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Abstract

Large-scale wearable datasets are increasingly
being used for biomedical research and to de-
velop machine learning (ML) models for longi-
tudinal health monitoring applications. How-
ever, it is largely unknown whether biases in
these datasets lead to findings that do not gen-
eralize. Here, we present the first compari-
son of the data underlying multiple longitu-
dinal, wearable-device-based datasets. We ex-
amine participant-level resting heart rate (HR)
from four studies, each with thousands of wear-
able device users. We demonstrate that mul-
tiple regression, a community standard statis-
tical approach, leads to conflicting conclusions
about important demographic variables (age vs
resting HR) and significant intra- and inter-
dataset differences in HR. We then directly
test the cross-dataset generalizability of a com-
monly used ML model trained for three existing
day-level monitoring tasks: prediction of test-
ing positive for a respiratory virus, flu symp-

toms, and fever symptoms. Regardless of task,
most models showed relative performance loss
on external datasets; most of this performance
change can be attributed to concept shift be-
tween datasets. These findings suggest that re-
search using large-scale, pre-existing wearable
datasets might face bias and generalizability
challenges similar to research in more estab-
lished biomedical and ML disciplines. We hope
that the findings from this study will encour-
age discussion in the wearable-ML community
around standards that anticipate and account
for challenges in dataset bias and model gener-
alizability.

Data and Code Availability This paper uses
five datasets from wearable devices. All but one
(TemPredict) are publicly available: 1) FitBit data
from the Homekit2020 study (Merrill et al., 2023),
2) Oura Ring data from the TemPredict, 3) Ava
watch data from the COVID-RED study (Braken-
hoff et al., 2023), 4) FitBit data from the All of
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Us study (All, 2019), and 5) Apple Watch, Amaz-
fit, Fitbit, Garmin, Google Fit, Huawei, Oura, Polar,
Samsung Health and Withings data from the Corona-
Datenspende study (Wiedermann et al., 2023). Code
for processing the publicly available datasets can be
found at this GitHub repository.

Institutional Review Board (IRB) The study
that collected the TemPredict dataset was approved
by (IRB, IRB# 20-30408) and the U.S. Department
of Defense (DOD) Human Research Protections Of-
fice (HRPO, HRPO# E01877.1a) approved all study
activities, and all research was performed per rele-
vant guidelines and regulations and the Declaration
of Helsinki. All participants provided informed con-
sent. All other datasets are publicly available and do
not require IRB approval.

1. Introduction

Commercially available wearable devices (wearables)
offer a unique, real-world, highly temporally re-
solved lens into an individual’s physiology across
time. Wearables continuously monitor several phys-
iological signs (e.g., heart rate, step counts, sleep).
Researchers increasingly view these signs as infor-
mative of an individual’s health status. Several
cross-sectional observational studies have correlated
these signs with certain human conditions (e.g., step
counts with incident disease (Master et al., 2022) and
sleep with psychiatric conditions (Wainberg et al.,
2021)). Measuring signs with wearables might also
enable real-time health monitoring and even early
intervention if machine learning (ML) models can
predict health status changes before individuals be-
come aware of them. Accordingly, numerous studies
have demonstrated substantial progress towards us-
ing ML models trained on wearable data for a vari-
ety of within-individual longitudinal monitoring tasks
including mental health conditions (e.g., depression
(Xu et al., 2022a), anxiety (Wainberg et al., 2021)),
chronic diseases (e.g., diabetes (Lam et al., 2021),
sleep apnea (Master et al., 2022)), and specific acute
illnesses (e.g., COVID-19 (Goergen et al., 2022; Abir
et al., 2022; Richards et al., 2021; Gadaleta et al.,
2021; Conroy et al., 2022; Yamagami et al., 2021;
Hirten et al., 2021; Natarajan et al., 2020; Mayer
et al., 2022; Alavi et al., 2022; Miller et al., 2020; Pho
et al., 2023; Hirten et al., 2022), influenza (flu; Mer-
rill et al., 2023; Grzesiak et al., 2021; Mezlini et al.,

2022; Radin et al., 2020), and malaria (Chaudhury
et al., 2022)).

Other fields have seen an increasing concentra-
tion of biomedical (Cook and Collins, 2015) and
ML (Koch et al., 2021) research around pre-existing
datasets (as opposed to generating and using novel
datasets). In particular, some biomedical research
has centered around pre-existing datasets from large-
scale observational studies like All of Us1 and the UK
Biobank (Glynn and Greenland, 2020). These large-
scale observational studies provide a diverse source
of real-world human data that would be challenging
for any research group to gather independently. Sim-
ilarly, ML research is often organized around certain
“benchmark” datasets. These benchmark datasets
provide useful abstractions of certain tasks and serve
as stable points of comparison between algorithmic
implementations (Koch et al., 2021).

Given the increasingly central role pre-existing
datasets play in biomedical and ML research, nu-
merous studies have recently examined the generaliz-
ability of research findings across different datasets.
Madigan et al. (2013) documented findings from
clinical studies using cross-sectional observational
datasets that do not generalize to other similar
datasets. Similarly, ML models used for health ap-
plications (health-ML) often struggle to generalize to
new datasets (Li et al., 2020; Johnson et al., 2018;
Chekroud et al., 2024; Singh et al., 2022). Low gener-
alizability is also well-known in more established ML
disciplines (e.g., computer vision (Torralba and Efros,
2011), natural language processing (McCoy et al.,
2019), and time series (Xu et al., 2022a)).

In light of persistent generalizability challenges,
some studies have worked towards characterizing
aspects of pre-existing datasets that lead to non-
generalizable research. Research using “biased”
datasets, or datasets with “unintended or potentially
harmful” data properties, might be less generaliz-
able (Vaughn et al., 2020). Dataset bias might stem
from a combination of any number of distinct biases
in data-generating processes. Furthermore, datasets
gathered in observational studies (e.g., All of Us and
the UK Biobank), are at a higher risk for system-
atic biases, like selection and information bias (Ham-
mer et al., 2009). Some biases, such as representa-
tion bias along demographic axes, can lead to biased
research (Wacholder et al., 2000; Abbasi-Sureshjani
et al., 2020) but might be easier to mitigate. Other

1. https://www.researchallofus.org/publications/
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biases are likely harder to detect and account for.
Any biases that impact the distributions of data un-
derlying an ML model’s training data might lead to
poor generalizability in datasets without similar bi-
ases. Datasets are described as exhibiting “distribu-
tion shifts” if their underlying data are substantially
different compared with another’s (Cai et al., 2023).
Research using pre-existing datasets needs to be

generalizable if it informs inferences about the real
world or develops ML models that might be deployed.
However, generalizable research is particularly criti-
cal in the biomedical and health-ML domains, where
outcomes might influence resource allocation or an
individual’s health outcomes. Our work was moti-
vated by the observation that wearable data from
pre-existing observational studies increasingly serve
a dual research role2: as datasets for cross-sectional
biomedical research and as benchmark datasets for
developing health-ML models. However, the gener-
alizability of findings from pre-existing, large-scale
wearable device-based studies has not been previ-
ously examined. Our work aims to bridge this gap
by (1) examining wearable data from multiple pre-
existing, large-scale longitudinal wearable studies, (2)
directly testing the generalizability of ML models on
some existing monitoring tasks, and (3) examining
the amount of performance change attributable to
distribution shift (specifically, concept shift) in these
datasets for these tasks.

2. Related Work

2.1. Demographic biases and associations in
wearable datasets.

A large body of work examines demographic biases
in large-scale wearable datasets or the association
between certain demographics and wearable data.
Schoeler et al. (2023) examined demographic biases
in UK Biobank data and Doherty et al. (2017) found
associations between wearable-measured accelerom-
etry and demographics. Cho et al. (2022) demon-
strated imbalances in All of Us FitBit data based
on self-reported ethnicity along with several other
bring-your-own-wearable device studies. Two stud-
ies have also used multiple regression in large, non-
publicly available photoplethysmography-based heart
rate (HR) datasets and both found that age, male

2. https://allofus.nih.gov/news-
events/announcements/research-roundup-all-us-
participants-fitbit-data-drive-new-research

sex, and white ethnicity were negatively correlated
with mean HR (Golbus et al., 2021; Avram et al.,
2019). Work on comparatively small (<100 par-
ticipants), domain-focused, wearable-measured ac-
celerometry datasets demonstrated bias in human ac-
tivity recognition (HAR) datasets (Nair et al., 2023)
and fall detection datasets (Casilari and Silva, 2022).
However, there has yet to be a comparison of the data
underlying multiple longitudinal wearable datasets in
conjunction with examining the impact of the previ-
ously documented demographic imbalances in these
datasets.

