3)
where ψ1(·) is the tri-gamma function. They

demonstrated that Equation (3) implied an approxi-
mately uniform prior for Hm ∈ [0, logm!] which can
be rescaled to [0, 1] to align with the PermEn set-up
without affecting the distribution.
The so-called NSB entropy estimator applied to the

PermEn is then given by:

ĤNSB
m =

1

logm!

∫
E [Hm | y, α] p(y | α)p(α)

p(y)
dα (4)

Archer et al. (2014) provide analytic expressions
for E [Hm | y, α] and E

[
H2

m | y, α
]
, which can be

used with one-dimensional numerical integration to
efficiently compute the first and second moment of
p (Hm | c).
The NSB entropy estimator, while advantageous in

the under-sampled regime and noted for its favorable
bias and variance properties (Nemenman et al., 2001;
Archer et al., 2014), has certain limitations.

2.2.1. NSB Estimator Limitations

The NSB estimator faces two main challenges: its de-
pendence on a non-informative prior for entropy, and
the computational demands of estimating the com-
plete entropy posterior distribution.
In many scenarios, especially in the biomedical sig-

nal domain, researchers may have valuable insights
into the expected range of PermEn values. For exam-
ple, in prior research analyzing CPET signals, Blanks
et al. (2024) observed that certain signals, such as

V̇O2, exhibited higher entropy compared to well-
known benchmarks like sinusoidal signals. In such
cases, it becomes beneficial to incorporate this knowl-
edge into the PermEn inference process. Further-
more, in the context of studying phenomena with lim-
ited sample sizes, the idea of a non-informative prior
can be more of a theoretical concept than a practical
reality (Gelman, 2006). As McNeish (2016) states,
“. . . when the information contained in the likelihood
is relatively small due to a limited sample size, the
prior will necessarily play a key role in the posterior
distribution”.

Second, although Nemenman et al. (2001) and
Archer et al. (2014) offer a method for estimating
the posterior PermEn distribution’s first and second
moments, full posterior approximation via MCMC re-
mains cumbersome. The absence of an efficient sam-
pling algorithm for the NSB prior, coupled with po-
tential numerical instabilities from estimating gradi-
ents of the tri-gamma function, leads to less efficient,
gradient-free sampling techniques like Metropolis-
Hastings. See Appendix D for more details.

3. Improving the Bayesian PermEn
Model

We introduce a new Bayesian estimator for PermEn.
Our method not only accommodates a broader class
of PermEn priors, allowing for the integration of
domain-specific knowledge, but also enhances com-
putational efficiency in approximating the complete
posterior PermEn distribution.

3.1. An Alternate Hierarchical Bayesian
PermEn Prior

We desire a prior that is both numerically stable
and amenable to Hamiltonian Monte Carlo sampling
methods. We propose to address these challenges by
employing the hierarchical prior:

α ∼ Γ(a, b)

ϵ ∼ N (0, Im!)

π̃ | α, ϵ := α · ϵ
π | π̃ := softmax (π̃)

(5)

There are three key advantages to this prior
construction compared to existing implementations.
First, using a Gamma distribution for the concen-
tration hyperprior, α ∼ Γ(a, b), allows us to employ
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numerically efficient sampling algorithms versus the
kernel specified in Equation (3). Second, sampling in
the logit space via: π̃ := α · ϵ and then transform-
ing the logit into a valid probability vector using the
softmax function circumvents issues associated with
unfavorable posterior geometry by exploring near the
probability simplex boundary. Third, using a non-
centered hierarchical model versus a centered formu-
lation: π̃ ∼ N (0, α · Im!), may aid posterior ap-
proximation in limited data regimes (Papaspiliopou-
los et al., 2007).

