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Abstract
Medical image segmentation typically requires
numerous dense annotations in the target do-
main to train models, which is time-consuming
and labour-intensive. To alleviate this chal-
lenge, unsupervised domain adaptation (UDA)
has emerged to enhance model generalization in
the target domain by harnessing labeled data
from the source domain along with unlabeled
data from the target domain. In this paper,
we introduce a novel Dynamic Prototype Con-
trastive Learning (DPCL) framework for UDA
on medical image segmentation, which dynam-
ically updates cross-domain global prototypes
and excavates implicit discrepancy information
in a contrastive manner. DPCL learns cross-
domain global feature representations while en-
hancing the discriminative capability of the seg-
mentation model. Specifically, we design a
novel cross-domain prototype evolution module
that generates evolved cross-domain prototypes
by employing dynamic updating and evolution-
ary strategies. This module facilitates a gradual
transition from the source to the target domain
while acquiring cross-domain global guidance
knowledge. Moreover, we devise a cross-domain
embedding contrastive module that establishes
contrastive relationships within the embedding
space. This module captures both homoge-
neous and heterogeneous information within
the same category and among different cate-
gories, thereby enhancing the discriminative ca-
pability of the segmentation model. Experi-
mental results demonstrate that the proposed
DPCL is effective and outperforms the state-
of-the-art methods.

Data and Code Availability This paper uses
the MultiModality Whole Heart Segmentation

(MMWHS) challenge 2017 dataset (Zhuang and
Shen, 2016)1, which is pre-processed and available on
the PnP-AdaNet repository (Dou et al., 2019)2. The
source code is available on github3.

Institutional Review Board (IRB) This work
does not require IRB approval.

1. Introduction

Medical image analysis is crucial for medical diagno-
sis and paramedical treatment (Duncan and Ayache,
2000; Shen et al., 2017). One of the most critical and
challenging medical image analysis tasks is medical
image segmentation, which involves classifying each
pixel within the input medical image (Ronneberger
et al., 2015; Chen et al., 2021). While fully-supervised
segmentation methods can yield satisfactory results,
real-world medical applications frequently entail di-
verse data modalities (e.g., CT or MRI) from dif-
ferent hospitals, scanners, and protocols (Guan and
Liu, 2021), leading to a significant domain shift phe-
nomenon. One straightforward approach entails an-
notating data from the target domain and then fine-
tuning the segmentation model (Ghafoorian et al.,
2017; Swati et al., 2019). However, this process is
both time-consuming and labour-intensive, present-
ing a significant obstacle for medical image analysis.

Recently, unsupervised domain adaptation (UDA)
methods have been proposed to learn target domain
segmentation models using labeled source domain
data and unlabeled target domain data (Chen et al.,

1. https://zmiclab.github.io/zxh/0/mmwhs/
2. https://github.com/carrenD/

Medical-Cross-Modality-Domain-Adaptation

3. https://github.com/EnQing626/DPCL
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Figure 1: Illustration of the proposed idea. The
proposed DPCL (a) dynamically updates
cross-domain global prototypes and (b) ex-
cavates the implicit discrepancy informa-
tion of data from both domains in a con-
trastive manner.

2019; Liu et al., 2022; Shin et al., 2023). In partic-
ular, several methods utilize image-to-image transla-
tion techniques to bridge the cross-domain gap. They
generate source-to-target data or vice versa and em-
ploy adversarial training for distribution adaptation
(Chen et al., 2020a; Zou et al., 2020; Zhao et al.,
2022). However, distortions in data translation may
adversely affect the model, potentially resulting in
overconfident segmentation masks in the target do-
main. Some other methods focus on identifying reli-
able pixels within the target domain segmentation
masks to impose constraints and attain semantic
alignment (Sun et al., 2022; Feng et al., 2023). How-
ever, their effectiveness in segmenting target domain
data is limited as they overlook discriminative infor-
mation among different categories.
In general, UDA for medical image segmentation

poses the following fundamental challenges: (1) Sig-
nificant distribution variations arising from diverse
data origins, such as different scanners and patient
demographics, lead to a domain shift issue. This chal-
lenge is exacerbated by the difficulty in obtaining re-
liable cross-domain global guidance information. (2)
The absence of ground-truth labels in the target do-
main, combined with the challenges of capturing dis-
criminative information due to subtle differences in
organ appearance, further compounds the inherent
difficulty of the task. Humans possess a dynamic
cognitive capacity to evolve and distinguish complex
functions and behaviours as they acquire new knowl-
edge (Luppi et al., 2022; Rensink, 2000). Inspired

by this, we aim to address the challenges by inte-
grating dynamically updating strategies within con-
trastive learning paradigms, which is desirable from
both biological and practical aspects.