2.2. Generalizability of wearable-ML models.

Broadly speaking, generalizable ML models perform
similarly on data external to or different from their
training data (Roelofs, 2019). Despite advancements,
issues with model generalizability remain nearly ubiq-
uitous across applied ML fields. The concept of gen-
eralizability remains largely unexplored in the wear-
able field, yet, limited research within the mobile
health community has shown that ML models exhibit
poor generalizability. Specifically, Adler et al. (2022)
and Pillai et al. (2023) revealed that ML models using
mobile phone data for passive mental health monitor-
ing fail to generalize across studies. Xu et al. (2022b)
similarly demonstrated that existing models trained
to detect a specific chronic condition (depression) us-
ing mobile sensing data show poor generalizability
across data gathered from the same study and site
but in different years. To the best of our knowledge,
no studies have examined the generalizability of longi-
tudinal monitoring models across multiple wearable-
based studies.

2.3. Distribution shifts.

The inability of ML models to generalize to external
settings is commonly attributed to differences in the
underlying distributions of data, called distribution
shifts (Cai et al., 2023). Here, we assume distribu-
tion shift to be an umbrella term (as in Cai et al.
(2023)) encompassing a few distinct types of shift.
Consider data (X,Y ) with covariates (e.g., features)
X and labels Y and a supervised learning model f
trained to predict Y from X. f might be applied to
an external setting with data (X̃, Ỹ ) where distribu-
tion shifts can be decomposed into: label shift p(Y )
vs p(Ỹ ), covariate/feature shift p(X) vs p(X̃), or con-
cept shift p(Y |X) vs p(Ỹ |X̃). Many approaches that
estimate label, covariate, or concept shifts assume at
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least one is held constant. However, in real-world
data, all three types of shifts likely occur simulta-
neously. Indeed, acute illness monitoring models de-
ployed for surveillance (e.g., as in Radin et al. (2020))
are arguably deployed as label shift detection mod-
els. Concept shift, on the other hand, involves sig-
nificant differences in the probability of certain out-
comes within specific feature space boundaries across
examples. For instance, if 0.5% of Americans with
increased HR above a certain level had a viral in-
fection, but 4% of Germans with the same increase
in HR were infected, this might indicate a concept
shift. Recent methodologies (Cai et al., 2023; Liu
et al., 2023) were developed to quantify concept shift
between datasets; we use their approach in these anal-
yses. The most similar work with wearable data was
performed by Vorburger and Bernstein (2006) using
an entropy-based approach on short-scale accelerom-
etry data. As far as we know, no studies have at-
tempted to quantify concept shift between longitudi-
nal wearable datasets.

3. Data

We sought datasets that were: (1) gathered using
a commercially available wearable device capable of
measuring HR (e.g., Apple Watch, FitBit, Oura Ring,
etc.), (2) longitudinal (several weeks of data per par-
ticipant on average), (3) large-scale (on the order
of thousands of participants), and (4) labeled with
timestamps that had not been anonymized in the
time domain (e.g., shifted into future years, e.g.,
“2100”). Five datasets met these criteria: Home-
kit2020, TemPredict, COVID-RED, All of Us, and
CDS. All but CDS had individually resolved wear-
able data with participant IDs (PIDs) linking their
data to demographic information. All datasets had
resting HR at daily-resolution except All of Us. We
calculated All of Us daily resting HR directly using
minute-resolution HR and step count data. Home-
kit2020, TemPredict, and COVID-RED all had daily
questionnaires linked via PIDs which we used as
ground truth labels for assessing acute illness mon-
itoring model generalizability.
Table 1 summarizes the wearable device partici-

pants wore while in the study, the features available
in each dataset, and the questionnaire outcomes used
as ground truth labels for acute illness monitoring
tasks. Appendices B, C, D, E and F include further
details on features, preprocessing steps, and details
on how to access each dataset.

3.1. Homekit2020

Homekit2020 was the first publicly available, large-
scale wearable dataset wherein data from partici-
pants included demographic information, wearable
data, and daily questionnaire data (Merrill et al.,
2023). It includes FitBit data spanning December
2019 to April 2020 from over 5,000 adult participants
recruited from across 50 U.S. states. Homekit2020
was also the first publicly available acute illness mon-
itoring benchmark, and Merrill et al. (2023) trained
and tested nine ML models on a set of acute illness
monitoring tasks. For our results to be comparable,
we attempted to reproduce their task definitions and
training/testing procedures when examining model
generalizability across datasets. See Appendix B for
more details.

3.2. TemPredict Dataset

The TemPredict dataset includes Oura Ring data
from January 2020 and through November 2020 from
participants who owned an Oura Ring prior to the
study and healthcare workers who were given an Oura
Ring to participate in the study. Participants were
distributed globally. Wearable device data, demo-
graphics, and daily questionnaires are available from
over 40,000 participants. See Appendix C for addi-
tional details.

3.3. COVID-RED

The COVID-RED dataset (Brakenhoff et al., 2023)
includes Ava smartwatch data from February 2021
through November 2021 from over 14,000 adults liv-
ing in the Netherlands along with demographics and
daily questionnaires. Whereas the Homekit2020 and
TemPredict datasets include minute-resolution wear-
able data, participants were instructed to wear the
Ava bracelet only while asleep. Thus, COVID-RED
wearable data is only provided at daily resolution
and does not provide any notion of activity levels.
These factors reduced the number of features shared
between each dataset and without minute-level reso-
lution data it was not feasible to test certain neural
models as outlined in the Homekit2020 study. See
Appendix D for additional details.

3.4. All of Us

The All of Us research program is an ongoing major
initiative to collect diverse health-related data, in-
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Table 1: Descriptions of the datasets used in these analyses. See Appendix I for participant counts expanded
by demographics.

Dataset Device Number of
Participants

Demographics Features Questionnaires

Homekit2020 FitBit n=5,012 Sex, ethnicity,
age, postal code

HR, activity,
sleep

Symptoms, flu
test results

TemPredict Oura Ring n=43,604 Sex, ethnicity,
age, education,
etc.

HR, HRV, RR,
sleep, activity,
temperature

Symptoms,
COVID and flu
test results

COVID-
RED

Ava
smartwatch

n=14,955 Sex, ethnicity,
age, education,
BMI, etc.

HR, HRV, RR,
temperature,
perfusion index,
sleep

Symptoms,
COVID test
results

All of Us FitBit n=13,735 Sex, ethnicity,
age, education,
etc.

HR, activity,
sleep

N/A

CDS Any
measuring HR

n=493,487 N/A HR, steps, sleep N/A

HR: heart rate, HRV: heart rate variability, RR: respiratory rate

cluding electronic health records, genomic data, phys-
ical measurements, participant questionnaires, and
wearable device data from over a million Americans
(All, 2019). The All of Us research program empha-
sizes including groups typically underrepresented in
biomedical research. The All of Us research program
began allowing participants to share historical and
prospective FitBit data starting in 2019. We use the
All of Us Registered Tier Dataset v7. FitBit data is
not paired with daily questionnaires at this time, thus
we use these data for comparing resting HR distribu-
tions and not model generalizability. See Appendix E
for additional details, particularly how we calculated
resting HR from minute-level data.

3.5. Corona-Dataspende

The CDS dataset (Wiedermann et al., 2023) includes
geographically aggregated nightly mean values from
over 400,000 adults from Germany. Data is avail-
able from April 2020 to December 2022. Data from
any “fitness bracelet or smartwatch” from “Apple,
Samsung, Fitbit, Garmin, Amazfit, Oura, Polar and
Withings” were included in the dataset, and resting
HR, steps, and sleep duration are available (Wieder-
mann et al., 2023). We used data aggregated across
the entire nation of Germany to compare distribu-
tions of resting HR data with other datasets. See
Appendix F for further details.

4. Methods

We used these questions to guide our subsequent
analyses:

1. What demographic biases exist in large-scale,
longitudinal wearable datasets?

2. Are there substantial differences in the under-
lying data distributions even after statistically
accounting for demographics?

3. How well can we expect acute illness detection
models to generalize across wearable datasets
when using community standard features and
models?

4. How much of the changes in model performance
across datasets is attributable to concept shift?

4.1. Demographic biases

Because there were substantial differences in the total
number of participants in each dataset, we compared
the proportion of participants in each demographic
group to the proportions in the U.S. population3 and
world population4 (for age and sex), and the U.S.
population for ethnicity. See Table 5 for the total
numbers in each category.