3.2. Optimizing the PermEn Hierarchical
Prior

Our goal is to ensure the implied entropy prior p(Hm)
from our hierarchical model closely matches a spec-
ified reference prior distribution η. We achieve this
by manipulating the Gamma hyperprior parameters
(a, b) and measure closeness using the Wasserstein-1
(W1) distance between p(Hm) and η.
The W1 distance can be approximated numerically

from samples as:

W1(Hm, η) ≈
D+L∑

i=2

|F̂Hm(zi)− F̂η(zi)|∆zi, (6)

where F̂Hm
and F̂η are the empirical cumulative

distribution functions of Hm and η, respectively. The
vector z is the merged, sorted set of all samples
from both distributions. Assuming the number of
draws are sufficiently large to represent their respec-
tive probability measures, then Equation (6) is a good
numerical approximation of the W1 distance (Peyré
and Cuturi, 2019).
We optimize the Gamma parameters to minimize

this W1 approximation, using Algorithm 2. Further
optimization details are provided in Appendix B with
example results depicted graphically in Figure 1.

3.3. Markov Chain Monte Carlo
Approximation of Posterior PermEn

Given optimal hyperprior parameters (a∗, b∗) for a
reference measure, η, under our proposed hierarhical
prior, the posterior is:

p(π | c) ∝ p(c | π) p(π)

∝
m!∏

j=1

π
cj
j

∫∫
p(π | α, ϵ, a∗, b∗) dα dϵ. (7)

Algorithm 2: PermEn Hyperprior Parameter Opti-
mization

1. For t = 1 to T gradient descent steps

(a)
{
α(d)

}D

d=1
∼ Gamma(a(t), b(t))

(b)
{
ϵ(d)

}D

d=1
∼ N (0, Im!)

(c)
{
π(d)

}
:= softmax

(
α(d) · ϵ(d)

)
∀d

(d)
{
h
(d)
Prior

}
:= − 1

logm!

∑m!
j=1 π

(d)
j log π

(d)
j ∀d

(e) z := mergesort

({
η(d)

}L

d=1
,
{
h
(d)
Prior

}D

d=1

)

(f) ∆z := (zk+1 − zk)
D+L
k=2

(g) W1(Hm, η) ≈
∑D+L

i=2 |F̂Hm(zi)− F̂η(zi)|∆zi
(h) Backpropagation update:

i. a(t+1) := a(t) − λ∂W1

∂a

ii. b(t+1) := b(t) − λ∂W1

∂b

2. Return optimal Gamma parameters: (a∗, b∗)

Direct analytical computation of this posterior is
infeasible due to the integrals over m! + 1 dimen-
sions. We address this through Markov Chain Monte
Carlo (MCMC) sampling, which bypasses the need
for explicit integral solutions by generating posterior
distribution samples. This method enables estima-
tion of means, variances, and credible intervals (CIs),
effectively converting the task of solving complex in-
tegrals into sample set summarization (Betancourt,
2018). Algorithm 3 details the process for estimating
the posterior PermEn distribution and then calculat-
ing quantities of interest.

Using the PyMC framework (Abril-Pla et al.,
2023), we validated MCMC convergence via trace
plots, effective sample size checks, and the Gelman-
Rubin “R-hat” statistic (Gelman and Rubin, 1992).

4. Results

In this section, we present the results obtained from
a series of synthetic and real-world experiments con-
ducted to evaluate the performance of our proposed
Bayesian PermEn estimator. Our primary focus is
on assessing its performance in the under-sampled
regime.

124



An Improved Bayesian Permutation Entropy Estimator

0 2 4 6 8 10

a

0

2

4

6

8

10

b

(a∗, b∗)

0.0 0.2 0.4 0.6 0.8 1.0

H5

0.0

0.5

1.0

1.5

2.0

2.5

p
(H

5
)

Implied Prior

Reference Prior: η ∼ Beta(5, 2)

10−2

10−1

W
1

(H
m
,η

)

Figure 1: W1 distance loss surface under η ∼ Beta(5, 2) reference prior at m = 5 (left), and the resulting
implied PermEn prior (right)

Algorithm 3: Posterior PermEn MCMC Approxi-
mation

1. Compute the permutation symbol count vector
c from time series data x using Algorithm 1

2. Compute (a∗, b∗) using Algorithm 2 for a refer-
ence prior η

3. Use the No U-Turn MCMC Sampler (Homan
and Gelman, 2014) to obtain posterior samples:{
π(d)

}D

d=1
∼ p(π | c) under Equation (7)

4. Calculate posterior PermEn:
{
h(d)

}
:=

− 1
logm!

