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Abstract

Explainability and privacy are the top concerns
in machine learning (ML) for medical applica-
tions. In this paper, we propose a novel method,
Domain-Aware Symbolic Regression with Ho-
momorphic Encryption (DASR-HE), that ad-
dresses both concerns simultaneously by: (i)
producing domain-aware, intuitive and explain-
able models that do not require the end-user to
possess ML expertise and (ii) training only on
securely encrypted data without access to ac-
tual data values or model parameters. DASR-
HE is based on Symbolic Regression (SR),
which is a first-class ML approach that pro-
duces simple and concise equations for regres-
sion, requiring no ML expertise to interpret. In
our work, we improve the performance of SR al-
gorithms by using existing domain-specific med-
ical equations to augment the search space of
equations, decreasing the search complexity and
producing equations that are similar in struc-
ture to those used in practice. To preserve the
privacy of the medical data, we enable our algo-
rithm to learn on data that is homomorphically
encrypted (HE), meaning that arithmetic oper-
ations can be done in the encrypted space. This
makes HE suitable for machine learning algo-
rithms to learn models without access to the ac-
tual data values or model parameters. We eval-
uate DASR-HE on three medical tasks, namely
predicting glomerular filtration rate, endotra-
cheal tube (ETT) internal diameter and ETT
depth and find that DASR-HE outperforms ex-
isting medical equations, other SR ML algo-
rithms and other explainable ML algorithms.

Data and Code Availability In our work, we
use publicly available datasets on glomerular fil-
tration rate (GFR) measured on a population
of Congolese adults (Bukabau et al., 2018) and

endotracheal tubes (ETT) internal diameter and
depth measured on a population of pediatric sur-
gical patients (Kim et al., 2023). Our code is
made available in the supplemental materials at:
https://github.com/kentridgeai/DASR.

1. Introduction

Explainability and privacy are the top concerns
in machine learning (ML) for medical applications.
Even when ML models trained on medical data
achieve breakthroughs in prediction performance,
there is still hesitance to deploy these models due
to limited explainability of the model, and concerns
on the privacy of the medical data (Ahmed et al.,
2023; Khan et al., 2023). In this paper, we intro-
duce improvements to a unique ML algorithm, Sym-
bolic Regression (SR), which finds simple explainable
equations that function as predictors. The approach
SR takes is orthogonal to popular black-box ML since
the models are in the form of white-box equations.

Explainability: SR algorithms are ML algorithms
that innately produce explainable models - in the
form of concise equations that can be analyzed
with ease for both regression and classification tasks
(Koza, 1992; Fong and Motani, 2024). This makes
SR algorithms well-suited for fields where the cost
of making wrong decisions is high, such as health-
care (Christensen et al., 2022; Wilstrup and Cave,
2022). However, the equations discovered by tradi-
tional SR algorithms are independent of the applica-
tion’s field, producing equations which may not be
suitable or widely accepted in the specific domain.
To tackle this problem in Physics, researchers have
seeded the SR algorithm with knowledge of exist-
ing Physics equations (Udrescu and Tegmark, 2020;
Fong et al., 2023). Taking inspiration from these
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works, we introduce Domain-Aware Symbolic Regres-
sion (DASR) for medical applications. DASR is a
novel method which takes existing medical equations
as prior knowledge and evolves them. Thus, the equa-
tions discovered by DASR have structures that are
similar to existing medical equations, further increas-
ing explainability. We also find that DASR has better
prediction performance than existing SR.

Privacy: Healthcare organizations are required to
keep patients’ protected health information (PHI)
safe. The Health Insurance Portability and Account-
ability Act (HIPAA) requires that all electronic PHI
be encrypted when created, stored or transmitted.
This introduces significant overhead when applying
machine learning to healthcare data, especially when
the data scientists are from an external organiza-
tion or when engaging third-party computing ser-
vices. Homomorphic encryption (HE) is an ideal so-
lution to this problem, in which data is encrypted in
a way that allows arithmetic operations without de-
cryption (Munjal and Bhatia, 2023). This way, the
true values of the PHI are not made known to ser-
vice providers, which reduces the need for traditional
security measures such as data censorship, which are
costly and may degrade the performance of learning
algorithms. The Cheon, Kim, Kim and Song (CKKS)
scheme (Cheon et al., 2017) is the state-of-the-art al-
gorithm for HE, and is especially suitable for ML
since CKKS allows for arithmetic on floating point
data (unlike most alternative HE schemes). How-
ever, the arithmetic operations are restricted to ad-
dition operations and a limited number of multiplica-
tion operations, while also adding noise. This means
that it is not possible to perform certain operations
directly, such as the comparison operation. Thus,
existing machine learning algorithms require innova-
tive modifications to be compatible with general HE
and CKKS encrypted data (Akavia et al., 2022; Xu
et al., 2023; Cong et al., 2022; Kim et al., 2018). In
this work, we propose the first SR algorithm which is
modified to be compatible with HE encrypted data.
Specifically, we modify our DASR algorithm to oper-
ate on CKKS encrypted data in an algorithm we call
Domain-Aware Symbolic Regression with Homomor-
phic Encryption (DASR-HE).

To evaluate DASR-HE, we work on three medi-
cal tasks of predicting (i) glomerular filtration rate
(GFR), (ii) endotracheal tube (ETT) internal diam-
eter and (iii) ETT depth. GFR is a key indicator
of kidney health and is an important determinant in
certain diagnoses, such as Chronic Kidney Disease

(CKD) (Levey and Inker, 2016). Measuring GFR di-
rectly is expensive and time-consuming since it in-
volves the plasma or urinary clearance of exogenous
filtration markers (e.g. inulin and iohexol). Thus,
it is of great interest to predict GFR from other
biomarkers (Inker et al., 2021; Wang et al., 2022;
Woillard et al., 2021). ETT internal diameter and
ETT depth estimations are critical to reduce compli-
cations during intubation. Improper estimates used
for intubation increase the risk of airway injury, pro-
longed apnea, pneumothorax and atelectasis (Kim
et al., 2023). In pediatric patients, X-rays are not
readily available, thus, it has been of great interest
to predict ETT internal diameter and depth from de-
mographic data (Zhuang et al., 2023; Topjian et al.,
2020; Eipe et al., 2009; Shih et al., 2008; Cole, 1957).