In this paper, we propose a novel Dynamic Pro-
totype Contrastive Learning (DPCL) framework for
UDA on medical image segmentation, as shown
in Figure 1. The framework dynamically updates
cross-domain global prototypes and exploits implicit
discrepancy information in a contrastive manner.
DPCL learns cross-domain global feature represen-
tations while enhancing the discriminative capabil-
ity of the segmentation model. Specifically, we
devise a cross-domain prototype evolution module
(CDPE) to generate evolved cross-domain prototypes
through dynamic updating and evolutionary strate-
gies driven by the source domain ground-truth la-
bels and the target domain predictions. This mod-
ule enables the progressive evolution of prototypes
from the source to the target domain, acquiring cross-
domain global guidance knowledge. Moreover, we
design a cross-domain embedding contrastive mod-
ule (CDEC) by establishing contrastive relationships
between evolved prototypes and object embeddings
to capture both homogeneous and heterogeneous in-
formation within the same category and among dif-
ferent categories. This module aggregates pixel-level
features for object classes, enhancing the discrimina-
tive capability of the segmentation models. Finally,
we incorporate the two modules to train the DPCL
framework end-to-end. The main contributions of our
paper are summarized as follows:

• We propose a novel DPCL framework for UDA
on medical image segmentation by incorporat-
ing dynamic updating strategies and contrastive
learning paradigms to excavate cross-domain im-
plicit information. It enhances the discrimina-
tive capability of the segmentation model while
learning cross-domain global feature representa-
tions.

• We devise a cross-domain prototype evolution
module to acquire cross-domain global guidance
knowledge with dynamic updating and evolu-
tionary strategies.

• We design a cross-domain embedding contrastive
module to enhance discriminitive ability of seg-
mentation models by establishing contrastive re-
lationships between evolved prototypes and ob-
ject embeddings.
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• Experimental results demonstrate that the pro-
posed DPCL framework achieves state-of-the-art
performance on the MMWHS cross-domain med-
ical image segmentation dataset.

2. Related Work

2.1. UDA for Medical Image Segmentation

Unsupervised domain adaptation aims to enhance
segmentation models’ performance on the target do-
main by leveraging labeled source domain data and
unlabeled target domain data (Chen et al., 2019; Liu
et al., 2022). Several methods utilize GANs (Good-
fellow et al., 2014; Zhu et al., 2017), allowing the
model to acquire target-specific information (Chen
et al., 2020a; Zou et al., 2020; Zhao et al., 2022).
Some methods enable end-to-end models for simul-
taneous cross-modal synthesis and semantic segmen-
tation (Zhang et al., 2018; Huo et al., 2018). Ad-
ditionally, various methods focus on image-level or
feature-level alignment to acquire domain-invariant
and domain-specific features (Chen et al., 2020a; Sun
et al., 2022; Xie et al., 2022; Shin et al., 2021; You
et al., 2020). Moreover, output-level adaptation is
employed to ensure that predictions in both domains
share similar structural and contextual information
(Tsai et al., 2018; Vu et al., 2019; Luo et al., 2019).
However, the aforementioned methods are suscep-
tible to distortions during data transformation or
lack the guidance of discriminative information based
on cross-domain global knowledge. In contrast, the
proposed DPCL framework employs dynamically up-
dated and evolved cross-domain prototypes to explore
discriminative information along with various classes
of foreground features through a contrastive learning
approach.

2.2. Contrastive and Prototypical Learning

Contrastive learning is a widely adopted technique in
self-supervised learning for enhancing feature repre-
sentations (Chen et al., 2020b; He et al., 2020; Chen
et al., 2020c; Grill et al., 2020). The technology is
versatile and applicable in various contexts, including
supervised classification (Khosla et al., 2020), semi-
supervised segmentation(Hu et al., 2021; Zhong et al.,
2021), and domain adaptation for semantic segmen-
tation (Liu et al., 2021a; Li et al., 2021). Proto-
typical learning (Snell et al., 2017) focuses on ex-
tracting representative information for each category
and has found application in various scenarios (Li

et al., 2020). It is widely utilized in few-shot seg-
mentation (Dong and Xing, 2018; Liu et al., 2020a,c;
Wang et al., 2019; Zhang et al., 2019b,a) and semi-
supervised segmentation (Xu et al., 2022; Mai et al.,
2023). These methods incorporate prototype align-
ment (Wang et al., 2019), employ graph attention
(Zhang et al., 2019a), and utilize iterative refinement
(Zhang et al., 2019b; Liu et al., 2020b) to harness
support knowledge effectively.

UDA for medical image segmentation faces sub-
stantial challenges due to the lack of target do-
main ground-truth labels and the cross-domain dis-
tributional gaps. Our proposed DPCL, unlike exist-
ing methods, uses evolved cross-domain prototypes
for contrastive learning, capturing invariant features
within the same class across images and domains.

3. Method

In this section, we present the proposed DPCL frame-
work for UDA on medical image segmentation. We
begin by introducing the overall framework in Sec-
tion 3.1. We then present the cross-domain proto-
type evolution module in Section 3.2 and the cross-
domain embedding contrastive module in Section 3.3.
Finally, we present the loss function in Section 3.4.