∑m!
j=1 π

(d)
j log π

(d)
j ∀d

5. ĤBayes
m = E [Hm | c] ≈ 1

D

∑D
i=d h

(d)

6. σ̂Bayes
m =

√
1
D

∑D
d=1

(
h(d) − ĤBayes

m

)2

7. Estimate the γ% CI using
{
h(i)

}D

d=1
(Chen and

Shao, 1999)

8. Return ĤBayes
m , σ̂Bayes

m , and the γ% CI

4.1. Benchmark Signals Experiments

We evaluated our proposed Bayesian PermEn esti-
mator’s performance relative to existing methods in-
cluding the NSB estimator and a conjugate Bayesian
model under Perks’ prior. This analysis used syn-
thetic autoregressive AR(1) signals and real-world
ECG signals.

While the true PermEn cannot be calculated ex-
actly for finite signals, we obtained sufficient approx-
imations for both signal classes.

For AR(1) processes, we generated a signal of
length N = 1, 000, 000 observations, and for the ECG
signals, we considered a five-minute segment sampled
at 128 Hz, resulting in a signal with N = 38, 400 ob-
servations. For embedding dimensions m = 5 and
m = 6, these lengths exceed the heuristics N > 5m!
and N > 10m! where maximum likelihood PermEn
estimates stabilize Amigó et al. (2008); Cuesta-Frau
et al. (2019). Hence, we treated the maximum likeli-
hood estimates as adequate “true” PermEn approxi-
mations.

We randomly selected 50 sub-signals of varying
lengths N = {10, 20, 30, 40, 50} from each signal class
and estimated PermEn using:

• Our estimator with a non-informative reference
prior, η ∼ Beta(1, 1), matching NSB’s implied
prior.

125



An Improved Bayesian Permutation Entropy Estimator

• Our estimator with an informative reference
prior: η ∼ Beta(10, 2).

• The NSB estimator

• A conjugate Bayesian estimator with Perks’
prior (π ∼ Dir

(
1
m!

)
).

Let Ĥ(i,N,e)
m be the i-th expected posterior PermEn

estimate and σ̂
(i,N,e)
m is the posterior standard devia-

tion obtained from a sub-signal containing N obser-
vations using Bayesian PermEn estimator e at em-
bedding dimension m.

We evaluated the root mean squared error (RMSE)
by calculating:

RMSE(N, e,m) =

√√√√ 1

50

50∑

i=1

(
Ĥ(i,N,e)

m −HTrue
m

)2

,

whereHTrue
m represents the “true” PermEn, derived

from the complete signal. Similarly, the mean poste-
rior uncertainty is given by:

σ(N, e,m) =
1

50

50∑

i=1

σ̂(i,N,e)
m .

Figure 2 shows the results.

There are a number of takeaways from this experi-
ment. First, as expected, increasing the signal length
N resulted in decreased RMSE and mean posterior
uncertainty across all estimators, which aligns with
the expected behavior of Bayesian estimators.

Second, the conjugate Bayesian estimator with
Perks’ prior consistently performed poorest across
signal types, embedding dimensions, and N . This
stems from Perks’ narrow implied PermEn prior
range. When the true PermEn falls outside this
range, as in our analysis, estimator accuracy suffers.
Furthermore, the Perks’ prior estimator has lower
variance when transitioning from m = 5 to m = 6,
indicating that not only is the estimator inaccurate,
but it is also confidently so. In contrast, while transi-
tioning fromm = 5 tom = 6 greatly increases dimen-
sionality (120 to 720 dimensions), the mean posterior
variance increase was relatively modest for our esti-
mator and NSB.