The main contributions of this paper are:

1. We propose a novel SR algorithm, DASR, which
uses known medical equations to augment the search
space of equations, decreasing the search complexity
and producing equations that are similar in structure
to those used in the medical domain. This improves
the prediction performance and explainability of the
discovered equation.
2. We introduce the first SR algorithm that is modi-
fied to be compatible with HE encrypted data, which
we term DASR-HE (built upon DASR). In particu-
lar, we demonstrate the effectiveness of DASR-HE on
CKKS encrypted data. We also show that DASR-HE
is competitive with DASR even with the added noise
and constraints from CKKS.
3. We evaluate DASR and DASR-HE on 3 medical
applications and show that they outperform existing
medical equations, other SRML algorithms and other
explainable ML algorithms on a variety of prediction
and complexity metrics.

2. Background & Related Work

2.1. Symbolic Regression

Symbolic Regression Benchmarks. SR algo-
rithms typically use genetic programming (GP) to
search through a large variety of possible equations
(Koza, 1992; Fong et al., 2023; Schmidt and Lipson,
2009; Fong and Motani, 2024). Most state-of-the-art
(SOTA) SR algorithms still rely on GP as the core
of their algorithms (Petersen et al., 2019; Mundhenk
et al., 2021). GP-based SR works by starting with
an initial random population of equations, evaluat-
ing them, and modifying these equations (via prede-
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fined evolutionary operations such as crossover and
mutation) based on their evaluation scores. In this
work, we choose deep symbolic regression (DSR) (Pe-
tersen et al., 2019), neural-guided genetic program-
ming (NGGP) (Mundhenk et al., 2021) and DistilSR
(Fong and Motani, 2023) as our choice of SOTA
SR methods for comparison based on 2 recent SR
benchmarks in terms of prediction and complexity
by La Cava et al. (2021) and Kamienny et al. (2023).
DistilSR is most similar to our approach in the sense
that both explore a search space of K-Expressions.
DistilSR can be said to be DASR without existing
medical equations.

2.2. Existing Medical Equations

Existing GFR Equations. To evaluate the effec-
tiveness of DASR and DASR-HE on GFR prediction,
we also selected a set of benchmark clinical equa-
tions. We chose all relevant GFR equations available
on MDCalc, a well-known medical reference for clini-
cal equations (Elovic and Pourmand, 2019; Soleiman-
pour and Bann, 2022), used by millions of medical
professionals globally (over 200 countries), inclusive
of more than 65% of US physicians. The equations
are made available in Table 1, consisting of MDRD
(Levey et al., 2006), Schwartz equation (Schwartz
et al., 2009), CKD-EPI Creatinine (Levey et al.,
2009), CKD-EPI Cystatin and CKD-EPI Creatinine-
Cystain C (Inker et al., 2012, 2021). When ethnic fac-
tor correction is available in the equation, we present
both versions: (i) with ethnic factor (WEF) (ii) no
ethnic factor (NEF).
Existing ETT Equations. To evaluate the effec-
tiveness of DASR and DASR-HE on ETT internal
diameter and ETT depth prediction, we also selected
a set of benchmark clinical equations. For ETT in-
ternal diameter, we base our selection on a recent
comparative study (Subramani et al., 2023). The
equations are made available in Table 2, consisting of
age-based formula (ABF) (Cole, 1957), height-based
formula (HBF) (Shih et al., 2008) and weight-based
formula (WBF) (Eipe et al., 2009). For ETT depth,
the equations are made available in Table 3, consist-
ing of pediatric advanced life support formula (PALS)
(Topjian et al., 2020) and height-based formula 2
(HBF-2) (Zhuang et al., 2023).

2.3. Homomorphic Encryption

CKKS Encyption Scheme. The Cheon, Kim,
Kim and Song (CKKS) scheme (Cheon et al., 2017)

is the state-of-the-art algorithm for HE. The CKKS
scheme is both additively and multiplicatively ho-
momorphic, meaning that given messages m1,m2,
and their corresponding CKKS-encrypted version,
E(m1), E(m2), the following 2 properties generally
holds: E(m1) + E(m2) = E(m1 + m2) and E(m1) ×
E(m2) = E(m1 ×m2). This means that addition and
multiplication can be done on encrypted data without
requiring decryption. CKKS is the best suited HE
for ML because it supports floating point arithmetic,
unlike other SOTA HE schemes like BGV (Yagisawa,
2015) and BFV (Fan and Vercauteren, 2012) which
only supports integer arithmetic operations. Thus,
CKKS is the most popular choice for HE for ML al-
gorithms (Akavia et al., 2022; Xu et al., 2023; Cong
et al., 2022; Kim et al., 2018). However, in CKKS,
there is a limit to the number of mathematical oper-
ations that can be performed on an encrypted data
until the noise becomes too large, especially with the
multiplication operator. We can increase the limit
to the number of multiplications, but this comes at
the cost of longer compute time, or lower security
level (Albrecht et al., 2021). Thus, ML algorithms
on CKKS-encrypted data need to manage the opera-
tions carefully, which we do in our work.
Other Operations in HE. Since HE only supports
addition and multiplication, many non-polynomial
operations require innovative methods or approxi-
mations. For example, comparison operators (i.e.,
comp(a, b), which outputs 1 if a > b and 0 if a < b)
are a crucial component in many ML algorithms,
where it is often required in the training and infer-
ence stages. In HE, it is challenging to generate a
comparison function with only addition and multipli-
cation. One solution is to send the entire operation
and operands to the secret-key holder and request the
evaluation of the whole operation, which will then be
encrypted and sent back. Another solution is to use
composite polynomials to approximate the compar-
ison operators to a high degree of precision (Cheon
et al., 2020). Similar solutions exists for other func-
tions such as division and exponentiation (Babenko
and Golimblevskaia, 2021; Prantl et al., 2023).