3. https://www.census.gov/data/tables/2020/demo/age-
and-sex/2020-age-sex-composition.html

4. https://genderdata.worldbank.org/topics/population/
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4.2. Summarizing participant resting HR

Prior large-scale observational wearable studies ag-
gregated all available wearable device data from each
participant. As an example, Master et al. (2022)
aggregated daily FitBit-measured step counts from
each participant in the All of Us study and found
that participants’ average daily step count was cor-
related with incident disease (e.g., depression, hyper-
tension, diabetes, etc.). For these analyses, we follow
the approach taken in previous studies examining the
relationship between demographic factors and real-
world assessed HR (Avram et al., 2019; Golbus et al.,
2021). Avram et al. (2019) performed a multiple lin-
ear regression and Golbus et al. (2021) performed an
ANOVA (a special case of multiple regression (Nel-
son et al., 1979)) between several demographic factors
and within-participant mean HR measurements. Our
statistical approach was identical; however, fewer de-
mographics were shared between these datasets (age,
sex, and ethnicity) than those used in Avram et al.
(2019) and Golbus et al. (2021). Our primary results
focus on the mean daily resting HR as it is commonly
used to assess acute illness.

4.3. Acute illness monitoring

We sought to use community standard methodologi-
cal implementations to examine the performance and
generalizability of acute illness monitoring models
across datasets. Therefore, we reviewed nineteen
prior acute illness monitoring studies to determine
community standards (see Appendix A for criteria
and Appendices 7, 8 and 9 for results). Thirteen
trained ML models on longitudinal wearable data for
acute illness monitoring. In the cases where there
was no obvious community standard, we attempted
to reproduce methodological approaches taken in the
Homekit2020 study wherever feasible.

4.3.1. Ground truth definitions

Prior acute illness monitoring studies have a wide
range of ground truth definitions (see Table 8 for a
summary). Given the absence of obvious community
standards surrounding ground truth labels, we fol-
low the approach taken by the Homekit2020 of “one
prediction per participant per day” as suggested by
Nestor et al. (2023). Any day without missing wear-
able data in the nights leading up to a ground truth
label from a daily questionnaire was used for evaluat-
ing the performance of our models (see Appendix M

and our code for details). We work with three of the
tasks described in the original Homekit2020 study:
prediction of respiratory viral infection (confirmed by
laboratory test), flu symptoms5, and fever symptoms
(see Appendices B, C and D for details on how labels
were extracted from each dataset). In other words,
we set no minimum wearable device or questionnaire
compliance levels to include a participant’s data in
these analyses except that we required enough data
within a rolling baseline period (at least six of ten
days) to reliably calculate the mean and standard
deviation of their wearable data.

4.3.2. Normalization strategy

Eleven of the thirteen acute illness monitoring stud-
ies we reviewed used a lagged, within-individual z-
score normalization (Appendix 7). The other stud-
ies also used a lagged baseline approach; Quer et al.
(2022) used the median and inter-quartile range as
opposed to mean and standard deviation, and Risch
et al. (2022) performed an unspecified lagged base-
line normalization. There seems to be community
consensus around the use of within-individual, lagged
baseline normalization, however, no two studies chose
the same combination of baseline window length (the
number of days used to calculate the mean and stan-
dard deviation in the baseline period) and window
offset (the number of days the normalization period is
from the ground truth day). Therefore, we performed
a hyperparameter grid search on window length and
offset to determine an optimal normalization strategy
based on these datasets. Implementation details are
shown in Appendix L and we found that z-scoring by
a ten-day window with a twelve-day offset was opti-
mal for these data.

4.3.3. Feature set

Prior reviews have examined the features used by
these models and their performance (Mitratza et al.,
2022). To test generalizability, we considered the set
of features shared between the Homekit2020, Tem-
Predict, and COVID-RED datasets: 1) resting HR
and 2) time spent asleep. In order for our results
to be comparable to the Homekit2020 study, we fo-
cused on prediction tasks as they did. Thus, the input
features into our model included the three days of z-
score normalized resting HR and time spent asleep (as
described in 4.3.2) prior to a ground truth day (see

5. We used the more common Centers for Disease Control
and Prevention definition of flu symptoms
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Appendix L for details). We also one-hot encoded
the day of the week so that models could account for
human activities that follow seven-day rhythmicity
(e.g., work days). We note that models tend to per-
form better on detection tasks (using data from up to
the night after a ground truth day, Appendix M) and
that within-dataset performance is lower when limit-
ing features to those that are shared across datasets
(HR and sleep vs all available features, Appendix M).

4.3.4. Model choice

Boosting, tree-based classifiers (e.g., XGBoost,
LGBM, Sklearn’s gradient boosting classifiers) are
commonly used in many acute illness monitoring
studies (Merrill et al., 2023). In our review of acute
illness monitoring studies (Table 9), we found that a
plurality of studies reported results from at least one
boosting, tree-based classifier. Because we aimed to
use common community implementations, we chose
to use Sklearn’s histogram gradient boosting classi-
fier (Pedregosa et al., 2011). See Appendix L for im-
plementation details.

4.3.5. Evaluation metrics

We examined model performance using the area un-
der the receiver operating curve (AUROC), which is
commonly reported in acute illness monitoring stud-
ies. Despite its bias in situations with extreme class
imbalance, AUROC allowed us to calculate mean-
ingful percentage changes when comparing models
trained on one dataset and tested on the other
datasets. We also considered using average preci-
sion (AP), however, the relative changes as assessed
by AP did not result in meaningful percentages of
change. Performance as described by AP are shown
in Table 12.

4.3.6. Training and testing

The Homekit2020 study found that models per-
formed about as well on a “user split” (respective
to “time split”) when following a train-test cross-
validation procedure; we use a modified version of
their approach for within-dataset performance eval-
uation. When evaluating under the user split set-
ting, a model is trained on data from one group of
participants and tested on another. Given the ex-
treme class imbalance in these data, we implemented
a stratified version of Homekit2020’s user split to en-
sure that each train-test split had a similar number

of participants with positive examples. For within-
dataset performance, reported metrics represent the
average across a five-fold randomly stratified user
cross-validation split. To assess generalizability, mod-
els were trained on all available data from one dataset
and tested on all available data from each of the other
datasets.

4.4. Performance change due to concept shift

We used recently developed methods (WhyShift) to
estimate the proportion of performance change due to
concept shift (Cai et al., 2023; Liu et al., 2023). Their
method takes a trained model from one dataset, test
data from the same dataset, and an external dataset
as input. It uses a domain classifier to estimate a sub-
set of examples in the test data and external dataset
that have features with shared support. It then uses
these examples with shared support to estimate the
performance change that can be attributed to con-
cept shift. See Appendix N for implementation de-
tails and a schematic further describing howWhyShift
estimates performance changes due to concept shift.

Figure 1: Datasets are biased in self-reported age and
sex, relative to both the U.S. and World
populations. Within-dataset participant
counts are normalized by the total num-
ber of participants in each dataset and dis-
played using a population pyramid.

5. Results

These analyses suggest that large-scale wearable
datasets are substantially biased based on the rela-
tive prevalence of self-reported age, sex, and ethnic-
ity. We found opposite directional correlations be-
tween age and resting HR and significant differences
in mean resting HR in each dataset. Most models
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performed worse on external datasets. The majority
of performance changes could be attributed to con-
cept shift.

5.1. Demographic biases

Each dataset is substantially biased based on the
relative prevalence of self-reported demographics.
These large-scale wearable studies tend to be over-
representative of younger and female groups (Fig-
ure 1) as well as White groups (Figure 2).

Figure 2: Datasets are biased in self-reported ethnic-
ity as compared to the U.S. population,
particularly with respect to Black partic-
ipants. Within-dataset participant counts
are normalized by the total number of par-
ticipants in each dataset and are displayed
based on the relative prevalence of self-
reported ethnicity.

5.2. Average dataset resting HR

There appear to be substantial differences in the un-
derlying distributions of within-dataset average rest-
ing HR (Figure 3) and a variety of within-dataset
trajectories throughout the year which might corre-
spond to changes in behavior in the U.S. during the
COVID-19 lockdown in. We also provide visualiza-
tions of the minute-of-day means for HR and activity
split by age, sex, and ethnicity for the Homekit2020,
TemPredict, and All of Us datasets in Figures 4, 5
and 6 along with descriptions of weekday vs. weekend
differences across datasets (Appendix G).

5.3. Within-dataset HR differences

Regardless of dataset, when accounting for age, sex,
and ethnicity, males tend to exhibit lower HRs than
females (Table 2) and African-American participants
exhibit higher HRs relative to white participants. No-
tably, age is positively correlated with HR in the

Figure 3: Within dataset mean resting HR varies
substantially between datasets. Here, the
average daily resting HR was taken as the
mean across all participants with available
data on the same relative date (i.e., 2nd
Tuesday of each year) and the mean across
repeated relative dates for datasets span-
ning multiple years (All of Us and CDS).

TemPredict dataset, while age is negatively corre-
lated with HR in the All of Us dataset.

