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Gunnar Rätsch raetsch@inf.ethz.ch
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Abstract
Machine learning applications hold promise to
aid clinicians in a wide range of clinical tasks,
from diagnosis to prognosis, treatment, and pa-
tient monitoring. These potential applications
are accompanied by a surge of ethical con-
cerns surrounding the use of Machine Learn-
ing (ML) models in healthcare, especially re-
garding fairness and non-discrimination. While
there is an increasing number of regulatory poli-
cies to ensure the ethical and safe integration
of such systems, the translation from policies
to practices remains an open challenge. Algo-
rithmic frameworks, aiming to bridge this gap,
should be tailored to the application to enable
the translation from fundamental human-right
principles into accurate statistical analysis, cap-
turing the inherent complexity and risks as-
sociated with the system. In this work, we
propose a set of fairness impartial checks es-
pecially adapted to ML early-warning systems
in the medical context, comprising on top of
standard fairness metrics, an analysis of clinical
outcomes, and a screening of potential sources
of bias in the pipeline. Our analysis is fur-
ther fortified by the inclusion of event-based
and prevalence-corrected metrics, as well as
statistical tests to measure biases. Addition-
ally, we emphasize the importance of consider-
ing subgroups beyond the conventional demo-
graphic attributes. Finally, to facilitate oper-
ationalization, we present an open-source tool
FAMEWS to generate comprehensive fairness
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reports. These reports address the diverse
needs and interests of the stakeholders involved
in integrating ML into medical practice. The
use of FAMEWS has the potential to reveal crit-
ical insights that might otherwise remain ob-
scured. This can lead to improved model de-
sign, which in turn may translate into enhanced
health outcomes.

Data and Code Availability In this study, we
primarily experiment with HIRID dataset (Faltys
et al., 2021), which is publicly available for down-
load on PhysioNet (Goldberger et al., 2000), and
with the benchmark models for early-detection of
organ failure developed by Yèche et al. (2021)
whose code base is available at https://github.

com/ratschlab/HIRID-ICU-Benchmark/.
The FAMEWS open-source tool is available at:
https://github.com/ratschlab/famews.

Institutional Review Board (IRB) The institu-
tional review board (IRB) of the Canton of Bern ap-
proved the study on retrospective ICU (BASEC 2016
01463). The need for obtaining informed patient con-
sent for patient data from our institution was waived
owing to the retrospective and observational nature
of the study.
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1. Introduction

We are witnessing the rise of Machine Learning (ML)
models targeting the healthcare domain. The increas-
ing availability of electronic health record (EHR)
datasets enables the development of AI-based moni-
toring systems in the hospital. For instance, Yèche
et al. (2021) propose benchmark models for early de-
tection of organ failure based on the HiRID dataset
(Faltys et al., 2021). These prognosis early-warning
systems aim to raise the alarm in case of a high risk
of organ failure within the next 12 hours. These
systems are meant to be applied to critically ill pa-
tients and could have a tremendous impact on their
health outcomes. As with every ML model, these sys-
tems can be biased (Coeckelbergh, 2020) and could
lead to unfair health disadvantages for some patient
groups (Vayena et al., 2018). Governments worldwide
have expressed concern about the ethics and safe in-
tegration of ML systems. For instance, the proposed
EU AI Act12 aims to answer to the urgency of fram-
ing the models with strict regulatory policies. Re-
garding the fairness of such models, the draft of the
act promotes audits of algorithms and datasets to en-
sure non-discrimination and non-violation of human
rights. To this end, they require developers to provide
documentation about the model’s general character-
istics, capabilities, and limitations. However, no fur-
ther details are provided on how to audit fairness in
practice. As highlighted in the review of algorithmic
fairness (Pagano et al., 2023), this task is challenging
as there is no consensus on how to measure the fair-
ness of an algorithm.

1. https://europarl.europa.eu/doceo/document/
TA-9-2022-0140_EN.html

2. https://data.consilium.europa.eu/doc/document/
ST-15698-2022-INIT/EN/pdf

To fully comprehend the issue of bias in medical ML,
we conducted exploratory work with ethics profes-
sionals and clinicians analyzing early detection of cir-
culatory failure as developed in the HiRID bench-
mark (Yèche et al., 2021). In this first attempt (to
the best of our knowledge) to design a fairness au-
diting framework for early-warning systems, we ac-
knowledge the necessity to not only check for clas-
sical notions of fairness but also to investigate the
fairness of the early-warning system’s real-world con-
sequences (McCradden et al., 2020). We question var-
ious system’s design choices from a fairness perspec-
tive as bias can be introduced at many stages of the
Machine Learning pipeline (Rajkomar et al., 2018).
We summarize our learnings in an open-source tool
FAMEWS which primarily complements the HiRID
benchmarks (Yèche et al., 2021), but is applicable to
a wide range of early-warning systems.
Our main contributions are:

1. A flexible fairness-auditing framework tai-
lored for clinical early-warning systems.
The framework is depicted in Figure 1. In the
clinical context, patient grouping based on medi-
cal attributes such as admission type, comorbidi-
ties, or patient consciousness helps to spot model
biases and identify disadvantaged subgroups be-
yond static demographic attributes (like race or
gender). We propose grouping definitions for the
HiRID dataset, but the user may change and
augment them (Figure 1A). The tool is not re-
stricted to any specific dataset, model type, or
prediction task. If lacking some inputs, the user
can run only part of the analysis (Figure 1B).