3.1. Overall Framework

In UDA for medical image segmentation, we aim to
train an effective segmentation model for the target
domain. We use a labeled source domain dataset DS

with |DS | image-segmentation mask pairs denoted

as {(Ins , Y n
s )}|DS |

n=1 and an unlabeled target domain

dataset DT with |DT | images denoted as {(Int )}
|DT |
n=1 .

Here I ∈ R1∗H∗W denotes an input image, and
Y ∈ {0, 1}K∗H∗W represents a ground-truth segmen-
tation mask, where K is the number of categories,
and H and W are the height and width of the image.

The architecture of the proposed DPCL is shown
in Figure 2. We first employ the segmentation net-
work Nseg as a generator, accompanied by the dis-
criminator Ndis for adversarial learning. This en-
courages consistent spatial semantic information in
predictions across domains. Next, we introduce a
cross-domain prototype evolution module (CDPE),
designed to generate evolved cross-domain prototypes
through dynamic updating and evolutionary strate-
gies. This module enables the progressive transfor-
mation of prototypes from the source domain to the
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Figure 2: An overview of the proposed DPCL. We first predict segmentation masks for both domain images,
which are used for calculating the discriminator loss LD, the adversarial loss Ladv and the segmen-
tation loss Lseg. Next, the CDPE module leverages the ground-truth of the source image Y n

s,it, the

prediction of the target image Ŷ n
t,it, and the feature embeddings xn

s,it and xn
t,it to generate evolved

cross-domain prototypes. The CDEC module is then deployed to calculate the evolved prototype
contrastive loss for source domain Lepcs and target domain Lepct.

target domain, acquiring cross-domain global guid-
ance knowledge. Furthermore, a cross-domain em-
bedding contrastive module (CDEC) is devised to
establish contrastive relationships between evolved
cross-domain prototypes and object embeddings in
both domains. This is achieved by utilizing our pro-
posed cross-domain embedding contrastive loss func-
tion, which can aggregate pixel-level features for cor-
responding object classes and yield discriminative
feature representations. Finally, the segmentation
network is trained using a combination of adversarial
learning loss, supervised segmentation loss, and the
evolved prototype embedding contrastive loss. The
segmentation network Nseg consists of an encoder
f : R1×H×W → Rc×h×w and a segmentation head
g : Rc×h×w → RK×H×W , where c, h, and w denote
the channels, height, and width of feature embed-
dings, respectively.

Typically, given the highly similar semantic struc-
tural information shared between the source domain

and target domain data (Tsai et al., 2018), adver-
sarial learning (Vu et al., 2019) is used to align the
entropy of the target domain predictions with that of
the source domain. Specifically, in the it-th iteration,
the adversarial learning is conducted on a batch of N
labeled source images {(Ins,it, Y n

s,it)}Nn=1 and N target

images {(Int,it)}Nn=1. We feed a source image Ins,it and
a target image Int,it into the segmentation network

Nseg to generate predictions Pn
s,it ∈ [0, 1]K∗H∗W and

Pn
t,it ∈ [0, 1]K∗H∗W as follows:

Pn
s,it = softmax(Nseg(I

n
s,it)),

Pn
t,it = softmax(Nseg(I

n
t,it)),

(1)

where the softmax function is used to compute pixel-
wise prediction probabilities over K categories. Next,
we generate the entropy-information maps, denoted

as E
n,(u,v)
s,it = −Pn,(u,v)

s,it · logPn,(u,v)
s,it and E

n,(u,v)
t,it =

−Pn,(u,v)
t,it · logPn,(u,v)

t,it , with (u, v) denoting the spa-
tial location index. These maps serve as input for the

315



discriminator Ndis, distinguishing between the source
and target domains. The generator, represented by
our segmentation network Nseg, aims to fool the dis-
criminator. Hence, the loss function for training the
discriminator Ndis is defined as follows:

LD =

N∑
n=1

(Lbce(Ndis(E
n
s,it), 1) + Lbce(Ndis(E

n
t,it), 0)),

(2)
where Lbce indicates the binary cross-entropy loss
function; the adversarial loss for the segmentation
network Nseg is defined as:

Ladv =

N∑
n=1

Lbce(Ndis(E
n
t,it), 1), (3)

3.2. Cross-Domain Prototype Evolution
Module

While adversarial learning aligns the output of the
target domain with spatial structures and context in-
formation similar to those of the source domain, it
may lack semantic consistency and feature-level dis-
criminative information, limiting segmentation per-
formance. For UDA on medical image segmentation,
cross-domain global guidance knowledge is crucial in
learning discriminative information. But acquiring
this knowledge is challenging due to the domain shift
issue and the absence of labels in the target domain.
To tackle this problem, we introduce a cross-domain
prototype evolution module (CDPE), as shown in
Figure 2, to generate evolved cross-domain proto-
types through dynamic updating and evolutionary
strategies, capturing cross-domain global guidance
knowledge.
In the it-th iteration, we start by integrating fea-

ture embeddings for each k-th category using global
average pooling (Zhang et al., 2020) over the fore-
ground, which serves as the prototype for the specific
category organ. This process involves the ground-
truth labels from the source domain Y n

s,it and the pre-

diction from the target domain Ŷ n
t,it = argmax(Pn

t,it)
in the it-th iteration. Consequently, the prototypes
for category k in the n-th source image and target im-
age in the it-th iteration are determined as follows:

zn,ks,it =

∑
(u,v) x

n,(u,v)
s,it 1[y

n,(k,u,v)
s,it ̸= 0]∑

(u,v) 1[y
n,(k,u,v)
s,it ̸= 0]