5.4. HR differences across datasets

Multiple regression confirms the qualitative assess-
ment observed in Figure 3: with respect to the All
of Us dataset, participants from the Homekit2020
dataset have the most similar HRs (1.90 bpm lower on
average), followed by participants from the TemPre-
dict dataset (4.86 bpm lower) and the COVID-RED
dataset (10.41 bpm lower, Table 6). When pooling
all participants across all datasets, males still tend to
have lower HRs than females (3.69 bpm lower) while
age was positively (but not significantly) correlated
with HR (0.001 bpm/decade).

5.5. Acute illness monitoring generalizability

In general, performance was worse on external
datasets, however, this was not always the case (Ta-
ble 3). Across all tasks, the average performance
drop was 6.58%. Prediction of viral positivity seemed
substantially easier for examples in the Homekit2020
dataset respective to the TemPredict and COVID-
RED datasets. Models trained on the TemPredict
dataset (the largest dataset by number of training
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Table 2: Results are from a multiple regression with age, sex, and ethnicity as factors/covariates and mean
resting HR as response values. Values are reported as: regression coefficient (p-value). Datasets
exhibit concordant correlations for mean resting HR vs sex and a subset of ethnicities, however,
the correlation between age and HR is conflicting between datasets.

Dataset Age Sex* Ethnicity†
Black Asian Other

Homekit2020 -0.014 (0.226) -3.56 (<0.001) 2.363 (<0.001) -0.095 (0.886) 0.937 (0.082)

TemPredict 0.059 (<0.001) -3.21 (<0.001) 4.125 (<0.001) 0.657 (<0.001) 0.062 (0.585)

COVID-RED 0.082 (0.045)** -3.52 (<0.001) Non-Dutch: 0.881 (0.001)

All of Us -0.108 (<0.001) -4.69 (<0.001) 5.495 (<0.001) -0.685 (0.125) 1.502 (<0.001)

*Reference: female, †Reference: Caucasian/white, **Coded as discrete bins of 10 years vs continuous

Table 3: Within-dataset performance (bold) is the mean AUROC across five-fold cross-validation. Models
tested on external data are trained on all internal data. “Mean others”: mean within-task AUROC
on external data. “Percent drop”: change between within-dataset performance and “Mean others.”

Task
Train

Test
Homekit2020 TemPredict COVID-RED Mean others Percent drop

Viral
Homekit2020 0.780 0.496 0.586 0.54 30.64
TemPredict 0.534 0.565 0.510 0.52 7.61
COVID-RED 0.705 0.508 0.588 0.61 -3.15

Flu
Homekit2020 0.620 0.641 0.654 0.65 -4.44
TemPredict 0.613 0.673 0.689 0.65 3.27
COVID-RED 0.568 0.620 0.685 0.59 13.28

Fever
Homekit2020 0.701 0.628 0.666 0.65 7.7
TemPredict 0.679 0.673 0.694 0.69 -2.01
COVID-RED 0.653 0.630 0.685 0.64 6.35

Table 4: The majority of performance changes are attributable to concept shift. Values represent the pro-
portion (concept:total) of performance change attributable to concept shift. Results displayed are
the mean across a five-fold cross-validation, with the test dataset from cross-validation used with
external data to estimate the performance changes due to shifts.

Task
Train

Test
Homekit2020 TemPredict COVID-RED

Viral
Homekit2020 - 0.91 0.94
TemPredict 0.98 - 1.0
COVID-RED 0.99 1.0 -

Flu
Homekit2020 - 0.77 0.55
TemPredict 0.76 - 0.72
COVID-RED 0.613 0.74 -

Fever
Homekit2020 - 1.0 0.77
TemPredict 1.0 - 0.73
COVID-RED 0.81 0.78 -
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examples) exhibited the lowest average drop in per-
formance (2.96%) across all tasks on external datasets
respective to Homekit2020 (11.3%) and COVID-RED
(5.49%). Indeed, when testing on COVID-RED data
for the flu and fever tasks, models trained on Tem-
Predict data marginally outperformed models trained
on COVID-RED data. Models trained on the Home-
kit2020 and TemPredict datasets both performed
better on the flu symptom task in the COVID-RED
dataset relative to their within-dataset performance.

5.6. Concept shift drives performance
differences

These analyses suggest that the overwhelming major-
ity of performance changes between datasets were due
to concept shift (Table 4). The proportion of perfor-
mance change attributable to concept shift was also
approximately symmetric for each task (e.g., trained
on COVID-RED, tested on TemPredict was close to
trained on TemPredict, tested on COVID-RED). The
viral positivity task exhibited the highest average
concept shift proportion at 0.97. Flu exhibited the
lowest concept shift proportion at 0.69.

6. Limitations

This study has several limitations. First, unknown
or unmeasured confounding variables might explain
the observed differences in correlations between age
and resting HR. Such differences might stem from
unaccounted-for dataset biases or the non-ergodic na-
ture of these measures (Mangalam et al., 2023). Ad-
ditionally, these data were gathered in different years
and some data might reflect changes due to the onset
of COVID-19 in early 2020 rather than typical human
physiology. Furthermore, we considered the within-
participant mean of resting HR across time, which
likely compressed much of the time-dependent infor-
mation in these data (e.g., menstrual cycles). Future
work could explore these time-dependent character-
istics (e.g., with autoregressive models) and examine
differences between datasets. These datasets were
gathered using different wearable devices and prior
work suggests that FitBit devices might underesti-
mate HR respective to gold-standard reference HR
measurements (Fuller et al., 2020). These results,
however, suggest that participants in the FitBit-
utilizing Homekit2020 and All of Us datasets had
higher average HRs. We stress that the intention
of these analyses is not to claim that any of these

datasets or devices used therein provide a more ac-
curate representation of reality, but rather that re-
searchers examining any one of these datasets in iso-
lation could come to wildly different results and thus
interpretations of reality. Prior research also docu-
ments such dataset-dependent discrepancies (Madi-
gan et al., 2013). Our normalization strategy reduces
differences in within-dataset means (Appendix O).
Future work might examine whether such within-
individual normalization strategies mitigate dataset
biases, however, our specific normalization strategy
might only be optimal for these datasets and tasks.

We evaluated the performance of a single, albeit
effective and widely utilized, classifier and we did
not explore whether domain adaptation techniques
enhance model generalizability or mitigate concept
shifts or whether features other than resting HR vary
between datasets. We do not intend to surmise that
the models we used are at the forefront of acute ill-
ness monitoring technology. Nonetheless, their per-
formance is comparable to the best-performing mod-
els in the original Homekit2020 study. Differences in
model performance might be attributable to our use
of an optimized, community standard baseline nor-
malization technique. Future work could also con-
sider other architectures, particularly deep neural
networks, which we were unable to examine due to
substantial differences in the sampling structure of
each dataset. We did not consider the transferability
of model hyperparameters across datasets and tasks;
this would be an important future step in develop-
ing more generalizable models and might prove even
more important in work with deeper architectures.
Similarly, researchers could explore whether domain
adaption approaches (e.g., Fernando et al., 2013;
Singh, 2021) improve model generalizability. Unsu-
pervised domain adaptation approaches might be par-
ticularly promising for these datasets - given the large
number of unlabelled examples - and in deployment
where labels might not be immediately available. Un-
supervised domain adaptation approaches also might
perform well under concept shift scenarios (Rostami
and Galstyan, 2023). These analyses offer a base-
line against which to compare the impact of imple-
menting such methods. Similar comparative analyses
have not been performed for large-scale accelerome-
try data (e.g., those available in the All of Us and UK
Biobank studies, though work currently under review
uses multiple such datasets (Shim et al., 2023)). We
found this surprising given that the body of litera-
ture correlating accelerometry measures from these
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datasets with health conditions or using these data
to develop ML models is much larger than the illness
monitoring literature. Future work similar to ours
could consider the accelerometry data underpinning
the All of Us and UK Biobank studies.

7. Conclusion

Given the time and expense required to collect large-
scale wearable datasets, it would not be surprising if
researchers performing cross-sectional observational
studies or developing ML models for health monitor-
ing tasks coalesced around a few of the pre-existing
wearable datasets. At least, similar dataset concen-
tration occurred in many of the more established
ML communities. The All of Us and UK Biobank
datasets are emerging as the default large-scale wear-
able datasets. Nestor et al. (2023) caution attention
to the study design and outcomes described in acute
illness monitoring studies, and the original authors of
the Homekit2020 study (Merrill et al., 2023) suggest
that performance on any of these datasets is not in-
dicative of real-world performance. Our work under-
scores that such caution is merited, and we suggest
that wherever possible, future studies involving these
datasets should test whether correlations and models
generalize across other large-scale datasets.
Ultimately, the data from large-scale wearable

device-based studies show impressive utility in de-
scribing human physiology, especially as it changes
over time, and might be useful to develop and train
ML models for monitoring tasks. Indeed, in cases
where the results from these data are used for re-
source allocation, like in epidemiological settings,
even small improvements can save lives. Such ap-
plications are particularly promising given that mil-
lions of people already own and use wearable devices
that are connected via their mobile device to the in-
ternet, potentially enabling improved resource allo-
cation in near real-time. However, to the extent that
a community of researchers forms around these large-
scale datasets and works towards developing models
for acute illness detection, we hope that this work
serves as a reminder that these datasets likely face
many of the same challenges known all too well by
other research communities. In the case that acute ill-
ness monitoring using wearables continues to develop
into a more established health-ML field, we hope this
work spurs a discussion around anticipating and ac-
counting for the biases and generalizability challenges
documented here.
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Gaël P Hammer, Jean-Baptist du Prel, and Maria
Blettner. Avoiding Bias in Observational Stud-
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tors, Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3428–3448, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/
P19-1334.