2. Evaluating ML models, not only through
standard metrics but also through com-
parison of clinical outcomes and screening
of the potential sources of bias. Available
analyses are listed in Figure 1C and described
in Section 3. We focus on prognosis models es-
timating future risk and providing early alarms,
differing from classification setup by including a
time dimension. Differences in timing lead to un-
fair outcomes as well as discrepancies in alarm’s
accuracy. Also, as to capture an event, it is
enough to have only one alarm, we need to mea-
sure recall from the event point of view (in ad-
dition to a conventional timestep-based recall).
Medical variables serve as input signals and de-
fine prediction targets. Differences in their levels
and missingness patterns, even if initially clini-
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cally justified, can mislead model selection and
obscure fairness measurements. Differences in
feature ranking across cohorts can also result
in an unrepresentative model, especially while
implementing a submodel reduced to the most
important features. We address these concerns
with the screening stages in the framework.

3. Proposing the automatic generation of a
PDF report that is easily shareable with
various stakeholders and comprises the de-
tailed fairness analysis and insightful sum-
maries of each audit stage. Provisioned
stakeholder’s needs and interests are described
in Section 4.2. We don’t differentiate between
users while generating the report. By including
all levels of analysis detail, we aim to ease com-
munication as every stakeholder is viewing the
same version of the report, and in addition, we
do not hide any potentially critical information.
A link to an example of the produced report is
given in Appendix D, and the insights derived
from it are in Appendix C.

2. Related work

In recent years, with the rise of concern surrounding
the fairness of Machine Learning algorithms, tools
to detect bias in these models have emerged (Bel-
lamy et al., 2018; Weerts et al., 2023; Cabrera et al.,
2019; Wexler et al., 2019; Saleiro et al., 2018; Her-
tweck et al., 2023). In Table 1, we summarise the
characteristics of popular fairness auditing tools and
compare them to our framework.
Previous works focus on fair decision-making and as
such support binary classifiers. Nonetheless, some of
these tools extend to multiclass classifiers or regres-
sors, as shown in the first row of Table 1.
Group fairness can be described as the absence of
systematic disadvantages towards a group of individ-
uals that share a common attribute. The type of
supported grouping is an important tool character-
istic that we outline in Table 1. In the algorithmic
fairness literature, classical groupings are based on
protected features such as ethnicity, gender, or age
and there exists a notion of a privileged and an un-
privileged category. We follow the most recent tools
and expand this precept by letting the user define
their own grouping, which can be multicategorical.
FairVis (Cabrera et al., 2019) even proposes to scan

the set of possible features to find the most discrimi-
nated intersectional group.
In order to assess the fairness of a model, the Ma-
chine Learning community relies on formalizations of
fairness (Makhlouf et al., 2021). They can be de-
fined as a mathematical condition on the individual’s
attributes and the model output, that when satisfied
ensures the model’s compliance with a certain vision
of fairness. To approximate these formalizations, fair-
ness auditing tools propose to compare common per-
formance metrics from one group to another.
The detection of unfair model outputs opens the
question of where the bias is coming from. The source
of bias screening is another comparison characteristic
in Table 1. In Meng et al. (2022), authors explore
how interpretability techniques can be used to grasp
the underlying mechanics of detected biases in an ML
model. For the same purpose, What-if Tool (Wexler
et al., 2019) offers an interactive platform to explore
trained models. For instance, they support counter-
factual analysis to investigate which attributes have
an unjustified effect on the prediction. While What-if
tool offers a lot of capabilities to examine the model’s
robustness (exploration of feature importance, data
distribution, and missingness), it lacks the possibility
to perform these analyses per subgroup. Moreover,
the counterfactual analysis on protected attributes is
quite intricate to perform for medical applications as
some of these attributes (such as age and sex) have
direct clinically justified impacts on the label.
Finally, a couple of frameworks like FairnessLab
(Hertweck et al., 2023) and Aequitas (Saleiro et al.,
2018) go beyond the classical bias analysis tools by
providing a more comprehensive fairness assessment.
They output an intuitive summary with explanations
related to relevant ethics and justice concepts, in this
way becoming usable by developers as well as reg-
ulators and guiding the users to the most adequate
fairness metric. For instance, the Aequitas frame-
work (Saleiro et al., 2018) presents an interesting
solution for generating fairness reports. It outputs
detailed plots to compare different formalizations of
fairness across groups as well as summary assess-
ment to easily comprehend for which groups and
metrics the model is biased. However, this frame-
work is only suitable for classical binary classifica-
tion, lacking event-based metrics which are key for
evaluating early-warning systems. They also don’t
propose outcome-based metrics or screening of po-
tential sources of bias. Moreover, the details about
the statistical methodology of their work are miss-
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Figure 1: Schema summarising FAMEWS workflow. The user first needs to provide the patients’ groupings
(A), which can be based on demographics (like gender or race) or static clinical attributes (like
admission reason). Then, for each prediction task and model, the user has to provide model
and data-based inputs that are specific to the ML system to audit (B). Afterwards, the different
analytical stages can be run (C). Their numbering indicates the corresponding section in the paper.
Each analysis stage requires a specific set of inputs depicted in block B by its numbered colored
dot. The results of the analyses are gathered in a PDF report that can be shared with the different
stakeholders (D).

ing.
Discussed frameworks are available as libraries and
some (Table 1) also embed convenient automatic vi-
sualization functionalities like a dashboard or report
generation.
Focus on the medical context and early-warning sys-
tems differentiate our work from others, that are more
general, but missing some essential details for this
particular application.