3. Methodology

DASR Details. In traditional SR algorithms, the
equations found are usually drastically different from
existing medical equations, which reduces explain-
ability, and does not exploit existing domain knowl-
edge. To address this, we introduce DASR, which
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Table 1: Existing Equations for Predicting GFR. 10 commonly used GFR equations from MDCalc.
When ethnic factor correction is available, we present both versions: (i) with ethnic factor (WEF)
(ii) no ethnic factor (NEF). The features used in the equations are {age in years, gender, serum
creatinine in mg/dL (SCR), serum cystatin C in mg/L (SCYS ), height in cm}.

Name of Equation Condition Simplified Equation

MDRD NEF female 129.85× SCR−1.154 × age−0.203

(Levey et al., 2006) male 175× SCR−1.154 × age−0.203

MDRD WEF female 157.37× SCR−1.154 × age−0.203

(Levey et al., 2006) male 212.1× SCR−1.154 × age−0.203

Schwartz Equation all 0.413× height/SCR
(Schwartz et al., 2009)

CKD-EPI Creatinine NEF female, SCR ≤ 0.7 128.06× SCR−0.329 × 0.993age

(Levey et al., 2009) female, SCR > 0.7 93.559× SCR−1.209 × 0.993age

male, SCR ≤ 0.9 135.02× SCR−0.411 × 0.993age

male, SCR > 0.9 124.14× SCR−1.209 × 0.993age

CKD-EPI Creatinine WEF female, SCR ≤ 0.7 148.42× SCR−0.329 × 0.993age

(Levey et al., 2009) female, SCR > 0.7 108.43× SCR−1.209 × 0.993age

male, SCR ≤ 0.9 156.49× SCR−0.411 × 0.993age

male, SCR > 0.9 143.87× SCR−1.209 × 0.993age

CKD-EPI Cystatin C female, SCYS ≤ 0.8 110.89× SCYS−0.499 × 0.996age

(Inker et al., 2012) female, SCYS > 0.8 92.166× SCYS−1.328 × 0.996age

male, SCYS ≤ 0.8 118.98× SCYS−0.499 × 0.996age

male, SCYS > 0.8 98.89× SCYS−1.328 × 0.996age

CKD-EPI Creatinine-Cystatin C NEF female, SCYS ≤ 0.8, SCR ≤ 0.7 109.44× SCR−0.248 × SCYS−0.375 × 0.995age

(Inker et al., 2012) female, SCYS ≤ 0.8, SCR > 0.7 96.495× SCR−0.601 × SCYS−0.375 × 0.995age

female, SCYS > 0.8, SCR ≤ 0.7 101.53× SCR−0.248 × SCYS−0.711 × 0.995age

female, SCYS > 0.8, SCR > 0.7 89.524× SCR−0.601 × SCYS−0.711 × 0.995age

male, SCYS ≤ 0.8, SCR ≤ 0.9 121.48× SCR−0.207 × SCYS−0.375 × 0.995age

male, SCYS ≤ 0.8, SCR > 0.9 116.54× SCR−0.601 × SCYS−0.375 × 0.995age

male, SCYS > 0.8, SCR ≤ 0.9 112.71× SCR−0.207 × SCYS−0.711 × 0.995age

male, SCYS > 0.8, SCR > 0.9 108.12× SCR−0.601 × SCYS−0.711 × 0.995age

CKD-EPI Creatinine-Cystatin C WEF female, SCYS ≤ 0.8, SCR ≤ 0.7 118.19× SCR−0.248 × SCYS−0.375 × 0.995age

(Inker et al., 2012) female, SCYS ≤ 0.8, SCR > 0.7 104.21× SCR−0.601 × SCYS−0.375 × 0.995age

female, SCYS > 0.8, SCR ≤ 0.7 109.66× SCR−0.248 × SCYS−0.711 × 0.995age

female, SCYS > 0.8, SCR > 0.7 96.686× SCR−0.601 × SCYS−0.711 × 0.995age

male, SCYS ≤ 0.8, SCR ≤ 0.9 131.2× SCR−0.207 × SCYS−0.375 × 0.995age

male, SCYS ≤ 0.8, SCR > 0.9 125.86× SCR−0.601 × SCYS−0.375 × 0.995age

male, SCYS > 0.8, SCR ≤ 0.9 121.72× SCR−0.207 × SCYS−0.711 × 0.995age

male, SCYS > 0.8, SCR > 0.9 116.77× SCR−0.601 × SCYS−0.711 × 0.995age

CKD-EPI Creatinine female, SCR ≤ 0.7 131.86× SCR−0.241 × 0.9938age

(Inker et al., 2021) female, SCR > 0.7 93.667× SCR−1.2 × 0.9938age

male, SCR ≤ 0.9 137.55× SCR−0.302 × 0.9938age

male, SCR > 0.9 125.13× SCR−1.2 × 0.9938age

CKD-EPI Creatinine-Cystatin C female, SCYS ≤ 0.8, SCR ≤ 0.7 111.87× SCR−0.219 × SCYS−0.323 × 0.9961age

(Inker et al., 2021) female, SCYS ≤ 0.8, SCR > 0.7 99.63× SCR−0.544 × SCYS−0.323 × 0.9961age

female, SCYS > 0.8, SCR ≤ 0.7 101.07× SCR−0.219 × SCYS−0.778 × 0.9961age

female, SCYS > 0.8, SCR > 0.7 90.011× SCR−0.544 × SCYS−0.778 × 0.9961age

male, SCYS ≤ 0.8, SCR ≤ 0.9 123.72× SCR−0.144 × SCYS−0.323 × 0.9961age

male, SCYS ≤ 0.8, SCR > 0.9 118.61× SCR−0.544 × SCYS−0.323 × 0.9961age

male, SCYS > 0.8, SCR ≤ 0.9 111.77× SCR−0.144 × SCYS−0.778 × 0.9961age

male, SCYS > 0.8, SCR > 0.9 107.16× SCR−0.544 × SCYS−0.778 × 0.9961age
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Table 2: Existing Equations for Predicting
ETT Internal Diameter. The features
are {age in years, height in cm, weight in
kg}.