Mike A. Merrill and Tim Althoff. Self-supervised
Pretraining and Transfer Learning Enable Flu and
COVID-19 Predictions in Small Mobile Sensing
Datasets, June 2022.

Mike A. Merrill, Esteban Safranchik, Arinbjörn Kol-
beinsson, Piyusha Gade, Ernesto Ramirez, Ludwig
Schmidt, Luca Foschini, and Tim Althoff. Home-
kit2020: A Benchmark for Time Series Classifica-
tion on a Large Mobile Sensing Dataset with Lab-
oratory Tested Ground Truth of Influenza Infec-
tions. In Proceedings of the Conference on Health,
Inference, and Learning, pages 207–228. PMLR,
June 2023.

Aziz Mezlini, Allison Shapiro, Eric J. Daza, Ea-
mon Caddigan, Ernesto Ramirez, Tim Althoff, and
Luca Foschini. Estimating the Burden of Influenza-
like Illness on Daily Activity at the Population
Scale Using Commercial Wearable Sensors. JAMA
Network Open, 5(5):e2211958, May 2022. ISSN
2574-3805. doi: 10.1001/jamanetworkopen.20
22.11958.

Dean J. Miller, John V. Capodilupo, Michele
Lastella, Charli Sargent, Gregory D. Roach, Vic-
toria H. Lee, and Emily R. Capodilupo. Ana-
lyzing changes in respiratory rate to predict the
risk of COVID-19 infection. PLOS ONE, 15(12):
e0243693, December 2020. ISSN 1932-6203. doi:
10.1371/journal.pone.0243693.

Tejaswini Mishra, Meng Wang, Ahmed A. Metwally,
Gireesh K. Bogu, Andrew W. Brooks, Amir Bah-
mani, Arash Alavi, Alessandra Celli, Emily Higgs,
Orit Dagan-Rosenfeld, Bethany Fay, Susan Kirk-
patrick, Ryan Kellogg, Michelle Gibson, TaoWang,
Erika M. Hunting, Petra Mamic, Ariel B. Ganz,
Benjamin Rolnik, Xiao Li, and Michael P. Sny-
der. Pre-symptomatic detection of COVID-19 from

658



Wearable dataset and model generalizability

smartwatch data. Nature Biomedical Engineering,
4(12):1208–1220, December 2020. ISSN 2157-846X.
doi: 10.1038/s41551-020-00640-6.

Marianna Mitratza, Brianna Mae Goodale, Aizhan
Shagadatova, Vladimir Kovacevic, Janneke van
de Wijgert, Timo B Brakenhoff, Richard Dobson,
Billy Franks, Duco Veen, Amos A Folarin, Pieter
Stolk, Diederick E Grobbee, Maureen Cronin, and
George S Downward. The performance of wearable
sensors in the detection of SARS-CoV-2 infection:
A systematic review. The Lancet. Digital Health,
4(5):e370–e383, May 2022. ISSN 2589-7500. doi:
10.1016/S2589-7500(22)00019-X.

Miho Miyawaki, Walid Brahim, Yosuke Iida, and
Jianhua Ma. Recognition of Psychological Stress
Levels Using Wearable Biosensors. International
Symposium on Affective Science and Engineering,
ISASE2023:1–4, 2023. doi: 10.5057/isase.2023-C
000027.

Nilah Ravi Nair, Lena Schmid, Fernando Moya
Rueda, Markus Pauly, Gernot A. Fink, and
Christopher Reining. Dataset Bias in Human Ac-
tivity Recognition, January 2023.

Aravind Natarajan, Hao-Wei Su, and Conor
Heneghan. Assessment of physiological signs as-
sociated with COVID-19 measured using wearable
devices. npj Digital Medicine, 3(1):1–8, November
2020. ISSN 2398-6352. doi: 10.1038/s41746-020-0
0363-7.

Larry R. Nelson, Larry A. Nelson, and Leonard D.
Zaichkowsky. A Case for Using Multiple Regression
Instead of ANOVA in Educational Research. The
Journal of Experimental Education, 47(4):324–330,
1979. ISSN 0022-0973.

Bret Nestor, Jaryd Hunter, Raghu Kainkaryam, Erik
Drysdale, Jeffrey B. Inglis, Allison Shapiro, Sujay
Nagaraj, Marzyeh Ghassemi, Luca Foschini, and
Anna Goldenberg. Dear Watch, Should I Get a
COVID-19 Test? Designing deployable machine
learning for wearables, May 2021.

Bret Nestor, Jaryd Hunter, Raghu Kainkaryam, Erik
Drysdale, Jeffrey B. Inglis, Allison Shapiro, Sujay
Nagaraj, Marzyeh Ghassemi, Luca Foschini, and
Anna Goldenberg. Machine learning COVID-19 de-
tection from wearables. The Lancet Digital Health,
5(4):e182–e184, April 2023. ISSN 2589-7500. doi:
10.1016/S2589-7500(23)00045-6.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Gerald Norman Pho, Nina Thigpen, Shyamal Patel,
and Hal Tily. Feasibility of Measuring Physio-
logical Responses to Breakthrough Infections and
COVID-19 Vaccine Using a Wearable Ring Sensor.
Digital Biomarkers, 7(1):1–6, March 2023. ISSN
2504-110X. doi: 10.1159/000528874.

Arvind Pillai, Subigya Kumar Nepal, Weichen Wang,
Matthew Nemesure, Michael Heinz, George Price,
Damien Lekkas, Amanda C. Collins, Tess Griffin,
Benjamin Buck, Sarah Masud Preum, Trevor Co-
hen, Nicholas C. Jacobson, Dror Ben-Zeev, and
Andrew Campbell. Investigating Generalizability
of Speech-based Suicidal Ideation Detection Using
Mobile Phones. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technolo-
gies, 7(4):1–38, December 2023. ISSN 2474-9567.
doi: 10.1145/3631452.

Giorgio Quer, Jennifer M. Radin, Matteo Gadaleta,
Katie Baca-Motes, Lauren Ariniello, Edward
Ramos, Vik Kheterpal, Eric J. Topol, and
Steven R. Steinhubl. Wearable sensor data and
self-reported symptoms for COVID-19 detection.
Nature Medicine, 27(1):73–77, January 2021. ISSN
1546-170X. doi: 10.1038/s41591-020-1123-x.

Giorgio Quer, Matteo Gadaleta, Jennifer M. Radin,
Kristian G. Andersen, Katie Baca-Motes, Ed-
ward Ramos, Eric J. Topol, and Steven R. Stein-
hubl. Inter-individual variation in objective mea-
sure of reactogenicity following COVID-19 vaccina-
tion via smartwatches and fitness bands. npj Digi-
tal Medicine, 5(1):1–9, April 2022. ISSN 2398-6352.
doi: 10.1038/s41746-022-00591-z.

Jennifer M Radin, Nathan E Wineinger, Eric J
Topol, and Steven R Steinhubl. Harnessing wear-
able device data to improve state-level real-time
surveillance of influenza-like illness in the USA: A
population-based study. The Lancet Digital Health,
2(2):e85–e93, February 2020. ISSN 2589-7500. doi:
10.1016/S2589-7500(19)30222-5.

Chaitra Rao, Elena Di Lascio, David Demanse, Nell
Marshall, Monika Sopala, and Valeria De Luca. As-

659



Wearable dataset and model generalizability

sociation of digital measures and self-reported fa-
tigue: A remote observational study in healthy par-
ticipants and participants with chronic inflamma-
tory rheumatic disease. Frontiers in Digital Health,
5, 2023. ISSN 2673-253X.

Dylan M. Richards, MacKenzie J. Tweardy,
Steven R. Steinhubl, David W. Chestek, Terry
L. Vanden Hoek, Karen A. Larimer, and
Stephan W. Wegerich. Wearable sensor derived
decompensation index for continuous remote moni-
toring of COVID-19 diagnosed patients. npj Digital
Medicine, 4(1):1–11, November 2021. ISSN 2398-
6352. doi: 10.1038/s41746-021-00527-z.