3. Tool description

FAMEWS aims to facilitate systematic fairness au-
dits of ML-based alarm systems in the medical field.
We designed our tool to widen the usual fairness au-
diting scope: we assess classical fairness metrics but
we also examine the fairness of clinical outcomes and

investigate the potential sources of bias. Its main
functionalities are summarized in Figure 1.
We consider alarm systems that take as input time-
series of medical variables (lab measurements, medi-
cations, etc.) and return for each time step a score in-
dicating how likely is the patient to undergo an event
within the next X hours.
Our audit is based on comparing key statistics across
cohorts of patients. The cohorts can be formed with
usual demographics and static clinical information (in
Figure 1A). For instance, for the HiRID dataset, the
framework includes clinically relevant groupings, such
as admission reasons (like trauma or cardiovascular).
In the generated PDF report, we display the cohorts’
composition (total number of patients and number of
patients undergoing an event). We also give the pos-
sibility for the users to filter out cohorts that don’t
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Table 1: Comparison of fairness auditing tools

Characteristic AI
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Other task than binary classification ✓ ✓ ✓ ✓ ✗ ✗ ✓

Flexible grouping (Not only binary) ✓ ✓ ✓ ✓ ✓ ✗ ✓

Classical fairness metrics ✓ ✓ ✓ ✓ ✓ ✓ ✓

Source of bias screening ✗ ✗ ✓ ✓ ✗ ✗ ✓

Comprehensive fairness assessment ✗ ✗ ✓ ✗ ✓ ✓ ✓

Robust statistical analysis ✓ ✗ ✗ ✗ ✗ ✗ ✓

Visual interface ✗ ✓ ✓ ✓ ✓ ✓ ✓

have enough patients with events (by default this pa-
rameter is set to 1), as the analysis would not be
statistically significant for them.
An overview of the required inputs for each of the
stages is indicated in Figure 1B by a colored dot
with a section number. The minimum required input
is the model’s predictions and true labels for each
timestep. Additionally, the time boundaries of the
target events extend the audit to the assessment of
performance metrics from the event scope and alarm
timing comparison. Access to the trained model (or
directly SHAP feature importance values) and the
time series dataset allows FAMEWS to run screen-
ings of potential sources of bias.
We recommend providing predictions from models
trained with different random seeds, as this will re-
duce the impact of model randomness on audit re-
sults. For each stage of our audit pipeline (in Fig-
ure 1C), we run a detailed statistical analysis, that
conforms to best practices, and we generate aggre-
gated views to summarize key takeaways. These el-
ements are gathered in a PDF report (Figure 1D).
In the following paragraphs, we present the goal and
motivation of each analysis stage, the metrics and
statistical techniques used to capture disparities be-
tween cohorts, and outline generated visualizations
and aggregated views for the fairness report.

3.1. Classical formalizations of fairness:
comparison of model performance across
cohorts

Goal In this stage, we compare the model’s perfor-
mance and the validity of the threshold choice across

different patient cohorts through classical fairness no-
tions (Makhlouf et al., 2021; Chen et al., 2023). An
example can be found in section 2 of the sample re-
port (Appendix D).

Metrics For each cohort of patients, we compute
the metrics related to a set of adequate fairness no-
tions (they are listed in Appendix A together with
the definitions of the performance metrics, for read-
ers new to the field we highly recommend explor-
ing some online tutorials34 on the topic). We im-
plemented binary (recall, precision, FPR, and NPV)
and score-based metrics (AUROC, AUPRC, average
score on positive and negative classes, calibration er-
ror) as they are relevant at different phases of model
development. For instance, while tuning the model,
score-based metrics are valuable, whereas a deployed
model with binary outputs is evaluated using relevant
binary metrics. For our targeted medical application,
it is beneficial to consider event-based metrics such as
event-based recall (number of predicted events over
the total number of events) and event-based AUPRC
(area under the precision / event-based recall curve).
We added the possibility of comparing the precision,
NPV, and AUPRC after correction for prevalence
(due to the imbalance of positive labels across co-
horts). This is equivalent to comparing the orig-
inal version of these metrics assuming the cohorts
have equal prevalence (more details are given in Ap-
pendix B).

3. https://developers.google.com/machine-learning/
crash-course/fairness

4. https://developers.google.com/machine-learning/
glossary/fairness
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Statistical methodology We compare the met-
rics for each cohort to the rest of the patients. To
ensure the statistical robustness of this comparison,
we first bootstrap the patient population of the test
set (we draw with replacement 100 random samples of
the test set size) and compute for each cohort in each
sample the metrics listed above. We then perform
the Mann-Whitney U test with Bonferroni correction.
From these statistical tests we obtain for each met-
ric the categories of patients which are significantly
worse off compared to the rest of the population. We
then quantify these disparities by computing the ab-
solute difference in median metric (taken over the
bootstrapped samples) between patients of the cat-
egory and patients outside it:

∆ =
∣∣∣median {metricp∈Sn∩G}Nn=1

− median
{
metricp∈Sn∩Ḡ

}N

n=1

∣∣∣ (1)

with Sn the nth bootstrapped sample, N the total
number of bootstrapped samples drawn, G the stud-
ied cohort and Ḡ the rest of patients.

Visualizations The results of the comparison are
presented as tables in the report. We display box
plots for each metric with the median, first quar-
tile, and third quartile over the bootstrapped sam-
ples. Cohorts that are significantly worse off are high-
lighted with a star (see sample report Figure 2.1.1.a
p.9). For the score-based metrics, we report perfor-
mance curves: calibration, ROC, and precision-recall
(also event-based) curves (see sample report Figure
2.1.1.b p.12). The colored error area represents the
standard deviation computed over the bootstrap sam-
ples. To ease comparison, we keep the same scale for
each metric across the entire report.

Aggregated views 3 aggregated views are pro-
posed for this stage:

1. Summary statistics for each metric and group-
ing: it is composed of the macro-average, the
minimum over the grouping’s categories, and the
metric value for the minority category (see sam-
ple report 2.1.1 p.5).