Intriguingly, our estimator under a η ∼ Beta(1, 1)
reference prior – “Logit(1, 1)” – outperformed NSB
for most cases despite both implying non-informative

priors, achieving 9.52-20.00% (AR(1)) and 2.22-
11.39% (PAF) lower RMSE. We attribute this to nu-
merical differences in the reference priors, particu-
larly in the tails. Figure 5 shows NSB overestimat-
ing the p(H5) = 1 density by more than a factor of
two, likely causing its posterior to favor lower val-
ues unduly. Appendix C provides further details on
this discrepancy between the two ostensibly equiva-
lent non-informative priors.

Fourth, our estimator with an η ∼ Beta(10, 2) ref-
erence prior – Logit(10, 2) – consistently achieved
the lowest RMSE and mean posterior variance com-
pared to Logit(1, 1) estimator and NSB for both sig-
nal classes. For AR(1) signals, it had 28.57 to 63.67%
lower RMSE and 21.05 to 57.92 lower variance than
NSB, and 9.52-20% lower RMSE than Logit(1, 1)
with similar variance improvements. For the PAF
signals, it had 13.33-51.52% lower RMSE and 8.16-
39.18% lower variance than NSB, and 8.86-46.64%
lower RMSE than the Logit(1, 1) model. Incorporat-
ing an informative prior guided inference more effec-
tively, reducing error and variance. This highlights a
key advantage of our estimator’s versatility in captur-
ing diverse priors beyond just non-informative ones.

4.2. CPET Analysis

Cardiopulmonary exercise testing (CPET) is a non-
invasive procedure used to measure the integrated re-
sponse of the heart, lungs, and muscles to graded
exercise. It provides comprehensive physiological
measurements in response to exercise, on a breath-
by-breath basis, including cardiovascular variables
(e.g., heart rate, blood pressure), ventilatory vari-
ables (breathing frequency, tidal volume, minute ven-
tilation) and gas exchange variables such as oxy-
gen uptake(V̇O2) and carbon dioxide output (V̇CO2)
(Wasserman et al., 1987). V̇O2 during CPET is
the volume of oxygen taken up at the mouth per
unit time, that is subsequently used for aerobic
metabolism to support the increased energy demands
of the task. Greater V̇O2 indicates more capacity to
perform physical work (Bassett and Howley, 2000).

We analyzed V̇O2 signals from ramp-incremental
treadmill CPETs to answer:

• Are there PermEn differences between obese and
lean participants?

• If there is a difference, does this difference change
the longer a participant is able to endure a
CPET?
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Figure 2: Our proposed Bayesian PermEn estimator consistently outperformed competing approaches in
terms of RMSE and had tighter posterior variance compared to the NSB model.
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We ensured CPET signal statistical stationarity
at α = 0.05, a crucial condition for valid entropy
analysis (Chatain et al., 2020). To achieve weakly
stationary signals, we implemented Gaussian process
detrending yielding zero-mean, unit-variance signals.
Subsequently, we applied the Augmented Dickey-
Fuller test with Holm-Sidak correction for multi-
ple comparisons and identified 317 weakly stationary
V̇O2 signals (Dickey and Fuller, 1979; Holm, 1979;
Šidák, 1967).
The remaining signals had a median length of

N = 40 observations, 78% had N ≤ 50 observa-
tions, all signals contained fewer than 100 samples.
We estimated PermEn at m = 6 using a Beta(5,2)
prior balancing estimate uncertainty stemming from
short signal lengths with previous entropy estimates
(Blanks et al., 2024; Riedl et al., 2013). Participants
with a body mass index greater than 30 were classi-
fied as obese.
For each obesity status o ∈ {Lean,Obese}, let

H(o) =
{(

Ĥ(i,o)
m , σ̂(i,o)

)}no

i=1
be the posterior Per-

mEn estimates and variances. We compared PermEn
of V̇O2 between obese and lean participants using a
Bayesian model which treats the estimates as noisy
measurements with known variance (Figure 3).

Ĥ(i,o)
m

H(i,o)
m

νo

µo σ̂(i,o)

0.80

1.0 0 1

U

logNBeta

Beta

Figure 3: Bayesian model for comparing the PermEn
of obese versus lean participants.