Martin Risch, Kirsten Grossmann, Stefanie
Aeschbacher, Ornella C. Weideli, Marc Kovac,
Fiona Pereira, Nadia Wohlwend, Corina Risch,
Dorothea Hillmann, Thomas Lung, Harald Renz,
Raphael Twerenbold, Martina Rothenbühler,
Daniel Leibovitz, Vladimir Kovacevic, Andjela
Markovic, Paul Klaver, Timo B. Brakenhoff,
Billy Franks, Marianna Mitratza, George S.
Downward, Ariel Dowling, Santiago Montes,
Diederick E. Grobbee, Maureen Cronin, David
Conen, Brianna M. Goodale, and Lorenz Risch.
Investigation of the use of a sensor bracelet
for the presymptomatic detection of changes in
physiological parameters related to COVID-19:
An interim analysis of a prospective cohort
study (COVI-GAPP). BMJ Open, 12(6):e058274,
May 2022. ISSN 2044-6055, 2044-6055. doi:
10.1136/bmjopen-2021-058274.

Rebecca Roelofs. Measuring Generalization and
Overfitting in Machine Learning. 2019.

Mohammad Rostami and Aram Galstyan. Over-
coming Concept Shift in Domain-Aware Settings
through Consolidated Internal Distributions. Pro-
ceedings of the AAAI Conference on Artificial In-
telligence, 37(8):9623–9631, June 2023. ISSN 2374-
3468. doi: 10.1609/aaai.v37i8.26151.

Tabea Schoeler, Doug Speed, Eleonora Porcu, Nicola
Pirastu, Jean-Baptiste Pingault, and Zoltán Kuta-
lik. Participation bias in the UK Biobank distorts
genetic associations and downstream analyses. Na-
ture Human Behaviour, 7(7):1216–1227, July 2023.
ISSN 2397-3374. doi: 10.1038/s41562-023-01579-9.

Allison Shapiro, Nicole Marinsek, Ieuan Clay, Ben-
jamin Bradshaw, Ernesto Ramirez, Jae Min, An-
drew Trister, Yuedong Wang, Tim Althoff, and

Luca Foschini. Characterizing COVID-19 and In-
fluenza Illnesses in the Real World via Person-
Generated Health Data. Patterns, 2(1):100188,
January 2021. ISSN 2666-3899. doi: 10.1016/j.
patter.2020.100188.

Jinjoo Shim, Elgar Fleisch, and Filipe Barata. Circa-
dian Rhythm Analysis Using Wearable-Based Ac-
celerometry as a Digital Biomarker of Aging and
Healthspan. Preprint, In Review, December 2023.

Ankit Singh. CLDA: Contrastive Learning for Semi-
Supervised Domain Adaptation. In Advances
in Neural Information Processing Systems, vol-
ume 34, pages 5089–5101. Curran Associates, Inc.,
2021.

Harvineet Singh, Vishwali Mhasawade, and Rumi
Chunara. Generalizability challenges of mortality
risk prediction models: A retrospective analysis on
a multi-center database. PLOS Digital Health, 1
(4):e0000023, April 2022. ISSN 2767-3170. doi:
10.1371/journal.pdig.0000023.
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Appendix A. Studies reviewed for community standards

In order to determine community standard acute illness monitoring approaches, we reviewed the same studies
(Bogu and Snyder, 2021; Cleary et al., 2022; Hassantabar et al., 2020; Hirten et al., 2021; Lonini et al., 2021;
Miller et al., 2020; Mishra et al., 2020; Natarajan et al., 2020; Nestor et al., 2021; Quer et al., 2022; Shapiro
et al., 2021; Smarr et al., 2020) as those in a previous review of the performance of wearable devices for the
detection of SARS-CoV-2 (COVID-19) (Mitratza et al., 2022). We also manually supplemented these studies
with studies that were published after this review was published and we also included studies focused on
acute illnesses other than COVID-19 (e.g., flu). We prioritized reviewing other studies that focused on acute
viral respiratory diseases and found: (Alavi et al., 2022; Mayer et al., 2022; Conroy et al., 2022; Risch et al.,
2022; Quer et al., 2021; Dunn et al., 2022). We excluded studies that did not use a commercially available
wearable device (e.g., those only available as a medical device (Goldstein et al., 2021) or based on custom
hardware (Zhang et al., 2021; Kumar et al., 2023)) or if it was not clear what device was used (Lakshmi
and Robinson Joel, 2023). We also excluded studies that were limited to small, non-representative sub-
populations (e.g. children ages 3-17 who had recently received an appendectomy (Ghomrawi et al., 2023),
patients undergoing chemotherapy for gastrointestinal cancer (Low et al., 2017)) or non-human research
subjects (Davis et al., 2021). Furthermore, we did not consider protocol publications (Larimer et al., 2021)
or publications that were not peer-reviewed (Skibińska, 2023). We also found several studies that focused
on illnesses that were either not acute or not respiratory (e.g., chronic inflammatory rheumatic disease (Rao
et al., 2023), stress (Miyawaki et al., 2023), or Parkinson’s disease (Li et al., 2023)).

Appendix B. Homekit2020 Dataset

Homekit2020 is a dataset provided by researchers at the University of Washington and Evidation and this
study recruited adult participants from across 50 U.S. states and includes data from December 2019 to
April 2020. It was the first publicly available, large-scale wearable dataset wherein data from participants
included demographic information, wearable data (FitBit; activity, heart rate, and sleep), and responses to
daily questionnaires. In their original publication, Merill et al. provide a set of acute illness monitoring tasks
and implement and test nine ML models, which they use to demonstrate state-of-the-art performance on
these tasks. Here we describe the details of the task definitions, data processing steps, and training/testing
procedures that we use to test the generalizability of acute illness monitoring models across datasets.

• Data access: Data from this study is available to “qualified researchers” who agree to the study’s
“Conditions for Use”. Researchers need to have a user profile through the Synapse platform and are
required to submit an “Intended Data Use” statement in order to access these data. Data is available
from Synapse.

• Code access: Code defining Homekit2020’s original models, data preprocessing, and data loaders are
available at this GitHub repository. The code used for the analyses in this work is available at this
GitHub repository.

• Features: Prior to the start of the study, participants owned a FitBit device capable of measuring
steps, sleep, and heart rate. Inclusion criteria included residency in the U.S., the ability to read, speak,
and understand English, no diagnosis of flu in the 3 months before the start of the study, willingness to
complete a daily online questionnaire for the study’s duration, ownership of an iPhone, iPad, or Android
smartphone or tablet, readiness to download an app if experiencing flu-like symptoms, willingness to
complete an at-home flu test kit and send the sample to a laboratory using a pre-paid shipping label.
Daily averages, including resting heart rate, were calculated by FitBit and retrieved using the FitBit
API. Features include: resting heart rate, minutes spent in bed, sleep efficiency, the number of naps,
the total time spent asleep, the total time in bed, the number of calories burned doing activities the
previous day, the total number of calories burned the previous day, the number of calories burned by an
individual’s basal metabolic rate, the total marginal estimated calories burned for the day, the number
of: sedentary, lightly active, fairly active, and very active minutes from the previous day.
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• Labels: During the study period, participants were asked to complete a daily, online questionnaire.
Responses to this questionnaire are provided in the “daily surveys onehot.csv” file available on Synapse.
This questionnaire included questions about symptoms and self-reported temperature among other
questions. The questionnaire for symptoms was based on severity using a four-point Likert scale. Results
from a comprehensive initial questionnaire and PCR diagnostic tests were included as separate tables
(initial questionnaires are found under the “2020 04 30” folder on Synapse and PCR results are in the
“lab results with triggerdate.csv”) and participants are linked across tables via PIDs. If a participant
indicated experiencing ILI symptoms in the daily questionnaire, they were then given additional follow-
up questionnaires. These subsequent questionnaires were more detailed and aimed to gather more
information about their symptoms. In cases where symptoms were reported, participants were directed
to self-administer a flu test. This test would provide immediate results for a generic influenza infection.
The test sample was also meant to be sent to a laboratory for a more detailed analysis to determine the
specific type of virus, if any. We reviewed the original Homekit2020 publication (Merrill et al., 2023),
another study from the same authors using the Homekit2020 dataset (Merrill and Althoff, 2022), an
earlier publication from Evidation (Kolbeinsson et al., 2021), and the code from Merrill et al. (2023)
available at https://github.com/behavioral-data/Homekit2020 to determine how the group created
ground truth labels. For symptom-based labels (flu and fever), ground truth labels were generated using
participants’ responses to daily questionnaires. For fever, if a participant reported experiencing a severe
fever “defined as three or more on a four-point Likert scale” that day was labeled positive. In the
original Homekit2020 study, the flu task was described as “Will the participant report two or more
flu symptoms (including cough, fever, and fatigue) of any severity today?” On the other hand, the
original flu monitoring study (Kolbeinsson et al., 2021) does not include fatigue in the list of symptoms
and states that a day was labeled positive for flu symptoms if a participant reported: “two specific
symptoms (cough and one of body ache, feeling feverish, chills, sweats) on the same day”. Given the
lack of consensus both in these studies and their published code, we opted to implement a more common
definition of flu symptoms, which is also the definition used for influenza-like illness surveillance from
the CDC: “fever or feverishness plus either cough or sore throat” 6. We took the same approach for the
TemPredict and COVIR-RED datasets. It was not explicitly stated in either the original publications
or their code how the authors defined negatively labeled examples. However, we found that selecting
days wherein participants completed the symptom questionnaire and did not experience these levels
of symptoms produced class balances close to the results reported in (Merrill and Althoff, 2022). For
viral positivity, we found that labeling all days except for those wherein a participant reported testing
positive by a PCR test to produce class balances most similar to those reported in (Merrill and Althoff,
2022). We used these approaches for labeling examples in the TemPredict and COVID-RED studies.