2. Summary view based on the ratio of significantly
worse metrics: For each cohort, we report the
ratio of significantly worse metrics over the to-
tal number of analyzed metrics. We highlight
which category of patients within the grouping
and across all groupings is the worst in terms

of ratio. The largest delta, as defined in Equa-
tion (1), for this category is stated (see sample
report 2.1.2 p.7).

3. Table displaying for each metric the 3 cohorts
with the largest delta that are significantly worse
off than the rest of the population. They are
also flagged with a red star on the corresponding
metric box plot (see sample report 2.1.3 p.8).

3.2. Checking for bias of outcomes:
comparison of the time gap between first
correct alarm and event across cohorts

Goal One outcome of the early-warning system is
to direct additional clinical attention to specific pa-
tients to prevent the forecasted events. We analyze
whether the alarm is triggered sufficiently in advance
for the different cohorts of patients. An example is
in section 3 of the sample report (Appendix D).

Metrics For each detected event, we compute the
time gap between the first correct alarm and the
event. The bigger the time gap the better off a pa-
tient is.
To not bias this analysis, we first split the events with
respect to how much time in advance the alarm could
be triggered. For the sake of clarity, let us consider
an alarm system with a 12-hour horizon. If an event
happens three hours after the start of the stay, the
alarm can be triggered at most 3 hours in advance;
while if it occurs after 24 hours, the alarm can be
raised 12 hours in advance. It is thus not equitable
to compare these two categories of events. To over-
come this issue, we propose to split the possible alarm
window into 4 (configurable) parts: 0-3h, 3-6h, 6-12h,
and more than 12h. For each of our alarm window
splits and cohort of patients, we then compute the
median time gap.

Statistical methodology We draw 100 bootstrap
samples (as for the previous stage in Section 3.1).
For each bootstrapped sample, each alarm window
split, and each cohort of patients, we compute the
median time gap. We then use the Mann-Whitney
U test with Bonferroni correction to determine which
cohorts are significantly worse off than the rest of the
population. We quantify the disparity by computing
the difference between the median (taken over the
bootstrapped samples) time gap for patients belong-
ing to a cohort and patients not belonging to it, for
each window split. This is equivalent to computing ∆
in Equation (1) with metric being the median time
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gap for the events falling into a specific window split
for a selected cohort.

Visualizations The comparison results are out-
lined in tables and visually displayed in box plots,
in the same fashion as for our first analysis (Sec-
tion 3.1)(see sample report Figure 3.2.1.a p.35).

Aggregated views 2 aggregated views are pro-
posed for this stage:

1. Summary statistics for each alarm window split
and grouping of patients composed of the macro-
average,the minimum metric value over all the
grouping’s categories, and the value for the mi-
nority category (see sample report 3.1.1 p.33).

2. Table displaying for each alarm window split the
3 cohorts with the biggest delta that are signifi-
cantly worse-off than the rest of the population.
These cohorts are also flagged with a red star on
the corresponding box plot (see sample report
3.1.2 p.34).

3.3. Assessing level of bias for potential
sources

3.3.1. Comparison of some medical variables
across cohorts

Goal It is quite common in clinical contexts to rely
on proxy labels instead of ground truth to depict a
medical phenomenon. For instance, circulatory fail-
ure can be defined through arterial lactate and blood
pressure levels. This analysis has been specially de-
signed to tackle the problem of label bias (Wick
et al., 2019; Rateike et al., 2022) that can occur in
these settings. We want to check whether the proxy
used to define the label is correct for all cohorts.
An ill-defined label can create degradation in per-
formance and unfair outcomes. We thus propose to
compare the distribution of medical variables used
in the proxy definition across the different cohorts of
patients. Nonetheless, this stage can also be used to
study other time-series variables that are relevant to
the user. An example can be found in section 4 of
the sample report (Appendix D).

Metrics For each cohort, we compare the distri-
bution of chosen medical variables to the rest of the
population. For each patient, we compute the median
value over the entire stay. According to this stage’s
goal, we expect that undergoing an event has a strong
influence on the variable value. We thus also inspect

separately periods of stay free of events and patients
without events.

Statistical methodology We draw 100 bootstrap
samples from the train set in the same fashion as in
Section 3.1. For each sample and each cohort, we
end up with three different median values (for all
data points, not during events, and for patients free
of events) for the selected medical variables. We com-
pare the distribution of each median from one cohort
to the rest of the population using the Mann-Whitney
U test with Bonferroni correction. We quantify the
difference in median values by computing the abso-
lute difference in medians (median taken over the
bootstrapped samples of the different medians) be-
tween patients belonging to a cohort and patients not
belonging to it. This is equivalent to computing ∆
in Equation (1) with metric being one of the three
median values for a medical variable and a selected
cohort.

Visualizations We report the results in tables and
with box plots (see sample report Figure and Table
4.2.1.a p.42). The star on these plots flags the cate-
gories of patients with a significantly different median
value compared to the rest of the patients.

Aggregated views We outline, for each of the se-
lected medical variables and the median computation
methods, the 3 cohorts with the biggest delta in me-
dian value that are significantly different from the
rest of the population (see sample report 4.1.1 p.41).
These cohorts are also signaled with a red star on the
corresponding variable box plot.

3.3.2. Comparing the top k features across
cohorts

Goal Regarding explainability concerns, it is essen-
tial for the stakeholders to know the features that
drive the prediction process. We check whether fea-
ture importance deviates across patient cohorts. We
consider this to be of special interest for two scenar-
ios. First, while considering a submodel developers
usually keep only the most important features from
the validation set (Hyland et al., 2020), however in
this process, they can disregard features that are im-
portant to minority cohorts, losing predictive power
for them (Zong et al., 2023). Then, to check the clin-
ical relevance of the model, it can be useful to show
medical practitioners, not only the global top features
but also the top features for the different subcohorts.
Indeed they might want to review how the medical
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variables impact the model prediction depending on
the various patient profiles. An example is in section
5 of the sample report (Appendix D).