, (4)

zn,kt,it =

∑
(u,v) x

n,(u,v)
t,it 1[ŷ

n,(k,u,v)
t,it ̸= 0]∑

(u,v) 1[ŷ
n,(k,u,v)
t,it ̸= 0]

, (5)

where (k, u, v) represents the category and the spa-
tial location index; 1[·] denotes an indicator function;
xn
s,it = f(Ins,it) and xn

t,it = f(Int,it) are the feature em-
beddings produced by the encoder f in the it-th iter-
ation; yns,it ∈ RK×h×w and ŷnt,it ∈ RK×h×w are down-

sampled Y n
s,it and Ŷ n

t,it, yielding the same dimension
as the feature embeddings. As the prototypes in the
current iteration lack global historical category infor-
mation and are influenced only by the current image
embeddings, we employ a dynamic updating strategy
(Xie et al., 2018). This strategy alleviates prototype
fluctuations by incorporating information from both
the current and previous iterations as follows:

zn,ks,it ←− α ∗ zn,ks,it−1 + (1− α) ∗ zn,ks,it, (6)

zn,kt,it ←− α ∗ zn,kt,it−1 + (1− α) ∗ zn,kt,it . (7)

Here, we obtain the updated source domain prototype
zn,ks,it and the updated target domain prototype zn,kt,it

for category k in the n-th source and target images
during the it-th iteration by aggregating prototypes
from the previous iteration. We use Equations (4)
and (5) to generate initial prototypes when it=0.

Subsequently, we aim to combine prototypes from
both domains to obtain cross-domain global guidance
knowledge. While the target domain lacks ground-
truth labels, the segmentation network can gradually
generate better predictive segmentation masks as the
training progresses. Thus, we gradually increase the
weight of the updated target domain prototypes when
combining with the ones from the source domain, re-
sulting in a cross-domain evolved prototype zn,ke,it for
category k at the it-th iteration:

zn,ke,it = β ∗ zn,ks,it + (1− β) ∗ zn,kt,it . (8)

Here β = ( 1−it
maxit )

0.9 is a hyper-parameter that is
dynamically updated during training using the poly
strategy (Liu et al., 2015; Chen et al., 2017), de-
termining the dynamic combination weights of the
source and target prototypes, wheremaxit represents
the maximum number of iterations for training.

The evolved cross-domain prototypes, obtained
through a dynamic updating and evolved strategy,
incorporate global category information for each do-
main and reasonable cross-domain knowledge. This
can effectively mitigate the domain shift problem and
reduce the fluctuating noise within each domain pro-
totype. It is seamlessly integrated with the CDEC
module for training segmentation models.
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3.3. Cross-Domain Embedding Contrastive
Module

It is challenging to capture discriminative informa-
tion due to subtle differences in organ appearance and
the lack of annotations in the target domain. In re-
sponse, we introduce the CDEC module by leveraging
the cross-domain evolved prototypes obtained in the
CDPE module. This module constructs an evolved
prototype embedding contrastive loss to enhance dis-
criminative feature representations. The structure of
the proposed CDEC module is illustrated in Figure 2.
It aligns feature embeddings in each class with the
corresponding cross-domain evolved prototypes in a
contrastive way, thereby improving the discriminative
capability of segmentation models.
The contrastive loss is constructed as follows. In

the it-th iteration, for each target-domain image Int,it
in the sampled batch, we first apply up-sampling on
zn,ke,it to match the size of the feature embeddings xn

t,it,

resulting in Zn,k
e,it ∈ Rc×h×w. Then we generate the

masked feature embedding through entrywise prod-
uct xn,k

t,it = xn
t,it ◦ 1[ŷ

n,k
t,it ̸= 0], representing features

specific to the k-th category on the n-th image. With
such calculations across all the K categories and on
all the target-domain images in the batch, the evolved
prototype embedding contrastive loss in the target
domain can be defined as follows, aiming to reduce
intra-class variations and maximize inter-class varia-
tions:

Lepct =

N∑
n=1

K∑
k=1

− log
pos

pos+ neg
, (9)

where

pos = exp(cos(xn,k
t,it , Z

m,k
e,it )/τ), (10)

neg =
∑
i

∑
j ̸=k

exp(cos(xn,k
t,it , Z

i,j
e,it)/τ), (11)

where cos(·, ·) denotes the cosine similarity function
and τ is the temperature hyper-parameter. In this
loss function, with xn,k

t,it representing the appearance
of the k-th category in the n-th image, we estab-
lish the contrastive relation by randomly selecting an
evolved cross-domain prototype, Zm,k

e,it ∈ {Z
n,k
e,it}Nn=1,

for the same k-th category as a positive sample for
xn,k
t,it , while using all the evolved cross-domain pro-

totypes for all the other categories {j : j ̸= k} as

negative samples for xn,k
t,it .