• Demographics: Participant demographics are linked by participant IDs that can be found under the
“PublicPortal\homekit2020 export\2020 04 30” folder in the “screener” files on Synapse.

• Acknowledgments: These data were contributed by participants as part of the Home Test-
ing of Respiratory Illness Study developed by Evidation Health and described in Synapse
(doi.org/10.7303/syn22803188).

6. https://www.cdc.gov/quarantine/air/management/guidance-cruise-ships-influenza-updated.html
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Appendix C. TemPredict Dataset

The TemPredict dataset was gathered as part of a larger study by researchers at several R1 research institu-
tions in collaboration with Ōura Health Oy. Participants were recruited on a rolling basis from individuals
who already owned an Oura Ring and at healthcare sites at over 20 different healthcare institutions through-
out the U.S. Participants who already owned an Oura Ring were distributed globally. Participants were
recruited starting in March of 2020 and recruitment stopped in September 2020. Data was back-filled for
participants who already owned the device and data is available from January 2020 to November 2020.
Wearable device data, demographics, and daily questionnaires are available from over 40,000 participants.

• Data access: We obtained access to the dataset through a data-use agreement that does not allow the
data to be made publicly available.

• Code access: Code for processing the TemPredict dataset directly is not available, however, we used
processing functions that were identical to those used for the Homekit2020 and COVID-RED datasets
and examples from these datasets are available at this GitHub repository.

• Features: Summary values (“sleep summaries”) from when a participant was asleep include: resting
heart rate, the lowest heart rate from the sleep period, heart rate variability (rMSSD), respiratory
rate, respiratory rate variability, temperature deviation from a user’s long-term temperature average,
temperature trend deviation from a three-day rolling average, sleep onset latency, time spent awake,
time spent in REM sleep, time spent in light sleep, time spent in deep sleep, and time spent asleep.
Sleep summaries were calculated by the device and retrieved by the researchers using Oura’s API.

• Labels: During the study period, participants were asked to complete a daily, online questionnaire. This
questionnaire included questions about symptoms including: fever, sore throat, dry cough, cough with
mucus, and cough with blood. We combined dry cough, cough with mucus, and cough with blood into a
single ”cough” label. The questionnaire for symptoms was binary (experienced or did not experience).
As outlined in Appendix B, if participants reported fever and either cough or sore throat, that day
was included as a positive example in the flu task. During their time in the study, participants were
also asked to report if they tested positive for any respiratory viral illnesses (COVID-19, flu). We used
responses to these questions for the viral positivity task.

• Demographics: Participants completed a baseline questionnaire wherein they reported certain demo-
graphic information including age, sex, and ethnicity. Baseline questionnaire data is linked to the
participants’ wearable and questionnaire data via PIDs.
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Appendix D. COVID-RED Dataset

The COVID-RED dataset was gathered as part of the COVID-RED study, a collaboration between nine
organizations: UMC Utrecht, Ava, Julius Clinical, University College London, the Danish Center for Social
Science Research, Sanquin, Takeda, Roche, and Dr Risch. Adults from the Netherlands were recruited start-
ing in February 2021 and data is available through November 2021. Wearable device data (Ava smartwatch),
demographics, and daily questionnaires are all available, however, whereas the Homekit2020 and TemPredict
datasets include minute-resolution wearable data, participants were instructed to wear the Ava bracelet only
while asleep. Thus, COVID-RED wearable data is only available at daily resolution and does not provide
any notion of activity levels.

• Data access: Data is publicly available from Dataverse.

• Code access: To the best of our knowledge, the code used in the studies by the authors who gathered
the COVID-RED data is not publicly available. The code used for the analyses in this work is available
at this GitHub repository.

• Features: The study aimed to enroll a total of 20,000 subjects, focusing on residents of the Netherlands.
To be eligible, participants needed to be at least 18 years old and residents of the Netherlands. They
were required to own a smartphone compatible with the study requirements (running at least Android
8.0 or iOS 13.0) and be able to read, understand, and write Dutch. Individuals were excluded if
they had a previous positive test for SARS-CoV-2 (either through PCR/antigen or antibody tests),
were currently suspected of having a coronavirus infection or exhibiting symptoms, had an electronic
implanted device (like a pacemaker), or suffered from cholinergic urticaria. Participants were recruited
from previously studied cohorts and through public campaigns. Interested individuals were directed to
visit the COVID-RED web portal. Here, they completed questionnaire questions to determine their
eligibility and expressed their interest in joining the study. After completing the questionnaire and
indicating their interest, eligible participants received a subject information sheet and a consent form.
Their enrollment was confirmed upon compliance with the study’s inclusion and exclusion criteria and
after providing consent. Enrolled subjects were instructed to complete the Daily Symptom Diary in
the Ava COVID-RED app, wear the Ava bracelet each night, and synchronize it with the app daily
for the duration of the study. Wearable measured features are available in the “wd 20230515.csv” file
and are labeled by the date they were gathered. Since these data were gathered at night, we confirmed
whether the labeled date corresponds to data from the night before or the night after the labeled date
by taking the mean across all points from the same day of the week and looking for known weekly
rhythms. This confirmed that these data were from the night before the date. Wearable measured
features include: resting heart rate (“WDPULSE”), respiratory rate (“WDRESP”), skin temperature
(“WDTEMP”), heart rate variability (“WDPULSEV”), perfusion index (“WDOXI”), and total time
spent asleep (“WDSLEEP”).

• Labels: Participants were asked to complete a Daily Symptom Diary. This was facilitated through
the Ava COVID-RED app, a specially designed application for this study. The app was to be in-
stalled on the participants’ smartphones, which had to be compatible with the app’s requirements.
Each day, participants were prompted to report their health status and any symptoms they might be
experiencing. Within the “wd 20230515.csv”, under the “WDSYMP” column, reported symptoms are
comma-separated. We used responses in this column labeled as “no current symptoms” as our negative
class label across tasks. Examples were included as positive class examples for the fever task if “fever”
was included in the list of symptoms. If ”fever” and either “cough”, or “sore throat” were reported we
included that example in the flu task. For the viral positivity task, we used the “WDDIAG” column
and labeled examples with “positive” as positive.

• Demographics: Participant demographics are linked by a participant ID and can be found in
“dm 20230515.csv”. Note, that we included the country of birth provided in this dataset as ethnic-
ity (i.e., Dutch vs. non-Dutch) as this was the closest proxy to ethnicity that was available from the
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COVID-RED dataset. This might not be directly comparable to the concepts of race/ethnicity used in
the U.S. and the Homekit2020, TemPredict, and All of Us datasets.
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Appendix E. All of Us Dataset

The All of Us research program is a major initiative to collect diverse health-related data, including electronic
health records, genomic data, physical measurements, participant questionnaires, and wearable device data
from over a million Americans. It emphasizes including groups typically underrepresented in biomedical
research. The All of Us research program began allowing participants to share historical and prospective
FitBit data starting in 2019. As of January 2024 (All of Us Registered Tier Dataset v7), FitBit data in All
of Us are not paired with any daily questionnaires at this time.

• Data access: Data used in this study is from the All of Us Registered Tier Dataset v7. Researchers
from institutions with a Data Use and Registration Agreement in place with All of Us can create an
account. After identity confirmation, completion of the mandatory training, and signing the data user
code of conduct, researchers can begin to access Registered Tier data. Data is then accessible through
an online service that provides compute for a fee. Researchers at qualified institutions can register at
https://www.researchallofus.org/register/

• Code access: The code used for the analyses in this work is available at this GitHub repository.