Let the mean posterior PermEn be µ0 for lean in-
dividuals and µ1 for obese participants. The relative
percentage decrease in entropy between groups is:

∆µ =

(
µ0 − µ1

µ0

)
× 100.

Positive ∆µ indicates, on average, greater relative
entropy for lean individuals.

We inferred µ0, µ1, and ∆µ for participants able
to exercise at least 2.5, 5, 7.5, and 10 minutes, corre-
sponding to V̇O2 signals with at least 10, 20, 30, and
40 observations, respectively. We hypothesized lean
individuals would have higher relative entropy that
diminishes with prolonged exercise duration. Results
are in Table 1.

The analysis supports both hypotheses. First, us-
ing the complete signal set (N ≥ 10 observations, ≥
2.5 minute CPET), lean individuals exhibit approxi-
mately 1.55% higher relative PermEn than obese par-
ticipants on average. Furthermore, as exercise dura-
tion increases, the relative entropy difference dimin-
ishes by 9.2%, 43.3%, and 53.8% for particpants who
completed at least 5, 7.5, and 10 minute CPETs, re-
spectively. Beyond 7.5 minutes, the 95% credible in-
terval for ∆µ contains zero.

This finding may have clinical implications, sug-
gesting that the relative effect of obesity diminishes
as an individual’s exercise capacity increases.

5. Discusssion

In this study, we evaluated our Bayesian PermEn es-
timator in comparison to existing implementations,
utilizing benchmark signals and real-world CPET
data.

In the benchmark signal analysis, we assessed our
estimator’s performance across various embedding
dimensions and signal lengths. We calculated the
RMSE and mean posterior variance, revealing sev-
eral key insights. Our approach consistently outper-
formed others, yielding the lowest RMSE. Notably,
when we provided a more informative PermEn prior,
we achieved both reduced error and smaller variance,
underscoring the advantages of informative priors in
small-sample scenarios. Additionally, we observed
that the increase in embedding dimension fromm = 5
to m = 6 resulted in a slight increase in posterior
variance for both our approach and the NSB estima-
tor. However, this was not the case for the conjugate
Bayesian model with Perks’ prior, a concerning out-
come given the substantial increase in dimensionality.

Furthermore, despite the similarity in the implied
PermEn prior between our model under a reference
prior of η ∼ Beta(1, 1) and the NSB estimator, our
model consistently achieved lower RMSE and com-
parable posterior variance. This outcome appeared
to be driven by reduced target overshooting near the
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Table 1: Lean individuals exhibit higher relative PermEn than obese individuals that diminishes with in-
creasing exercise duration.

Minimum CPET
Length (min)

Remaining
Participants

µ0

Mean
µ0

95% CI
µ1

Mean
µ1

95% CI
∆µ
Mean

∆µ
95% CI

2.5 317 0.914 [0.907, 0.920] 0.899 [0.894, 0.905] 1.551% [ 0.618%, 2.518%]

5 307 0.914 [0.907, 0.920] 0.901 [0.895, 0.906] 1.409% [ 0.462%, 2.339%]

7.5 260 0.914 [0.908, 0.921] 0.906 [0.900, 0.912] 0.880% [−0.057%, 1.843%]

10 197 0.917 [0.911, 0.924] 0.911 [0.904, 0.918] 0.716% [−0.333%, 1.804%]

lower and upper boundaries of the [0, 1] interval. This
discrepancy in implied priors may also explain why
the NSB estimator tended to have slightly higher er-
ror, as it disproportionately favored lower entropy rel-
ative to the desired reference uniform PermEn prior.

Next, we applied our Bayesian PermEn estimator
to real-world CPET data, comparing the entropy of
V̇O2 between lean and obese individuals. Across
the entire signal set, lean individuals had approxi-
mately 1.55% greater relative entropy compared to
obese participants. However, by increasing the re-
quired minimum signal length (assessing longer min-
imum CPET lengths), effectively excluding the un-
healthiest individuals, we observed that the relative
difference in entropy between lean and obese indi-
viduals diminished. If an individual could endure a
CPET for at least 7.5 minutes, the 95% credible in-
terval contained zero.