Metrics To study the feature importance, we will
rely on SHAP values (Lundberg and Lee, 2017). This
is a local explanation method, allowing us to obtain
the feature importance for each data point. We can
thus obtain the feature importance for each patient
and aggregate them per cohort. Furthermore, this
method aligns better with human intuition than other
feature importance estimation techniques (Lundberg
and Lee, 2017), such as LIME (Ribeiro et al., 2016).
Nonetheless, this framework can yield inaccurate fea-
ture importance values when features are dependent
or correlated. (Aas et al., 2021).
For each patient and a given feature, we thus quantify
its importance with the absolute mean SHAP value
over the stay. Then we derive a feature ranking for
a cohort based on the mean feature importance over
all of its patients. We compare the feature ranking of
each cohort to the global feature ranking using a sim-
ilarity measure on lists called the rank-biased overlap
(RBO) (Webber et al., 2010). This measure has the
particularity of giving more weight to the head com-
pared to the tail (weighting parameter p = 0.935).
This aspect is particularly suitable to the compari-
son of feature importance rankings as we care more
about differences for the top features (Sarica et al.,
2022). Nonetheless, this property highly depends on
the weighting parameter, which can be challenging to
tweak properly. For each feature ranking, we flag the
features that significantly changed rank compared to
the global ranking.

Statistical methodology To establish the statis-
tical relevance of our analysis, we compute the RBO
for feature ranking on random simulated patient co-
horts. This yields an upper bound,

min

100⋃
i=1

{RBO (rkg, rkall)}g∈Gi
random

(with Gi the ith random grouping, rkg the ranking
obtained on one cohort of Gi and rkall the overall
ranking) below which the RBO testifies of signifi-
cantly different feature rankings. From these random
groupings, we compute for each feature, the delta of

inverse rank
∣∣∣ 1
kall

− 1
k0

∣∣∣ (with kall the global rank and

k0 the rank we want to compare to) and obtain a

lower bound,

max

100⋃
i=1

{∣∣∣∣ 1kg − 1

kall

∣∣∣∣}
g∈Gi

random

(with Gi the ith random grouping, kg the rank of
the studied feature for one cohort of Gi and kall its
global rank) above which the delta of inverse rank
indicates that the feature has a significantly different
rank compared to the global ranking.

Visualizations For each cohort, we outline the top
k features, we print the feature name in red when
it isn’t part of the global top k ranking and in
blue when it changes rank within the top k rank-
ing from global to cohort-based (see sample report
Table 5.2.1.a p.51). We only color the names when
the change of rank is significant. However, for each
feature that changes rank, we put in parenthesis the
difference in rank and the direction of change.

Aggregated views We display the RBO for each
cohort, colored in red when it is significantly low (see
sample report 5.1.1 p.50).

3.3.3. Comparing the missingness of key
medical variables and its impact
across cohorts

Goal The intensity of measurement of medical vari-
ables highly depends on their nature and the health
status of the patient. As such, data used for medi-
cal applications aren’t missing at random. We thus
investigate how the intensity of measurement for rel-
evant variables correlates with patients’ attributes.
From a fairness perspective, we can wonder whether
disparities in the intensity of measurement across co-
horts of patients are purely motivated by medical
reasons or whether some forms of discrimination are
present. We thus inspect the impact of missingness
on the model performance (Getzen et al., 2023). The
results could hint at adapting the data collection or
the imputation practices. An example can be found
in section 6 of the sample report (Appendix D).

Metrics For this analysis, the user needs to pro-
vide, for each patient, the time series of medical vari-
ables resampled on a fixed time-step grid before data
imputation. For each of the selected medical vari-
ables, we forward propagate the measurement value
according to its usual sampling interval (that has
been indicated by the user).
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First, we measure the intensity of measurements I for
each patient that has at least one valid value:

I = 1− Nm

Ne

with Ne the number of expected measurements and
Nm the number of missed measurements. Ne is de-
fined as Ne = los

te
with los the patient’s length of

stay and te the expected sampling interval. Nm

is obtained by summing the number of measure-
ments that could have been done during each pe-
riod Tmissing

i without valid measurements (even af-

ter propagation): Nm =
∑

i
Tmissing
i

te
. The user pro-

vides categorization for the intensity of measurement
values. For our example report, we class values be-
low 90% as insufficient and above as enough. We
put apart patients without any measurement. Then,
we assess the impact of missing values on perfor-
mance. The methodology is similar to the stage in
Section 3.1: we measure classical metrics but instead
of grouping the data points per cohort of patients,
we group them based on their missingness status.
Data points without valid value after propagation are
grouped in the missing msrt category, those belong-
ing to patients without measurement in no msrt and
the rest in with msrt. For this analysis, we don’t mea-
sure event-based metrics. For variables used in the la-
bel’s definition, it is not possible to run the analysis
on the no msrt category.

Statistical methodology We run the Chi-squared
independence test to assess the dependence between
the patients’ grouping and the intensity of measure-
ment categories.
The statistical tests for the impact of performance
analysis are run in the same fashion as in Section 3.1.
However, instead of comparing each cohort to the
rest of the population, we compare the missing-
ness categories no msrt and missing msrt against the
with msrt category.

Visualizations For the intensity of measurements
analysis, we provide for each cohort a bar plot dis-
playing the percentage of patients belonging to each
intensity category (see sample report Figure 6.2.1.a
p.56). The dotted lines show the percentage over the
entire population of patients as references. For the
impact on performance, we present the results in ta-
bles and box plots as in Section 3.1 (see sample report
Figure and Table 6.2.2.a p.58-60).