Similarly, for each source-domain image Ins,it in the
sampled batch of the it-th iteration, we utilize the
down-sampled ground-truth labels yns,it to create the

Algorithm 1: Training process of DPCL

Input: DS = {(Ins , Y n
s )}|DS |

n=1 , DT = {(Int )}
|DT |
n=1

Output: Trained segmentation network Nseg

for it = 0 to maxit do
Randomly sample a batch, {(Ins,it, Y n

s,it)}Nn=1

and {(Int,it)}Nn=1, from DS and DT ;

Compute {Pn
s,it, P

n
t,it}Nn=1 by Equation (1);

Compute {∀k : zn,ks,it, z
n,k
t,it}Nn=1 by

Equations (4), (5), (6) and (7));

Compute {∀k : zn,ke,it}Nn=1, by Equation (8);

Upsampling: Zn,k
e,it = Upsample(zn,ke,it),∀n, k;

Create {xn,k
t,it , x

n,k
s,it},∀n, k;

Compute Lepct, Lepcs Ladv and Lseg by
Equations (9), (12), (3) and (16);
Update parameters of Nseg by minimizing
Ltotal in Equation (15);
Compute LD by Equation (2);
Update Ndis by minimizing LD;

end

masked feature embedding xn,k
s,it = xn

s,it ◦ 1[y
n,k
s,it ̸=

0] for each k-th category, and compute the evolved
prototype embedding contrastive loss in the source
domain as follows:

Lepcs =

N∑
n=1

K∑
k=1

− log
pos

pos+ neg
, (12)

where

pos = exp(cos(xn,k
s,it, Z

m,k
e,it )/τ), (13)

neg =
∑
i

∑
j ̸=k

exp(cosxn,k
s,it, Z

i,j
e,it)/τ). (14)

The designed cross-domain embedding contrastive
loss function offers several advantages. Firstly, by
leveraging the contrastive relationship established
between the masked feature embeddings and the
evolved cross-domain prototypes, it empowers the
segmentation network to learn the connections be-
tween individual pixels and prototypes across images.
This enables the network to capture richer informa-
tion about the underlying structure of cross-domain
data, and consequently facilitates the achievement
of more precise segmentation outcomes. Secondly,
through a contrastive exploration of the cross-domain
global semantic relationship between pixels and pro-
totypes, it maximizes the similarity of positive pairs
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while minimizing the similarity of negative pairs. As
a result, it can effectively constrain the embedding
space, making similar categories more compact and
distinct categories more separate.

3.4. Loss Function

The proposed DPCL can be trained end-to-end. In
the it-th iteration, given the sampled batch of labeled
source images {(Ins,it, Y n

s,it)}Nn=1 and unlabeled target

images {(Int,it)}Nn=1, the overall loss function for train-
ing the segmentation network is as follows:

Ltotal = Lseg +λadvLadv +λepc(Lepcs +Lepct), (15)

where λadv and λepc are trade-off hyperparameters. It
includes the adversarial loss Ladv from Equation (3),
and the evolved prototype contrastive losses for the
source and target domains, Lepcs and Lepct, from
Equations (12) and (9), respectively, while the seg-
mentation loss Lseg is defined as:

Lseg =

N∑
n=1

(Lce(P
n
s,it, Y

n
s,it) +Ldice(P

n
s,it, Y

n
s,it)) (16)

Note the segmentation loss is only computed on the
labeled source images, where Lce denotes the cross-
entropy loss function and Ldice denotes the Dice loss
function. The training process of the proposed frame-
work is described in Algorithm 1.

4. Experimental Results

4.1. Experimental Settings

Datasets and evaluation metrics The pro-
posed DPCL is evaluated using the MultiModal-
ity Whole Heart Segmentation (MMWHS) challenge
2017 dataset (Zhuang and Shen, 2016). The dataset
consists of unpaired volumes, including 20 CT and
20 MR scans, each accompanied by corresponding
ground-truth label masks. We employ domain adap-
tation in two directions: MR → CT and CT → MR.
Four organ categories are segmented: the ascend-
ing aorta (AA), the left atrium blood cavity (LAC),
the left ventricle blood cavity (LVC) and the my-
ocardium of the left ventricle (MYO). We utilize the
pre-processed data provided by Chen et al. (2020a),
where 80% of the data is used for training, and the
remaining 20% is used for testing. We employ stan-
dard evaluation metrics, the Dice coefficient (Dice)
and the average symmetric surface distance (ASD),
to evaluate the proposed framework.