Our study’s results highlight two key advantages
of our Bayesian PermEn estimator compared to the
NSB estimator and conjugate Bayesian models with
fixed Dirichlet concentration priors. One, our ap-
proach allows for a broader class of PermEn pri-
ors over [0, 1], and our computational optimization
method constructs numerically superior priors rela-
tive to existing implementations. Two, by employing
a non-centered and transformed PermEn formulation,
we efficiently use MCMC to sample from a parame-
ter concentration hyperprior, enabling the approxi-
mation of the complete PermEn posterior distribu-
tion rather than being limited to its first and second
moments.

5.1. Clinical Implications

CPET plays a vital role in evaluating cardiopul-
monary function for a range of clinical applications
including assessment of undiagnosed exercise intol-

erance, heart failure, unexplained dyspnea, monitor-
ing therapy in chronic lung disease and heart failure
and for staging of cardiac transplantation (Balady
et al., 2010). However, CPET signals, characterized
by increasing work rate, are inherently nonstationary
which poses challenges for nonlinear dynamical anal-
ysis techniques like PermEn that assume stationarity
(Chatain et al., 2020).

Our Bayesian PermEn framework enables reli-
able entropy estimation even for the relatively short
CPET signals containing fewer than 50 observa-
tions that are commonly encountered clinically af-
ter accounting for stationarity. This approach could
expand investigational research into the complex
physiological mechanisms governing CPET responses
across different age groups and diseases. For in-
stance, previous studies have suggested differences
in heart rate complexity between healthy individ-
uals and those with congestive heart failure (Zhao
et al., 2015). Our methodology helps mitigate the
bias and uncertainty stemming from limited CPET
signals to better understand if true physiological dif-
ferences underlie these entropy differences. Addition-
ally, improved precision of entropy estimation may
provide greater insight into quantifying changes in
neuromuscular fatigue development and skeletal mus-
cle efficiency with aging and disease across integrated
CPET parameters (Grassi et al., 2015).

Furthermore, our finding that the entropy gap be-
tween obese and lean individuals diminishes for those
capable of continuing the CPET for over 7.5 min-
utes warrants further investigation. If confirmed in
larger studies, this could suggest that encouraging
obese patients to improve fitness enough to sustain
longer CPET may impart beneficial effects. For ex-
ample, large systematic reviews and meta-analyses
have demonstrated that obese individuals with high
V̇O2,Peak (analogous to longer CPET duration) have
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half the mortality risk of lean individuals with low
V̇O2,Peak and similar mortality outcomes compared

to lean individuals with high V̇O2,Peak (Barry et al.,
2018).
Overall, the flexibility of our Bayesian PermEn

technique coupled with its reliable uncertainty quan-
tification opens promising avenues for elucidating the
clinical implications of exercise stress testing across
diverse populations and potentially for the develop-
ment of a novel biomarker.
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Appendix A. Permutation Symbol
Visualization

Figure 4 illustrates the full set of permutation sym-
bols for an embedding dimension of m = 3.

(1, 2, 3) −→ ϕ1 (1, 3, 2) −→ ϕ2 (2, 1, 3) −→ ϕ3

(2, 3, 1) −→ ϕ4 (3, 1, 2) −→ ϕ5 (3, 2, 1) −→ ϕ6

Figure 4: Complete set of permutation symbol map-
pings for m = 3 embedding dimension size.

Each symbol is derived using a mapping function,
g, which takes a rank-ordered vector (e.g., (1, 2, 3))
as input and assigns it to a unique permutation sym-
bol. Given a rank-ordered vector of size m, there are
precisely m! distinct permutation symbols, with each
rank-ordered vector mapping one-to-one to a permu-
tation symbol. The rank-ordering reflects the relative
positioning within the original sub-vector; for exam-
ple, the vector (1, 3, 2) indicates that the first element
was the smallest, the second was the largest, and the
third was intermediate in value.