Aggregated views For each of the selected medi-
cal variables, if the grouping and the intensity of mea-

surements are dependent, the grouping is outlined in
a table. Also, the category for the corresponding
grouping with the biggest rate of patients without
measurement and the one with an insufficient num-
ber of measurements are indicated. To summarize
the impact on the performance, the ratio of metrics
that are significantly worse than the with msrt met-
rics is displayed for each missingness category as well
as the worst delta in metrics (see sample report 6.1.1
p.55).

4. Discussion

In this paper, we described FAMEWS – a fairness
auditing tool tailored for medical early-warning sys-
tems. Our approach extends the scope of classical
fairness assessment tools by including an analysis of
fairness of outcomes, screening of potential sources of
bias, and proposing to consider clinical attributes on
top of classical demographic features for fairness anal-
ysis. We will now discuss the flexibility of our tool,
how our generated report can be used by the different
stakeholders as well as the strengths and limitations
of our work.

4.1. Flexibility of the tool

We primarily built our tool to audit the fairness of
an LGBM (Light Gradient-Boosting Machine) early-
warning system detecting circulatory failures in the
intensive care unit on the HiRID dataset (Yèche
et al., 2021). Nonetheless, we conceived it with a
certain level of flexibility, allowing it to be extended
to a broader range of applications. We tested our
framework on other alarm systems (early detection of
respiratory failure (Hüser et al., 2024)) with different
alarm-to-event horizon lengths, on other datasets like
MIMIC-III (Johnson et al., 2016), and on other types
of models (Long Short-Term Memory networks). The
users can define their own patients’ groupings de-
pending on the available attributes, provide pro-
cessed inputs rather than raw data, or run only a
subset of the stages if they don’t have access to some
input data. Moreover, some stages can be adapted to
audit other types of binary classifiers; for instance,
where the model outputs for each patient a single
prediction instead of a time series. Finally, our tool
is open-source, offering the possibility to the users to
further extend its functionalities.
However, to complete this fairness audit, the user
needs a minima access to some test data and the ca-
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pability to generate predictions from the model (see
Figure 1B).

4.2. Intended use of the produced report

We designed our report as a conveniently exchange-
able document that can be understood and used by
different stakeholders. We decided against an inter-
active dashboard that, although more convenient for
exploratory work, would have required the technical
skills of the end user, secured access to medical data,
and would not have been easily exportable. We now
list the provisioned use of the report for the identified
stakeholders:

Developers

• Compare different model design choices (model
type, preprocessing, feature engineering) in or-
der to choose the best model from a fairness
point of view. A quick glimpse of how the model
is evolving can be obtained by comparing the
aggregated views of the respective reports.

• Identify targets for bias mitigation and measure
the impacts of different debiasing methods. The
aggregated views can be used to facilitate model
comparison and choose the best bias mitigation.

• Monitor the behavior of the model, from a fair-
ness point of view, while using the model on new
data samples or retraining it (after the deploy-
ment for instance).

Clinicians

• Adapt their reliance on the model by learning
about its main biases, which are highlighted in
the aggregated views. For instance, if the prac-
titioners are aware that the model is perform-
ing worse for a specific patient cohort then they
will not overly rely on the model to monitor
these patients, avoiding falling into an automa-
tion bias (Rajkomar et al., 2018).

• Provide developers feedback and help them to
comprehend certain disparities, especially in the
screening of sources of bias analyses. For in-
stance, the results of the label bias screening can
be used to discuss the validity of the label proxy
definition for all patients. Their feedback can
then guide the developers in choosing adequate
bias mitigation techniques.

Regulators

• Get informed about the model limitations in
terms of bias and obtain a brief overview of the
demographics.

• Check that the model complies with actual
regulations in terms of fairness and non-
discrimination.

4.3. Strengths and limitations of our
framework

The resulting audit report might seem cumbersome
to apprehend. We nonetheless believe it is necessary
to present the entire analysis in the report, as se-
lecting relevant results is subjective and might hide
relevant disparities to the end users. We facilitate its
navigation with a table of contents, a glossary, and
aggregated views for each analysis stage. These views
help in grasping the main takeaways of the report.
However, like every summary, it is not self-sufficient
and we insist on the necessity to refer to the more
detailed analyses to fully understand the extent of
potential biases.
Despite its size, our report is rather limited in the
range of screened sources of bias. We tackle the ones
that we deem crucial for our prime use case. How-
ever, depending on the system’s design choices, other
sources are also valuable to explore. We acknowl-
edge similar limitations on our exploration of bias of
outcomes. Indeed, this issue is deeply dependent on
the application and some are not measurable with-
out access to the actual real-world consequences of
the ML system. For instance, we don’t address the
issue of censored data, which can occur in the con-
text of warning systems in real-word setting in the
medical domain, while it can represent a real fairness
challenge (Zhang et al., 2023).We thus encourage the
users to extend the fairness audit to the inspection
of post-deployment biases. Then, our tool proposes
a limited set of fairness metrics, contrary to other
tools. Nonetheless, we implemented evaluation with
event-based metrics and prevalence correction which
we didn’t find in other fairness auditing tools, but
we consider them important for early-warning sys-
tems auditing. Finally, we enforced best statistical
practices to bring an adequate level of robustness to
our audit results. We realized that this aspect was
missing in existing fairness analysis frameworks.

In summary, we propose FAMEWS to assess the
fairness of ML-based early-warning systems. We be-
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lieve that the wide adoption of such auditing tools
could ease the communication between regulators, de-
velopers, and clinicians and could assist in developing
both accurate and ethical applications.
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nar Rätsch. A comprehensive ml-based respiratory
monitoring system for physiological monitoring &
resource planning in the icu. medRxiv, 2024.