Name of Equation Simplified Equation

ABF (Cole, 1957) age/4 + 4

HBF (Shih et al., 2008) height/30 + 2

WBF (Eipe et al., 2009) weight/10 + 3.5

Table 3: Existing Equations for Predicting
ETT Depth. The features used are {age
in years, height in cm}.

Name of Equation Simplified Equation

PALS (Topjian et al., 2020) age/2 + 12

HBF-2 (Zhuang et al., 2023) height× 0.1 + 4

takes existing medical equations as prior knowledge
and evolves them as outlined in Algorithm 1. In
DASR, we utilize K-Expressions from Gene Expres-
sion Programming (Ferreira, 2002) in order to have an
easily manipulated representation of an equation (see
Appendix B for details). K-Expressions have many
properties which are desirable, such as having fixed
length K-Expressions represent multiple equations of
varying length and also fulfilling the closure prop-
erty of evolutionary algorithms without much over-
head (Ferreira, 2002; Fong and Motani, 2023). In
DASR, we take existing medical equations applica-
ble for the task (see examples in Tables 1,2 & 3)
and convert them to their K-Expression form. The
K-Expressions are then perturbed at 2 points and
converted back into standard infix equations. The
numerical constants of these equations are then op-
timized via the Broyden–Fletcher–Goldfarb–Shanno
algorithm (BFGS) (Broyden, 1970) with respect to
the mean-squared error (MSE).
By using existing medical equations as prior knowl-

edge, DASR discovers equations that closely resemble
the functional forms familiar to medical profession-
als. Another benefit is that DASR has a drastically
smaller search space compared to traditional SR al-

Algorithm 1: DASR Pseudo Code

Input: existing equations,
primitive symbols set, X, y, where X is
the features and y is the output

Output: best modified equation
best score← null
best modified equation← null
for equation ∈ existing equations do

existing K exp←
ConvertToKExpression(equation)
max len← Length(existing K exp)
for i ∈ {1, 2, · · · ,max len} do

for j ∈ {i+ 1, i+ 2, · · · ,max len} do
for α, β ∈ primitive symbols set2 do

modified K exp← existing K exp
modified K exp[i]← α
modified K exp[j]← β
modified K exp←
AppendPads(modified K exp)
/* Padding ensures

K-Expression can be

validly decoded */

modified equation←
Decode(modified K exp)

modified equation←
BFGS(modified equation,X,y)
/* BFGS is a method for

optimizing numerical

constants */

current score←
MSE(modified equation,X,y)

if best score > current score
then

best score← current score
best modified equation←
modified equation

end

end

end

end

end
return best modified equation

gorithms, but yet has better prediction performance
as shown later in the results section. For our algo-
rithms, we set the functions in the primitive sym-
bols set to {+,−,×, /,∧}. The hyperparameters are
tuned based on mean squared error evaluated on val-
idation data.

202



Explainable and Privacy-Preserving Machine Learning via Domain-Aware Symbolic Regression

Algorithm 2: DASR-HE Constants Optimiza-
tion Pseudo Code (To Replace BFGS)

Input: modified equation, step sizes,
step iterations, E(X), E(y), where E(X)
is the CKKS-encrypted features and
E(y) is the CKKS-encrypted output

Output: coeff
n← CountCoefficients(modified equation)
coeff← RandomList(n)
cost← MSE(modified equation, coeff, E(X), E(y))
for step, iteration ∈ step sizes, step iterations
do

for i ∈ {1, 2, · · · , iteration} do
for idx ∈ {1, 2, · · · , n} do

new coeff← coeff
new coeff[idx]← new coeff[idx] + step
new cost← MSE(modified equation,
new coeff, E(X), E(y))

outcome← step× (new cost ≲ cost)
coeff[idx]← coeff[idx] + outcome
cost← MSE(modified equation,
coeff, E(X), E(y))

new coeff← coeff
new coeff[idx]← new coeff[idx]− step
new cost← MSE(modified equation,
new coeff, E(X), E(y))

outcome← step× (new cost ≲ cost)
coeff[idx]← coeff[idx]− outcome
cost← MSE(modified equation,
coeff, E(X), E(y))

end

end

end
return coeff

DASR-HE Details. To modify DASR to be com-
patible with CKKS-encrypted data, the steps in
DASR have to be managed differently since the prim-
itive operations are restricted to additions and mul-
tiplications, and these operations are limited. Thus,
the numerical optimization step in DASR, which uses
BFGS, is not well-suited since it requires expensive
matrix inversions or numerical approximation of the
jacobian which is not practical given that the CKKS
scheme introduces noise during encoding and arith-
metic operations (see Appendix A for details). There-
fore, we replace BFGS with a method inspired by pat-
tern search (Hooke and Jeeves, 1961). Our replace-
ment for BFGS is shown in Algorithm 2, and is moti-

vated by works which show that non-gradient based
optimizers perform comparably with gradient based
methods (Chiang et al., 2023), and it also mostly re-
lies on few simple addition and multiplication steps.
By using Algorithm 2 instead of BFGS, we comfort-
ably optimize the coefficients for candidate expres-
sions under the practical constraints of CKKS en-
cryption. Note that while there seems to be redun-
dant steps such as duplicating the coefficients in Al-
gorithm 2, these are done to minimize the amount of
noise added to the CKKS-encrypted coefficients.