We assume that no ties exist between values in a
sub-vector, a condition that is practically guaranteed
when the original signal, x, consists of continuous,
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real-valued numbers. To ensure this assumption is
met, small perturbations may be introduced into the
signal.

Appendix B. Gamma Hyperprior
Optimization Numerical
Tricks

To construct a broader class of implied priors for our
Bayesian PermEn estimator, we model the concentra-
tion hyperprior as α ∼ Γ(a, b), and manipulate (a, b)
to minimize the W1 distance between Hm and a ref-
erence measure η. The principle challenge under this
framework is to obtain estimates for the gradients:
∂W1

∂a and ∂W1

∂b , for the optimization routine.
Under the proposed non-centered model detailed in

Equation (5), the W1 distance error gradient with re-
spect to a is calculated as ∂W1

∂a = ∂W1

∂Hm

∂Hm

∂π
∂π
∂π̃

π̃
∂α

∂α
∂a ,

and similarly for b. The difficulty is that ∂α
∂a does not

admit a simple analytic expression and thus we must
resort to numerical approximations of this gradient.
Fortunately, it is equivalent to express the hyper-

prior as α
b ∼ Γ(a, 1), and it suffices to only consider

the derivative, dα
da . Although α

b is a stochastic node,
Jankowiak and Obermeyer (2018) have devised a de-
terministic Taylor series approximation for dα

da , which
exhibits a relative accuracy of 0.0005 across a wide
range of inputs. This approximate pathwise gradient
enables us to compute ∂W1

∂a and, consequently, ∂W1

∂b ,
as all remaining operations are deterministic and dif-
ferentiable
We implemented our approach using the PyTorch

framework (Paszke et al., 2019) and employed the
stochastic gradient optimizer, Adam (Kingma and
Ba, 2015), with a learning rate of λ = 0.01. We gen-
erated 10, 000 samples for both η and Hm, and ran
the optimization algorithm for 1000 epochs to ensure
convergence.

Appendix C. NSB vs Optimized
Beta(1, 1) PermEn
Implied Priors

In Figure 2, we observed an unexpected result: for
both the AR(1) and PAF signals, the NSB estimator
had higher error compared to our Logit(1, 1) esti-
mator. This finding contradicted our initial expec-
tations since the hierarchical prior defined by Equa-
tion (3) approximately implies a uniform prior over
[0, logm!] (or, after a rescaling, over [0, 1]) – the same

implied prior for the Logit(1, 1) model. We hypoth-
esize that this difference arises from the superior nu-
merical properties of the reference priors generated
by our algorithm relative to the implied process pro-
posed by Nemenman et al. (2001).

To test this hypothesis, we conducted an analysis
using MCMC sampling. We generated instances of
concentration priors following Equation (3) and em-
ployed the Dirichlet-Multinomial framework to sam-
ple implied PermEn prior distributions under this
model. Additionally, we used our optimization al-
gorithm to minimize the implied PermEn prior while
using a reference prior of η ∼ Beta(1, 1). This pro-
cess was repeated 25 times with different random
seeds for both approaches. We then calculated the
Wasserstein-1 distance between the implied PermEn
prior and a uniform prior over the interval [0, 1], and
compared the relative errors between the estimators
using a one-sided, non-equal variance t-test with the
alternative hypothesis being that our method had
lower Wasserstein error. The results of this analy-
sis are displayed in Table 2.