Stephanie L Hyland, Martin Faltys, Matthias Hüser,
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Christian Bock, Max Horn, Michael Moor, Bastian
Rieck, et al. Early prediction of circulatory failure
in the intensive care unit using machine learning.
Nature medicine, 26(3):364–373, 2020.

A.E Johnson, T.J Pollard, L Shen, LW Lehman,
M Feng, M Ghassemi, B Moody, P Szolovits, L.A
Celi, and R.G Mark. Mimic-iii, a freely accessible
critical care database. Scientific data, 2016.

Scott M. Lundberg and Su-In Lee. A unified approach
to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17. Curran As-
sociates Inc., 2017.

Karima Makhlouf, Sami Zhioua, and Catuscia
Palamidessi. On the applicability of machine learn-
ing fairness notions. 2021.

Melissa McCradden, Shalmali Joshi, Mjaye Mazwi,
and James Anderson. Ethical limitations of algo-
rithmic fairness solutions in health care machine
learning. The Lancet Digital Health, 2020.

Chuizheng Meng, Loc Trinh, Nan Xu, James Enouen,
and Yan Liu. Interpretability and fairness evalua-
tion of deep learning models on mimic-iv dataset.
Scientific Reports, 2022.

Tiago P. Pagano, Rafael B. Loureiro, Fernanda V. N.
Lisboa, Rodrigo M. Peixoto, Guilherme A. S.
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Appendix A. Formalizations of
fairness and
performance metrics

In this section, we define in Table 2 the different per-
formance metrics available in FAMEWS. We show in
Table 3 the formalizations of fairness that we thought
important to consider while auditing alarm systems
in clinical settings and we link them to their corre-
sponding performance metrics. Precision-recall curve
and AUPRC aren’t present in this table, as checking
together for equal precision and recall across cohorts
doesn’t match one of the conventional notions of fair-
ness. Nonetheless, we still include them in our audit
pipeline as they are valuable performance metrics for
our use-case.

Appendix B. Proof prevalence
correction

Consider C to be a random binary classifier. It assigns
class 0 and class 1 with equal probability. Let D1 and
D2 be two datasets with different prevalence pv1 and
pv2, w.l.o.g. we assume pv1 < pv2.
This classifier being random, we expect it to have the
same performance on D1 and D2. Let us express the
recall, FPR, precision, and NPV on both datasets.
We denote by P1 (resp. P2) the number of positive
labels in D1 (resp. D2), N1 (resp. N2) the number of
negative labels in D1 (resp. D2), TP1 (resp. TP2) the
number of correctly predicted positive labels in D1

(resp. D2), TN1 (resp. TN2) the number of correctly
predicted negative labels in D1 (resp. D2), FP1 (resp.
FP2) the number of negative labels wrongly predicted
as positives in D1 (resp. D2) and FN1 (resp. FN2)
the number of positive labels wrongly predicted as
negatives in D1 (resp. D2).

recall1 =
TP1

P1
=

0.5× P1

P1
= 0.5 = recall2

FPR1 =
FP1

N1
=

0.5×N1

N1
= 0.5 = FPR2

precision1 =
TP1

TP1 + FP1
=

0.5× P1

0.5|D1|
=

0.5pv1|D1|
0.5|D1|

= pv1

precision2 = pv2

Table 2: Performance metrics definitions. Definition
of each of the model’s performance metrics
used in the first step of our fairness analysis.
In the formulas, P stands for the number of
positive labels, TP the number of correctly
predicted positive labels, TN the number of
correctly predicted negative labels, FP the
number of instances with true negative la-
bels that were incorrectly predicted as pos-
itive by the model, and FN the number
of instances with true positive labels that
were incorrectly predicted as negative by
the model.

Performance metric Definition

Recall TP/P
False positive rate (FPR) FP/(FP + TN)
Precision TP/(TP + FP )
Negative predictive value
(NPV)

TN/(TN + FN)

Average score on positive class For all positive labels, average
of the output scores

Average score on negative class For all negative labels, average
of the output scores

Calibration curve The frequency of positive labels
vs the mean predicted scores, it
illustrates how well the proba-
bilistic predictions of the model
are calibrated

Calibration error Area between the calibration
curve and the perfect calibra-
tion line

Receiver operating characteris-
tic (ROC) curve

True positive rate vs False pos-
itive rate

AUROC Area under the ROC curve
Precision-recall curve Precision vs Recall
AUPRC Area under the precision-recall

curve

NPV1 =
TN1

TN1 + FN1
=

0.5×N1

0.5|D1|

=
0.5(1− pv1)|D1|

0.5|D1|
= 1− pv1

NPV2 = 1− pv2

Recall and FPR are equal for both datasets as ex-
pected. However, this is not the case for precision
and NPV. Let us find a way to modify the formula of
precision and NPV such that they are equal for both
datasets.
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Table 3: Relation between popular formalizations of
fairness and performance metrics. We se-
lected a set of formalizations of fairness that
we deemed relevant for our use-case. In
this table, we outline for each formalization
the corresponding metrics we inspected. We
consider that a notion of fairness is re-
spected when the corresponding metric is
equal across cohorts. When we use the sym-
bol ‘&‘ that means that both metrics have
to be equal. For curves, we inspect visually
whether they are similar across cohorts and
use their respective error metrics to assess
more precisely the disparities.