Implementation details DeepLabV2 (Chen
et al., 2017) is employed as our segmentation net-
work Nseg, initialized with ImageNet pre-trained
parameters (Deng et al., 2009). The discrimina-
tor Ndis follows a PatchGAN setup (Isola et al.,
2017), including four convolutional layers and the
last classifier. The input image size is 256x256,
with standard data augmentations (random scale,
rotation, and intensity transformations) applied.
We employ stochastic gradient descent (SGD) for
segmentation network optimization with a weight
decay of 5e-4, a momentum of 0.9, and a learning
rate of 2.5e-4. We use the Adam optimizer for the
discriminator with a learning rate of 1e-4. The batch
size is set to 4, τ to 0.05, α to 0.2, λadv to 0.003,
and λepc to 0.1 (CT → MR) and 0.01 (MR → CT).
Following Tsai et al. (2018) and Feng et al. (2023),
we implement multi-level output adaptation by
utilizing features from conv4 and conv5 to generate
segmentation masks. The features from conv4
are employed for computing Lepct and Lepcs. Our
model is implemented in PyTorch and trained on an
NVIDIA 3060Ti GPU.

4.2. Quantitative Evaluation Results

We conduct a comparative analysis over DPCL
against ten state-of-the-art methods for UDA on
medical image segmentation, including CycleGAN
(Zhu et al., 2017), PnP-AdaNet (Dou et al., 2019),
AdaOutput (Tsai et al., 2018), AdvEnt (Vu et al.,
2019), CyCADA (Hoffman et al., 2018), SIFA V1
(Chen et al., 2019), SIFA V2 (Chen et al., 2020a),
EBM (Liu et al., 2021b), CRST (Zou et al., 2019)
and SECALA (Feng et al., 2023). We directly report
results from SIFA V1 (Chen et al., 2019) and SIFA
V2 (Chen et al., 2020a). Other compared methods
use the same segmentation network and dataset to
obtain results (Feng et al., 2023). We use the fully-
supervised model trained on the annotated target do-
main dataset as the performance upper bound, while
the model trained on the annotated source domain
dataset serves as the performance lower bound.

Comparison results on MR → CT The test
results of the proposed DPCL on the MR → CT
task compared with the other state-of-the-art meth-
ods are shown in Table 1. The upper and lower
bounds achieved Dice values of 90.4% and 23.3%,
respectively. The results demonstrate that the pro-
posed DPCL outperforms all the other comparison
methods in terms of both Dice and ASD metrics.
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Table 1: Quantitative comparison results on the MMWHS dataset for MR → CT adaptation. We report
the class average results and the results for all individual classes in terms of Dice and ASD.

Method
Dice ASD

AA LAC LVC MYO Dice.Avg↑ AA LAC LVC MYO ASD.Avg↓
Supervised training (upper bound) 89.3 91.4 92.8 88.0 90.4 2.3 2.9 1.5 3.2 2.5

Source model (lower bound) 30.8 36.8 18.3 7.2 23.3 20.2 8.9 33.6 27.8 22.6

CycleGAN (Zhu et al., 2017) 73.8 75.7 52.3 28.7 57.6 11.5 13.6 9.2 8.8 10.8
PnP-AdaNet (Dou et al., 2019) 74.0 68.9 61.9 50.8 63.9 12.8 6.3 17.4 14.7 12.8
AdaOutput (Tsai et al., 2018) 73.5 80.4 76.1 48.6 69.6 15.5 5.8 5.2 6.6 8.3

AdvEnt (Vu et al., 2019) 79.5 83.0 79.5 57.7 75.0 13.9 9.3 6.9 4.5 8.7
CyCADA (Hoffman et al., 2018) 72.9 77.0 62.4 45.3 64.4 9.6 8.0 9.6 10.5 9.4
SIFA V1 (Chen et al., 2019) 81.1 76.4 75.7 58.7 73.0 10.6 7.4 6.7 7.8 8.1
SIFA V2 (Chen et al., 2020a) 81.3 79.5 73.8 61.6 74.1 7.9 6.2 5.5 8.5 7.0

EBM (Liu et al., 2021b) 78.9 80.7 75.7 60.5 74.0 8.6 6.6 4.7 8.2 7.1
CRST (Zou et al., 2019) 79.6 80.5 78.3 63.7 75.5 8.8 6.4 4.5 7.5 6.8

SECALA (Feng et al., 2023) 83.8 85.2 82.9 71.7 80.9 9.6 4.2 3.9 3.9 5.4

DPCL (Ours) 90.0 88.7 88.2 74.5 85.4 6.6 4.1 4.4 3.7 4.7

PnP-AdaNet (Dou et al., 2019), AdaOutput (Tsai
et al., 2018), and AdvEnt (Vu et al., 2019) empha-
size feature and output-level alignment, resulting in
Dice values of 63.9%, 69.6%, and 75.0%, respectively.
Confidence-regularized techniques, namely EBM (Liu
et al., 2021b), CRST (Zou et al., 2019), and SECALA
(Feng et al., 2023), enhance performance by mitigat-
ing overfitting, yielding Dice values of 74.0%, 75.5%,
and 80.9%, respectively. However, these methods
lack cross-domain global guidance and discriminative
information. In contrast, our proposed DPCL attains
Dice and ASD values of 85.4% and 4.7, surpassing the
second-best method, SECALA, by 4.5% in terms of
Dice. These findings illustrate the effectiveness of our
proposed DPCL.