For other operations, such as comparison, we
can use an approximation via composite polyno-
mials (Cheon et al., 2020), or request an evalua-
tion from the secret-key holder (Sarpatwar et al.,
2020), which we do in this work. For the CKKS
encryption, we set the coefficient modulus bit sizes
to [60, 40, 40, 40, 40, 40, 40, 40, 60] to generate 9 prime
numbers for sufficient multiplicative depth. To main-
tain the security level as shown in Table 1 of the
homomorphic encryption standard (Albrecht et al.,
2021), it is necessary to set a high polynomial modu-
lus degree of 16384 to accommodate to the coefficient
modulus bit sizes. Detailed settings for DASR-HE
and CKKS are provided in the code implementation
of our algorithm found in Supplemental Materials.

Datasets Details. In our work, we use datasets on
glomerular filtration rate (GFR) measured on a pop-
ulation of Congolese adults (Bukabau et al., 2018).
This dataset obtained GFR by measuring plasma
clearance of iohexol. Other features in the dataset
include {age in years, gender, serum creatinine in
mg/dL (SCR), serum cystatin C in mg/L (SCYS ),
height in cm}, which are present in equations in Ta-
ble 1. We also use datasets on endotracheal tubes
(ETT) internal diameter and depth measured on a
population of pediatric surgical patients (Kim et al.,
2023). Other features in the dataset include {age in
years, height in cm, weight in kg}, which are present
in equations in Tables 2 & 3.

Benchmark Methods. To do a thorough evalua-
tion, we identified 3 broad categories of competing
methods: (i) other SR ML, (ii) other explainable ML
and (iii) existing medical equations. We chose the
3 SOTA SR algorithms identified in related works,
DSR, NGGP and DistilSR. We also chose 3 ML meth-
ods that are widely regarded as explainable (Whig
et al., 2023): Linear Regression (LR), Support Vec-
tor Regression (SVR) and Decision Tree Regression
(DTR), based on recent medical research utilizing
the models, respectively (Raynaud et al., 2023; Zhou
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Table 4: New Equations (Our Contributions) for GFR Prediction

SR Method Condition Our Discovered Equation

DASR (Ours) female, SCYS ≤ 0.8, SCR ≤ 0.7 SCR−0.23201 × (92.956× SCYS−0.44557 − 0.30801× age)
female, SCYS ≤ 0.8, SCR > 0.7 SCR−0.40425 × (79.963× SCYS−0.67882 − 0.32564× age)
female, SCYS > 0.8, SCR ≤ 0.7 SCR0.0115 × (86.741× SCYS−0.097012 − 0.070911× age)
female, SCYS > 0.8, SCR > 0.7 SCR0.18054 × (112.28× SCYS−0.29257 − 0.68316× age)
male, SCYS ≤ 0.8, SCR ≤ 0.9 SCR0.65914 × (2.0637× SCYS 1.3969 + 4.4278× age)
male, SCYS ≤ 0.8, SCR > 0.9 SCR−11.75 × (0.14873× SCYS−13.426 + 1.3436× age)
male, SCYS > 0.8, SCR ≤ 0.9 SCR0.21501 × (114.67× SCYS−0.31784 − 0.33236× age)
male, SCYS > 0.8, SCR > 0.9 SCR−0.068742 × (108.45× SCYS−0.12809 − 0.37943× age)

DASR-HE (Ours) female, SCR ≤ 0.7 298.76× age−0.11564 × 0.40507SCYS

female, SCR > 0.7 300.3× age−0.21147 × 0.5624SCYS

male, SCR ≤ 0.9 273.6× age−0.17364 × 0.6579SCYS

male, SCR > 0.9 242.21× age−0.17131 × 0.71114SCYS

DSR all height/(SCR + SCYS 2/SCR)

NGGP all age× height/(age× SCYS 2 + age+ 3× is female− SCYS )

DistilSR all height0.8677
SCYS

Table 5: New Equations for ETT Diameter

SR Method Our Discovered Equation

DASR (Ours) age0.48872 + 3.1074

DASR-HE (Ours) age0.49014 + 3.1036

DSR 14.551× height/(height+ 184.01)

NGGP 14.247× height/(height+ 174.12)

DistilSR |height− 34.603|0.39193

Table 6: New Equations for ETT Depth

SR Method Our Discovered Equation

DASR (Ours) 4.9208 + 0.094789× height

DASR-HE (Ours) 0.79881× height0.62999

DSR 43.233× height/(height+ 187.06)

NGGP height/(0.03647× height− 0.03647× weight+ 3.7496)

DistilSR (age+ height)
0.57855

et al., 2023; Shikha and Kasem, 2023). Finally, we
also compare against existing medical equations for
each of the 3 medical prediction problems as outlined
in related works Tables 1,2 & 3.

Benchmark Metrics. We measure the performance
of predictors via a diverse range of prediction and

complexity metrics. Based on existing medical lit-
erature, we chose the following 6 prediction metrics
(where y is the actual values, ŷ is the predictions,
ρ is the pearson’s correlation between actual values
and predictions, µ is the mean and σ is the standard
deviation):

i) Root-MSE (RMSE),
√
MSE.

ii) Mean absolute error (MAE),
∑N

i=1 |yi − ŷi|/N .
iii) Lin’s concordance correlation coefficient (CCC),

2ρσyσŷ/((µy − µŷ)
2
+ σ2

y + σ2
ŷ) (Lawrence and Lin,

1989).
iv) Proportion of predictions within ±10% of actual
value (P10) (Bukabau et al., 2018).
v) Proportion of predictions within ±30% of actual
value (P30) (Bukabau et al., 2018).
vi) (Only for GFR) Stage accuracy, the agreement of
prediction with actual values in categorizing individ-
uals into the 5 guideline-recommended GFR stages
(Stage 1: > 90, Stage 2: 60 to 89, Stage 3: 30 to 59,
Stage 4: 15 to 29, Stage 5: < 15) (Inker et al., 2021).