Formalisation of fairness Related performance metric

Equality of opportunity Recall
Predictive equality FPR
Equalized odds AUROC, ROC curve, recall & FPR
Predictive parity Precision
Conditional use accuracy NPV & precision
Balance on positive class Average score on positive class
Balance on negative class Average score on negative class
Calibration Calibration curve, calibration error

Correction of precision We want c precision1 =
c precision2 (with c precision the corrected preci-
sion.) We keep the higher prevalence pv2 as a ref-
erence and we want to correct for pv1. We denote
by s the correction factor. We will artificially modify
the number of false positives for D1 by the factor s.

c precision1 = c precision2 = precision2 = pv2

=⇒ TP1

TP1 + sFP1
= pv2

=⇒ 0.5pv1 × |D1|
0.5pv1 × |D1|+ s× 0.5(1− pv1)× |D1|

= pv2

=⇒ pv1
pv1 + s(1− pv1)

= pv2

=⇒ s =
pv1 − pv1pv2
pv2(1− pv1)

s =

1
pv2

− 1
1

pv1
− 1

Correction of NPV We want c NPV1 = c NPV2

(with c NPV the corrected NPV). We keep the
smaller prevalence pv1 as a reference and we want
to correct for pv2. We denote by s the correction fac-
tor. We will artificially modify the number of false

negatives for D1 by the factor s.

c NPV2 = c NPV1 = NPV1 = 1− pv1

=⇒ TN2

TN2 + sFN2
= 1− pv1

=⇒ 0.5(1− pv2)× |D2|
0.5(1− pv2)|D2|+ s0.5pv2|D2|

= 1− pv1

=⇒ 1− pv2
1− pv2 + spv2

= 1− pv1

=⇒ s =
pv1 − pv1pv2
pv2(1− pv1)

s =

1
pv2

− 1
1

pv1
− 1

This correction allows us to have the same preci-
sion and NPV for both datasets. It is equivalent to
considering the precision and NPV in the case the
prevalences of both datasets are equal. All stages
have be run on the test set, except for the missing-
ness analysis that have been run of the training set.

Appendix C. Main findings from the
example report

We will now outline the key takeaways from the fair-
ness audit of the circulatory failure early-warning sys-
tem (Yèche et al., 2021) that we infer from the sam-
ple report (Appendix D). This report was obtained by
running FAMEWS on the averaged predictions from
10 LGBMmodels trained with different random seeds
on the HiRID dataset. It can serve as an example of
how to interpret such an analysis account.

C.1. Systematic performance discrepancy for
male patients

In the summary table Summarized performance
metrics per grouping (2.1.1.a), we can notice that
for almost every metric (except one) the model per-
forms worse on male patients than on female pa-
tients. Moreover, in the next aggregated view, it is
highlighted that an important part of these metrics
is statistically significantly worse. However, looking
at the more detailed analysis grouping by sex (sec-
tion 2.2.1), we realized that the discrepancy in per-
formance (delta value) seems relatively small. The
feature ranking doesn’t vary significantly between fe-
males and males.
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C.2. Minority categories aren’t always worse
off

In the summary tables (from 2.1.1.a to 2.1.1.d) Sum-
marized performance metrics per grouping, we
can notice that the worst-performing category rarely
aligns with the minority category.

C.3. The effect of prevalence correction

If a cohort has a higher prevalence than the others
then its performance is decreased by the prevalence
correction, while if it has a lower prevalence its per-
formance will be pushed. Thus, it is not surprising
to observe that the gap between female and male
patients is increased after the correction of AUPRC
(Figure 2.2.1.a). In contrast to the effect on neuro-
logical patients, where the performance discrepancy
in AUPRC has vanished after the correction, as the
prevalence of events is the lowest for the neurologi-
cal cohort (Figure 2.2.3.a). However, one can wonder
whether it makes sense to correct for prevalence, i.e.
whether we should compare these cohorts under the
assumption that they have similar prevalences. It is
then important to discuss with clinicians to gain an
understanding of how a specific patient attribute im-
pacts the prevalence.

C.4. Label bias for neurological patients

In the Summary view based on the ratio of sig-
nificantly worst metrics (subsection 2.1.1), it is
underlined that the worst performance discrepancy
over the entire set of cohorts is for neurological pa-
tients on event-based recall. They also appear a lot
in the table Top 3 categories with biggest per-
formance metric discrepancies (2.1.3.a), empha-
sizing that the model is biased against them.
This is also reflected in the bias of outcomes analysis
where neurological patients have, by far, the biggest
disparity in the time gap between correct alarm and
event (section 3).
The Medical variable analysis (section 4) can
hint at an explanation for these discrepancies. In-
deed, neurological patients have a much higher me-
dian value for mean arterial pressure (MAP) than
other cohorts (see subsection 4.2.3). This variable
is used to construct the label for circulatory failure.
We can then wonder whether the label definition is
correct for these patients. These results trigger dis-
cussions with clinicians in order to adapt the model
design and use for neurological patients.

C.5. Dependence of the intensity of
measurements on patients’ cohorts

We run the Missingness analysis (section 6) for ar-
terial lactate (a Lac) and peak inspiratory pressure
(Spitzendruck). For both of these medical variables,
the intensity of measurements is dependent on the
patients’ groupings, both demographic and clinical.
Recall which is a critical metric for our type of appli-
cation, since we don’t want to miss a patient in cir-
culatory failure, is significantly worse when the mea-
surement is missing and the delta values seem quite
important. This suggests that missingness has a crit-
ical impact on model performance. This sparks pro-
cesses to improve the imputation strategy and also
to dialogue with clinicians in order to gain a better
understanding of these patterns of missingness.

Appendix D. Example of the report

A sample report can be found at https://github.

com/ratschlab/famews/blob/main/data/sample_

reports/hirid_circ_fairness_report.pdf.
In this report, APACHE group refers to the
admission reason. To understand the mean-
ing of the medical variables, please refer to the
data description table of the HiRID benchmark
(Yèche et al., 2021): https://github.com/

ratschlab/HIRID-ICU-Benchmark/blob/master/

preprocessing/resources/varref.tsv.
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