Comparison results on CT → MR The test
results of the proposed DPCL on the CT → MR
task compared with the other state-of-the-art meth-
ods are shown in Table 2. The upper and lower
bounds achieved Dice values of 85.1% and 20.4%, re-
spectively. This highlights a substantial distribution
gap between domains and underscores the increased
difficulty when MR is the target domain. The experi-
mental results demonstrate that the proposed DPCL
framework achieved the best average Dice and ASD
values of 71.0% and 3.9, respectively. Compared to
SIFA V2 (Chen et al., 2020a), which utilizes Cycle-
GAN for data synthesis and feature alignment, DPCL
remains competitive. The second best method SE-
CALA (Feng et al., 2023), which incorporates seman-

tic alignment and entropy constraints, produces over-
all inferior performance in terms of Dice and ASD
values, highlighting the effectiveness of DPCL.

4.3. Ablation Study

Impact of different components To investigate
the contributions of each component of DPCL to the
performance, we conducted an ablation study on the
MMWHS dataset, as shown in Table 3. All exper-
iments use the base segmentation loss Lseg, which
alone produces the performance lower bound. Our
experiments initially incorporated the adversarial loss
Ladv onto the segmentation loss Lseg, resulting in
the Dice value of 77.3% and 66.6% for MR→CT and
CT→MR, respectively. In the MR→CT adaptation
task, further applying our evolved prototype con-
trastive loss to the source and target domains (Lepcs

and Lepct) with the evolved cross-domain prototype
leads to substantial enhancements, achieving Dice
values of 83.1% and 84.6% and marking improve-
ments of 5.8% and 7.3%, respectively. The best per-
formance with a Dice value of 85.4% is achieved when
the two evolved prototype contrastive loss terms,
Lepcs and Lepct, are simultaneously applied to both
domains. Without utilizing the evolved cross-domain
prototype (i.e., dropping EP) and depending only on
domain-specific prototypes from each source and tar-
get domain, the Dice value decreases to 83.8%. This
shows the effectiveness of the proposed CDPE mod-
ule. Similar findings are observed for CT→MR adap-
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Table 2: Quantitative comparison results on the MMWHS dataset for CT → MR adaptation. We report
the class average results and the results for all individual classes in terms of Dice and ASD.

Method
Dice ASD

AA LAC LVC MYO Dice.Avg↑ AA LAC LVC MYO ASD.Avg↓
Supervised training (upper bound) 81.6 86.3 92.3 80.0 85.1 3.4 2.1 1.7 1.6 2.2

Source model (lower bound) 18.5 7.3 53.5 2.1 20.4 7.1 25.8 8.7 29.9 17.9

CycleGAN (Zhu et al., 2017) 64.3 30.7 65.0 43.0 50.7 5.8 9.8 6.0 5.0 6.6
PnP-AdaNet (Dou et al., 2019) 43.7 47.0 77.7 48.6 54.3 11.4 14.5 4.5 5.3 8.9
AdaOutput (Tsai et al., 2018) 52.3 71.7 79.5 49.2 63.2 9.0 3.5 5.1 5.4 5.8

AdvEnt (Vu et al., 2019) 54.4 72.0 77.5 51.8 63.9 6.8 3.2 3.9 4.0 4.5
CyCADA (Hoffman et al., 2018) 60.5 44.0 77.6 47.9 57.5 7.7 13.9 4.8 5.2 7.9
SIFA V1 (Chen et al., 2019) 67.0 60.7 75.1 45.8 62.1 6.2 9.8 4.4 4.4 6.2
SIFA V2 (Chen et al., 2020a) 65.3 62.3 78.9 47.3 63.4 7.3 7.4 3.8 4.4 5.7

EBM (Liu et al., 2021b) 65.9 64.2 76.9 49.1 64.1 6.9 7.5 5.6 3.8 6.0
CRST (Zou et al., 2019) 65.1 66.9 77.2 50.0 64.8 6.4 6.3 5.5 4.0 5.6

SECALA(Feng et al., 2023) 68.3 74.6 81.0 55.9 69.9 4.9 3.6 5.4 3.2 4.3

DPCL (Ours) 70.3 77.0 82.9 53.6 71.0 5.0 2.9 3.2 4.6 3.9

Table 3: Ablation study of the proposed components on the MMWHS dataset. We report the class average
results and the results for all individual classes in terms of Dice. Ladv: using the adversarial loss.
Lepcs: using the volved prototype contrastive loss for source domain. Lepct: using the volved
prototype contrastive loss for target domain. EP: using the evolved cross-domain prototype.