Table 2: Our proposed optimization scheme under an
η ∼ Beta(1, 1) reference prior achieves sig-
nificantly lower relative error than NSB hi-
erarchical prior at all embedding dimension
sizes.

m NSB Logit(1, 1) P-value

3 0.037± 0.003 0.012± 0.0003 6.28× 10−25

4 0.017± 0.002 0.0055± 0.0002 1.28× 10−19

5 0.012± 0.002 0.0047± 0.0002 8.57× 10−15

6 0.010± 0.002 0.0053± 0.0003 2.42× 10−10

At all the standard embedding dimension sizes for
PermEn (m ∈ {3, 4, 5, 6}), our logit-based approach
consistently exhibits lower relative Wasserstein-1 er-
ror for the reference prior of η ∼ Beta(1, 1) compared
to the NSB hierarchical concentration prior. This
observed effect is statistically significant for all val-
ues. The key factor contributing to this outcome is
the tendency of the NSB approach to relatively over-
weight both the upper and lower boundaries of the
PermEn distribution in comparison to our approach.
For evidence of this phenomenon, observe the proba-
bility density functions displayed in Figure 5.
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Figure 5: The NSB estimator puts too much relative weight on the left tail of the Beta(1, 1) distribution
causing the resulting posterior PermEn estimate to favor lower values.

Appendix D. PermEn Posterior
Inference Computational
Time Analysis

To evaluate the computational efficiency of our pro-
posed PermEn estimator against existing methods,
we analyzed the time required to approximate the
PermEn posterior distribution. This comparison in-
cluded our estimator, the Perks’ prior, an NSB esti-
mator calculating only the first and second moments
of the posterior distribution, and a full NSB poste-
rior approximation using MCMC sampling methods.
For the NSB estimator’s full posterior approximation,
we used the the Metropolis-Hastings algorithm due
to the absence of a straightforward sampling method
for the kernel specified in Equation (3) and the tri-
gamma function’s unstable gradients. While valid,
the Metropolis-Hastings algorithm is generally less ef-
ficient than Hamiltonian Monte Carlo methods, such
as the No U-Turn Sampler (Homan and Gelman,
2014), due to its tendency to perform a random walk
around the typical set of the posterior without lever-
aging gradient information to efficiently explore the
parameter space (Betancourt, 2018).

Our computational experiments aimed to assess
how embedding dimension (m) and signal length
(N) affect the time required to infer the poste-
rior PermEn. To simulate count vectors, we gen-

erated probability vectors (π) from a Dirichlet dis-
tribution (Dir(1)), which were then used to pro-
duce multinomial-distributed count vectors (c ∼
Mult(N,π)). We fixed the signal length at N =
25 and varied the embedding dimension (m ∈
{3, 4, 5, 6}) for the embedding dimension impact ex-
periments. Conversely, we set m = 5 and varied sig-
nal length (N ∈ {10, 25, 50}) for the signal length im-
pact experiments. Each configuration was repeated
20 times to calculate the median execution time, dis-
played in Figure 6.

We observed a more pronounced computational im-
pact from increasing the embedding dimension com-
pared to increasing the signal length. The NSB esti-
mator, which computes only the posterior’s first and
second moments, demonstrated superior efficiency for
m > 3, likely due to optimized numerical algorithms
for one-dimensional integration. However, for full
posterior approximation with the NSB prior atm = 3
and m = 4, it took almost an order of magnitude
more computation time to converge than our pro-
posed estimator. For m ≥ 5, the MCMC sampler
failed to converge after over two million draws, in
contrast to our estimator which required approxi-
mately 10,000 draws. The Perks’ prior, employing
a Bayesian conjugate model, was inherently more ef-
ficient for approximating the complete posterior, but
exhibited poorer scaling with increasing m, reflect-
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Figure 6: All methods except full MCMC NSB can infer the posterior PermEn in a reasonable computational
timeframe. NSB estimating the first and second moments is the most efficient, particularly for
higher embedding dimension sizes.

ing the computational challenge of sampling from a
high-dimensional probability simplex.
The influence of signal length (N), at a fixed em-

bedding dimension (m = 5), was relatively minor.
While the NSB estimator showed a slight increase in
computational time, our model and the Perks’ prior
experienced negligible changes. This suggests that for
our model, the dominant computational factors were
the compilation of sampling and gradient estimation
functions, rather than the length of the signal itself.
A substantially longer signal might be necessary to
significantly influence the computational demand, as
the time required for MCMC sampling is generally
a linear function of the number of observations and
MCMC steps (Belloni and Chernozhukov, 2009).
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