In terms of complexity, we chose the following two
metrics from SR literature: (i) Peterson’s complex-
ity, which is the sum of pre-defined scores assigned to
equation tokens as detailed in (Petersen et al., 2019)
and (ii) equation length, which is the sum of occur-
rences of operations, constants and features in the
equation (La Cava et al., 2021).
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Table 7: Prediction performance of our methods against benchmarks on GFR data. Best values are bolded.

RMSE MAE Lin’s CCC P10 P30 Stage Accuracy
(lower is better) (lower is better) (higher is better) (higher is better) (higher is better) (higher is better)

Our Discovered Equations
DASR 13.025 8.711 0.667 0.632 0.948 0.755
DASR-HE 13.63 9.425 0.623 0.622 0.949 0.776

Other SR ML
DSR 17.294 13.217 0.481 0.438 0.908 0.591
NGGP 15.893 12.086 0.464 0.469 0.938 0.622
DistilSR 15.95 12.235 0.37 0.438 0.938 0.612

Other Explainable ML
LR 15.491 11.303 0.503 0.52 0.948 0.673
SVR 15.073 11.174 0.49 0.52 0.918 0.683
DTR 14.755 11.086 0.528 0.52 0.938 0.602

Existing Medical Equations
MDRD NEF (2006) 24.704 16.04 0.355 0.387 0.836 0.581
MDRD WEF (2006) 32.394 20.496 0.28 0.306 0.765 0.653
Schwartz Equation (2009) 23.144 18.579 0.196 0.244 0.785 0.418
CKD-EPI Creatinine NEF (2009) 19.564 13.735 0.512 0.5 0.806 0.663
CKD-EPI Creatinine WEF (2009) 28.45 22.536 0.365 0.204 0.704 0.653
CKD-EPI Cystatin C (2012) 21.042 15.832 0.521 0.428 0.836 0.581
CKD-EPI Creatinine-Cystatin C NEF (2012) 16.58 11.825 0.591 0.5 0.908 0.663
CKD-EPI Creatinine-Cystatin C WEF (2012) 19.975 15.409 0.518 0.367 0.836 0.653
CKD-EPI Creatinine (2021) 20.083 14.416 0.493 0.397 0.806 0.673
CKD-EPI Creatinine-Cystatin C (2021) 17.726 13.278 0.545 0.418 0.867 0.663

Table 8: Prediction performance of our methods against benchmarks for ETT internal diameter data.

RMSE MAE Lin’s CCC P10 P30
(lower is better) (lower is better) (higher is better) (higher is better) (higher is better)

Our Discovered Equations
DASR 0.381 0.31 0.928 0.778 0.999
DASR-HE 0.381 0.31 0.928 0.778 0.999

Other SR ML
DSR 0.387 0.312 0.928 0.784 0.998
NGGP 0.405 0.327 0.923 0.76 0.998
DistilSR 0.393 0.314 0.926 0.772 0.997

Other Explainable ML
LR 0.407 0.329 0.922 0.763 0.998
SVR 0.949 0.819 0.225 0.29 0.842
DTR 0.42 0.328 0.912 0.621 0.999

Existing Medical Equations
ABF (1957) 0.522 0.43 0.867 0.644 0.936
HBF (2008) 0.559 0.464 0.861 0.561 0.98
WBF (2009) 0.887 0.617 0.742 0.518 0.916

4. Results and Discussion

In Tables 4, 5 & 6, we document the newly discovered
equations we generated using DASR and DASR-HE
and the 3 other SR ML methods (i.e., DSR, NGGP,
DistilSR) for the tasks of predicting GFR, ETT in-
ternal diameter and ETT depth, respectively. The

prediction performance of all methods on the three
tasks in terms of the benchmark metrics are recorded
in Tables 7, 8 & 9 respectively.

Do DASR and DASR-HE predict better than
other approaches? In all but 1 of the 16 predic-
tion performance metrics, the best equations were our
discovered equations using either DASR or DASR-
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Table 9: Prediction performance of our methods against benchmarks for ETT depth data.

RMSE MAE Lin’s CCC P10 P30
(lower is better) (lower is better) (higher is better) (higher is better) (higher is better)

Our Discovered Equations
DASR 1.029 0.781 0.938 0.856 0.997
DASR-HE 1.034 0.787 0.936 0.854 0.998

Other SR ML
DSR 1.119 0.862 0.931 0.804 0.997
NGGP 1.334 0.84 0.908 0.83 0.997
DistilSR 1.03 0.788 0.937 0.848 0.997

Other Explainable ML
LR 1.091 0.839 0.932 0.813 0.997
SVR 2.807 2.317 0.207 0.329 0.887
DTR 1.268 1.01 0.904 0.703 0.994

Existing Medical Equations
PALS (2020) 1.504 1.194 0.825 0.667 0.967
HBF-2 (2023) 1.115 0.857 0.932 0.824 0.998

HE. Even in the single exception (P10 for ETT inter-
nal diameter), the performances of both DASR and
DASR-HE are the next best. Notably, across Tables 7
and 8, DASR and DASR-HE outperforms better than
other SR ML and other explainable ML and severely
outperforms existing medical equations. In Table 9,
existing medical equations performance are competi-
tive, but DASR and DASR-HE still demonstrate the
best performance among all approaches.