MR→CT CT→MR
Ladv EP Lepcs Lepct AA LAC LVC MYO Dice.Avg↑ AA LAC LVC MYO Dice.Avg↑√

- - - 86.5 88.2 83.0 51.7 77.3 61.1 75.1 78.7 51.3 66.6√ √ √
- 89.7 87.8 86.1 68.6 83.1 65.5 73.1 79.3 54.4 68.1√ √

-
√

89.6 88.4 87.6 72.9 84.6 66.9 76.9 81.7 54.1 69.9√
-

√ √
88.8 88.2 87.0 71.0 83.8 69.5 77.3 79.5 53.4 69.9√ √ √ √
90.0 88.7 88.2 74.5 85.4 70.3 77.0 82.9 53.6 71.0

Table 4: Ablation study of using different layers of
features for computing Lepct and Lepcs on
the MR→CT adaptation task. We report
the class average Dice and ASD results and
the Dice results for all individual classes.

Layer AA LAC LVC MYO Dice.Avg↑ ASD.Avg↓
conv4 90.0 88.7 88.2 74.5 85.4 4.7

conv5 89.8 88.4 87.9 72.7 84.7 4.9

tation. In summary, our experimental results validate
the effectiveness of each component in the DPCL.

Impact of different layers of features We sum-
marize the results of using different layers of features
for computing Lepct and Lepcs on the MR → CT
adaptation task of the MMWHS dataset in Table 4.
In our proposed DPCL, the features from conv4 are
employed for computing Lepct and Lepcs. With infor-
mation from different resolutions, utilizing different
layers of intermediate features (from conv4 or conv5)
to compute the proposed Lepct and Lepcs influences
the results. The results in Table 4 demonstrate that
using features from conv4 to compute Lepct and Lepcs

outperforms using features from conv5 across all cat-
egories, with a 0.7% improvement in the average Dice
value. We attribute this to the fact that features from
conv4 contain richer low-level information, enabling
the generation of more useful feature representations
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Figure 3: Visual examples of the segmentation results obtained by the proposed modules. Baseline: using
Lseg and Ladv. w/o CDPE: only using the original prototypes without the updating and evolution
strategies. w/o Lcpes or w/o Lcpet: without using Lcpes or Lcpet. DPCL: the full model.
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Figure 4: Impact of (a) the temperature τ and (b)
the hyper-parameter λeps.

through contrastive loss. Importantly, DPCL pro-
duces satisfactory results with features from either
one of the two layers, emphasizing the effectiveness
of our approach without heavy dependence on a spe-
cific feature layer.

4.4. Further Analysis

Impact of the temperature τ We summarize the
impact of the temperature hyperparameter τ on the
MR → CT adaptation task in terms of Dice value in
Figure 4 (a). In contrastive learning, the temperature

parameter τ crucially regulates the severity of penal-
ties imposed on challenging negative samples. Ex-
perimental results demonstrate superior performance
when τ is set to smaller values. Conversely, increas-
ing τ leads to a decrease in performance. The best
results are obtained with a τ value of 0.05, resulting
in a Dice value of 85.4%.

Impact of the weight of the evolved prototype
embedding contrastive loss We summarize the
impact of the weight value of Lepcs and Lepct, λeps,
on the MR → CT adaptation task in terms of Dice
value in Figure 4 (b). The results reveal that the op-
timal result of 85.4% is achieved when λepc is set to
0.01. Reducing or increasing the λepc value leads to
degraded performance. This is because excessively
small weights limit the effectiveness of contrastive
learning, while larger weights hinder the establish-
ment of useful contrast relations for segmentation due
to imperfect prototypes.

4.5. Qualitative Evaluation Results

To illustrate the effectiveness of the proposed DPCL
and its individual modules, we present visualized
comparison results in Figure 3. The visualization
results illustrate the effectiveness of the individual
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modules, with the full DPCL providing the best
segmentation results. The phenomenon of poorly
identified edges and the lack of foreground con-
trast in medical images make semantic segmenta-
tion difficult. Through effective extraction of cross-
domain global guidance and discriminative informa-
tion, DPCL achieves favorable segmentation results.

5. Conclusion

In this paper, we introduce a novel DPCL frame-
work for cross-domain medical image segmentation
with unlabeled target domains. DPCL dynami-
cally updates cross-domain global prototypes and ex-
cavates implicit discrepancy information in a con-
trastive manner. It utilizes a cross-domain prototype
evolution module (CDPE) to facilitate the gradual
transformation of prototypes from the source domain
to the target domain with dynamic updating and evo-
lutionary strategies. Moreover, a cross-domain em-
bedding contrastive module (CDEC) is developed to
enhance the discriminative capability of the segmen-
tation model by establishing contrastive relationships
between evolved prototypes and object embeddings.
Experimental results demonstrate that DPCL is ef-
fective and outperforms many existing state-of-the-
art methods.
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