What if there are no existing medical equa-
tions for DASR? The DASR algorithm without
existing medical equations will have to do an exhaus-
tive search of K-Expressions, since there are no base
medical equations to perturbate on. Thus, since all
possible perturbations are explored, this is similar
to DistilSR. While DASR searches K-Expressions 2
perturbations away from the base medical equations,
DistilSR will search all possible equations, which is
computational expensive (i.e., search complexity of
O(p2l2) for DASR and O(pl) for DistilSR, where p
is the number of unique primitive operations and
operands and l is the length of K-expressions). The
poor scaling of the search complexity of DistilSR re-
stricts the max length of expressions due to computa-
tional constraints, thus it is not viable to use DistilSR
to search the space of long K-Expressions, restricting
the expressivity of the discovered equation, which in
turn reduces prediction performance. As seen in Ta-
bles 7, 8, 9, DASR outperforms DistilSR and DistilSR
outperforms existing medical equations. Further-
more, in the workflow of discovering a medical equa-

tion, the researcher using DASR can apply simple
traditional approaches of finding medical equations
to get a base equation. For example, linear regres-
sion or linear SVM could be applied on the dataset.
The researcher can utilize their domain knowledge to
prune the insignificant weights of the linear model,
do feature selection and also apply transforms to the
features themselves (e.g., do y =

∑n
i=0 ailn(x)i in-

stead of y =
∑n

i=0 aixi), or apply all of the above.
This will then form the base equation for DASR, in
which DASR will perturb this equation to find an im-
proved equation structure. Nonetheless, we note that
medical equations are used in many specialties (see
Appendix C).

Does DASR-HE sacrifice explainability to ob-
tain high prediction performance? To show that
the high prediction performance of DASR-HE is not
at the expense of having low explainability (which
we measure through complexity metrics), we analyze
the prediction-complexity tradeoff in Figure 1 and
Appendix Figures 5 & 6, for the 3 medical appli-
cations respectively. DASR-HE consistently pareto
dominates all other methods. Relative to the other
methods, the high prediction performance of DASR-
HE is more than proportionate to its complexity. We
also note that DASR-HE is able to obtain high predic-
tion performance that even the more complex models
are unable to obtain. Thus, despite not always pos-
sessing the lowest complexity, DASR-HE is the best
overall approach considering its top prediction per-
formance and relatively low complexity.
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(a) RMSE vs Peterson’s Complexity. (b) RMSE vs Expression Length.

(c) Lin’s CCC vs Peterson’s Complexity. (d) Lin’s CCC vs Expression Length

Figure 1: Plots of various prediction metrics against various complexity metrics for GFR prediction. DASR-
HE pareto dominates all other approaches, in terms of performance and complexity.

How does DASR-HE perform in terms of bias
and outliers? The Bland-Altman analysis is com-
monly used in healthcare to evaluate the degree of
agreement between a prediction and the actual value
(Bukabau et al., 2018), by identifying systematic bias
and influential outliers. We conducted the Bland-
Altman for DASR-HE, the best SR ML, the best ex-
plainable ML and the best existing medical equation
in the plots in Fig. 2. In all plots except DASR-HE,
we see that the mean difference is highly positive,
suggesting that other approaches tend to have over-
estimated predictions. Additionally, the standard de-
viation of the difference between predicted and ac-
tual values is the smallest in DASR-HE, which is also
consistent with the high P10 and P30 scores obtained
by DASR-HE. Furthermore, despite the smaller stan-

dard deviation, most of the differences lie within
±1.96 standard deviation (95% limits of agreement).

Ablation: How much performance does
DASR-HE sacrifice for the increased privacy?
We should expect that DASR-HE performs worse
than DASR since the purpose of encrypting the data
is to preserve privacy and comes at the expense of
increased noise. Note that the noise added during en-
cryption is important for the security of the encryp-
tion and is not an unwanted removable side-effect.
DASR-HE performs worse than DASR because the
noise introduced by CKKS affects the MSE com-
putation of candidate equations and changes their
rankings, which is more apparent in long equations
with many operations. We can observe this in Ta-
ble 4, where the equations discovered by DASR-HE
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(a) DASR-HE (b) Best SR ML

(c) Best Explainable ML (d) Best Existing Medical Equation

Figure 2: Bland-Altman analysis DASR-HE and the top performer among the 3 categories of SR ML, Ex-
plainable ML and Existing Medical Equations.

is shorter than that of DASR. From the prediction of
ETT internal diameter and ETT depth, we can see in
Tables 8 & 9 that DASR-HE performance metrics are
within 1% of DASR. For prediction of GFR, DASR-
HE prediction performance is slightly worse, but still
performs better than all other methods, coming only
second to DASR. Despite the additional noise due to
CKKS-encryption and CKKS arithmetic operations,
the performance of DASR-HE still remains close to
that of DASR on all three applications, demonstrat-
ing the success and robustness of our modification
from DASR to DASR-HE.
Limitations: Our work is based upon retrospective
data and hence future work on a prospective cohort
is required to provide further validation for the equa-
tions discovered by our methods.

5. Conclusion

In this paper, we propose DASR-HE, a novel SR
ML algorithm that is both explainable and privacy-
preserving. We first develop a base SR algorithm
without encryption, DASR, which uses known medi-

cal equations to augment the search space of equa-
tions, decreasing the search complexity and pro-
ducing equations that are similar in structure to
those used in medical practice. These new equations
show high prediction performance and explainability.
Then, we introduce a first-of-its-kind SR algorithm
(a modification to DASR) that is compatible with
CKKS-encrypted data, which we term DASR-HE.We
show that DASR-HE is competitive with DASR even
with the added noise and constraints from CKKS. Fi-
nally, we evaluate DASR and DASR-HE on 3 medical
applications and show that they outperform existing
medical equations, other SRML algorithms and other
explainable ML algorithms on a range of prediction
and complexity metrics. We hope that our work will
motivate healthcare professionals to utilize DASR-
HE to discover new explainable medical equations in
an automated privacy-preserving manner. DASR-HE
takes an orthogonal approach to common ML algo-
rithms - by producing models (equations) that do not
require intricate ML knowledge to interpret.

Institutional Review Board (IRB) This re-
search does not require IRB approval.
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Appendix A. Additional Information for CKKS

Table 10: Scaling of Precision & Time Taken with respect to Equation complexity, k (Kim et al., 2022)

Equation form Equation complexity, k Precision (in bits) Time Taken

∏2k

i=1 xi

1 21.8 4.01 ms
2 20.1 34.25 ms
3 20.7 0.1 s
4 17.8 0.29 s
5 17.3 0.73 s
6 15.9 1.78 s
7 14.3 8.86 s

∑k
i=0 x

i

2 21.8 4.14 ms
4 19.4 29.39 ms
8 19.1 75.14 ms
16 16.9 0.17 s
32 16.3 0.38 s
48 15.1 0.67 s
64 14.9 0.82 s

Table 11: Security level against CKKS parameters (i.e. Polynomial modulus degree and sum of bit sizes of
the coefficient modulus) from the Homomorphic Encryption Standard (Albrecht et al., 2021)

Polynomial modulus degree Sum of bit sizes of the coefficient modulus Security level (in bits)

1024 27 128
19 192
14 256

2048 54 128
37 192
29 256

4096 109 128
75 192
58 256

8192 218 128
152 192
118 256

16384 438 128
305 192
237 256

32768 881 128
611 192
476 256
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CKKS is the state-of-the-art homomorphic encryption scheme for machine learning (Lee et al., 2022;
Panda, 2021), with the key unique strength being that it deals with encrypted real numbers naturally
without requiring an explicit quantization step. Recent developments on encrypted machine learning have
been done with CKKS, such as work done by Panda (2021) and Akavia et al. (2022). The unique strength of
CKKS in supporting real number arithmetic, which is not readily available in other homomorphic encryption
schemes. Beyond homomorphic encryption, methods like (i) multiparty computation requires the strong
assumption of collaboration between multiple parties, which may not be practical or feasible and introduces
complexity and overhead associated with coordinating multiple parties and (ii) differential privacy focuses on
protecting against re-identification attacks but may not prevent all forms of privacy breaches. It is precisely
the uniqueness of homomorphic encryption in allowing inherent arithmetic operations on encrypted raw data,
that gives it the widely-known title of being the “holy grail of encryption” (Wood et al., 2020).
CKKS is built upon the hardness of the Ring Learning with Errors (RLWE) problem. RLWE is the

task of recovering a secret polynomial modulo an irreducible polynomial when given noisy samples of the
polynomial at random points. The difficulty of solving RLWE lies in distinguishing between random noise
and structured information about the secret polynomial. The security of CKKS relies on the assumption
that solving the RLWE problem is computationally difficult, even for adversaries equipped with significant
computational resources. For the algorithmic steps and operations, we direct the reader to the original work
by Cheon et al. (2017), Section 3.3., in particular on the 5 operations: KeyGen, Enc, Dec, Add, Mult.

Appendix B. Additional Information for K-Expressions

K-Expressions are fixed-length strings that can be decoded to form variable-length expression. The decoding
process is done by reading the K-Expression starting from the left-most symbol of the string an building
an expression tree by filling up empty spots (with top-most then left-most priority), until the tree is filled
Ferreira (2002). For example, the string ”∗+−abcde” is decoded as (a+ b)∗ (c−d). In this case, the symbol
e being in excess and not included in the already full expression. Thus, the length of the K-Expression need
not be equal to the length of the expression tree, enables the creation of expressions of variable size from
fixed length string representation. K-Expressions also have the To ensure that all K-expressions decode to
form a valid mathematical expression, it is necessary that K-expressions have a tail component, in which
only terminal symbols are present Ferreira (2002). By utilizing K-Expressions, DistilSR (Fong and Motani,
2023) achieved the best performance on datasets with compact ground truth equations, outperforming other
SR methods (which bloats easily by evolving long equations).

Appendix C. Statistics on Existing Medical Equations

Based on the distribution of equations based on 53 medical specialities from MDCalc (consisting of 725
equations for over 200 diseases as seen in Figure 3), the top 15 specialities are: Internal Medicine (12.564%),
Hospitalist Medicine (11.379%), Emergency Medicine (11.965%), Critical Care (11.001%), Family Practice
(11.164%), Primary Care (9.605%), Gastroenterology (8.59%), Hematology and Oncology (8.8%), Cardiol-
ogy (8.755%), Neurology (8.094%), General Surgery (8.665%), Pulmonology (8.709%), Pediatrics (7.155%),
Geriatrics (6.239%), Hepatology (6.164%).
Additionally, based on Clarivate’s Web of Science, as seen in Figure 4 the top 15 areas with publica-

tions on medical equations are: Oncology (11.249%), Medicine General Internal (11.085%), Cardiac Cardio-
vascular Systems (8.852%), Surgery (8.542%), Clinical Neurology (4.897%), Gastroenterology Hepatology
(4.252%), Pharmacology Pharmacy (4.005%), Urology Nephrology (3.615%), Medicine Research Experi-
mental (3.589%), Radiology Nuclear Medicine Medical Imaging (3.382%), Nutrition Dietetics (3.265%), Pe-
ripheral Vascular Disease (3.206%), Endocrinology Metabolism (3.066%), Pediatrics (2.782%), Orthopedics
(2.678%).
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Figure 3: Distribution of medical equations across 53 medical specialities from MDCalc.

Figure 4: Distribution of publications on medical equations from Clarivate’s Web of Science.
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Appendix D. Other Performance-Complexity Graphs

(a) RMSE vs Peterson’s. (b) RMSE vs Length.

(c) CCC vs Peterson’s. (d) CCC vs Length.

Figure 5: Plots of various prediction metrics against various complexity metrics for ETT Internal Diameter.
DASR-HE pareto dominates all other approaches, in terms of performance and complexity.

(a) RMSE vs Peterson’s. (b) RMSE vs Length.

(c) CCC vs Peterson’s. (d) CCC vs Length.

Figure 6: Plots of various prediction metrics against various complexity metrics for ETT Depth. DASR-HE
pareto dominates all other approaches, in terms of performance and complexity.
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