• Features: All of Us participants who already owned a FitBit could consent to share their wearable
device data with the All of Us research program. Minute resolution steps and heart rate are available
along with activity summaries. Because this dataset does not provide a FitBit-calculated resting heart
rate (as was provided in (Merrill et al., 2023)), we calculate one using the approach outlined in Alavi
et al. (2022), taking the mean of any available minute-resolution heart rate values between the hours of
midnight and 7 AM local time when, in the same minute (matched by day, hour, minute, and participant
ID), the number of FitBit measured steps is 0. See the SQL query defined in our code for how this was
calculated, which is available in “all of us analyses.ipynb” at this GitHub repository.

• Labels: N/A

• Demographics: Demographic information is linked in the All of Us database via participant IDs. Age
was not explicitly provided so it was calculated using participants’ provided date of birth referenced to
January 1st, 2019, which is when participants began sharing FitBit data. See “all of us analyses.ipynb”
available at this GitHub repository for further details on querying the All of Us database for these
demographics.

• Acknowledgments: The All of Us Research Program is supported by the National Institutes of Health,
Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 OT2 OD026554; 1 OT2
OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 1 OT2
OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA : AOD 16037; Federally Qualified Health Cen-
ters: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121;
The Participant Center: U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163;
Communications and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1
OT2 OD025277; 3 OT2 OD025315; 1 OT2 OD025337; 1 OT2 OD025276. In addition, the All of Us
Research Program would not be possible without the partnership of its participants.
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Appendix F. Corona-Dataspende Dataset

The Corona-Dataspende dataset resulted from a collaboration between the Robert Koch Institute and Hum-
boldt University of Berlin. Adults from Germany were recruited to donate their wearable device data starting
in April 2020; data collection ended in December 2022. Data from any “fitness bracelet or smartwatch” from
“Apple, Samsung, Fitbit, Garmin, Amazfit, Oura, Polar and Withings” were included in the dataset and the
publicly available version of the dataset is aggregated across geographic regions. The dataset is available as
the mean across all participants with available data for a particular night. These means are calculated across
varying levels of geographical aggregation. We used data aggregated across the entire nation of Germany to
compare distributions of resting heart rate data from other datasets.

• Data access: This dataset is publicly available and can be downloaded directly from Zenodo.

• Code access: The code used for the analyses in this work is available at this GitHub repository.

• Features: Participants included anyone over 16 with access to a German app store. Over a million
participants downloaded the app, with more than 500,000 individual participants contributed at least
one data point from a wearable. Regular participation in questionnaire studies involved up to 30,000
people. Data includes mean daily resting heart rate, step count, and sleep duration, aggregated by
geographical units based on European NUTS (NUTS3 to NUTS0) classifications. Data is available
from April 2020 to December 2022. Data are spatial averages, which prevents identifying any single
individual’s data. Data is excluded from users with incomplete postal codes, Apple Watch sleep data,
and implausible vital signs. Any data point with more than 50,000 steps per day, more than 24 hours
of sleep, or with a resting heart rate below 30 or above 150 beats per minute was excluded.

• Labels: N/A

• Demographics: Individual-level demographic information is not available.

• Acknowledgments: N/A
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Figure 4: There are within-dataset differences in the mean resting HR based on age throughout the entire
day. There also appear to be differences in the patterns of HR and activity throughout the day
when comparing across datasets. Lines represent the mean time-of-day wearable-measured average
HR (left) and wearable-measured activity (right). Here, we stratify participants by age and take
the within-dataset mean (top: Homekit, middle: TemPredict, bottom: All of Us) for each age
group using all available data from that minute of the day.
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Figure 5: There are within-dataset differences in the mean resting HR based on biological sex throughout
the entire day. There also appear to be differences in the patterns of HR and activity throughout
the day when comparing across datasets. Time-of-day wearable-measured average heart rate (left)
and wearable-measured activity (right). Here, we stratify participants by sex and take the within-
dataset mean (top: Homekit, middle: TemPredict, bottom: All of Us) for each sex using all
available data from that minute of the day.
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Figure 6: There are within-dataset differences in the mean resting HR based on ethnicity throughout the
entire day. There also appear to be differences in the patterns of HR and activity throughout the
day when comparing across datasets. Time-of-day wearable measured average heart rate (left)
and wearable measured activity (right). Here, we stratify participants by ethnicity and take the
within-dataset mean (top: Homekit, middle: TemPredict, bottom: All of Us) for each ethnicity
using all available data from that minute of the day.
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Appendix G. Weekday vs weekends differences by dataset

We observed differences in the mean values observed on weekend nights (Friday night or Saturday night)
compared to weeknights (all other nights). The difference in means (weekend effect, WE) between these two
sets of nights (weeknight vs weekend) varied by dataset. The largest WEs were observed in the TemPredict
(1.20 beats per minute, bpm) and COVID-RED (0.62 bpm) datasets. WEs were less pronounced in the CDS
dataset (0.39 bpm) and seemingly absent in the All of Us dataset (0.01 bpm).

Appendix H. Data preprocessing

Conservative reasonableness bounds were used to filter the resting heart rate (HR) and time spent asleep
features. Resting HR measurements below 20 bpm or above 200 bpm were set to NaNs and excluded from
subsequent analyses. Time spent asleep measurements below 60 seconds or above 16 hours were similarly
set to NaNs and excluded from subsequent analyses.

Appendix I. Participant counts

Table 5: The total number of participants from each dataset whose data are used in Figures 1, 2 and 3 and
Tables 2 and 6

Homekit2020 TemPredict COVID-RED All of Us

Age bin* Male Female Male Female Male Female Male Female

<29 160 584 3115 1607 646 1870 319 1218
30-39 601 1491 7368 3984 561 1635 665 1842
40-49 379 934 8032 4970 784 2468 522 1685
50-59 193 446 5184 4061 1096 2915 728 1975
60-69 50 136 2241 1844 942 1438 1051 2045
>70 19 19 691 507 334 266 757 872

Ethnicity

Asian 155 2587
Dutch: 14167

435
Black or African-American 179 571 710
Caucasian, European, White 4450 35718

Non-Dutch: 788
11424

Mixed/Others/Undeclared 238 4766 1166

*Does not include sex reported as “other”. Train/test data for models were not filtered by demographics
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Appendix J. Inter-dataset differences

Table 6: Men have significantly lower resting heart rates in a pooled samples across datasets and there are
significant differences between datasets in mean resting heart rate. Results are from a multiple
regression was with age bin, sex, and dataset as factors/covariates and mean heart rate as response
values. Age bins are based on decades as in Table 5. Reported as: regression coefficient (p-value).

Age bin Sex* Dataset†
Homekit TemPredict COVID-RED

0.001 (0.961) -3.69
(<0.001)

-1.90 (<0.001) -4.86 (<0.001) -10.41 (<0.001)

*Female as reference, †All of Us as reference
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Appendix K. Feasibility study review
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Table 7: Here, we examine the normalization techniques and exclusion criteria used by nineteen studies.
While all the acute illness monitoring feasibility studies that use machine learning (ML) approaches
use a lagged baseline normalization, there does not appear to be a community consensus around
the window size and offset used for this normalization.

Study Baseline start Baseline end Min. days Normalization

Bogu and Snyder
2021

Unclear Unclear N/A Z-score

Cleary et al. 2022 -21 -7 7 Median/IQR

Hassantabar et al.
2020

Not longitudinal Not longitudinal Not longitudinal Min-max scaling

Hirten et al. 2021 Not ML Not ML Not ML Z-score

Lonini et al. 2021 Not longitudinal Not longitudinal N/A N/A

Miller et al. 2020 -30 -14 N/A Z-score

Mishra et al. 2020 -28 -1 N/A Z-score

Natarajan et al.
2020

-5 0 N/A Z-score

Nestor et al. 2021 -35 -7 14 Z-score

Quer et al. 2022 -21 -7 N/A Median/IQR

Shapiro et al. 2021 Not ML Not ML Not ML Not ML

Smarr et al. 2020 Not ML Not ML Not ML Not ML

Alavi et al. 2022 -7 or -28 -1 N/A or 14 Z-score

Mayer et al. 2022 -35 -8 1 Z-score

Conroy et al. 2022 -17 -7 5 Z-score

Risch et al. 2022 -28 -10 29 consecutive “baseline normalization”

Merrill et al. 2023 -7 -1 5 Z-score

Quer et al. 2021 -21 -7 N/A Z-score

Dunn et al. 2022 -60 -22 19 Z-score
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Table 8: Here we examine how nineteen studies chose to define their positive ground truth and negative
ground truth examples. Acute illness monitoring feasibility studies seemingly have wildly different
task definitions.

Study Positive ground truth Negative ground truth

Bogu and Snyder
2021

-7 to +21 relative to symptom onset -10 to -20 relative to symptom onset

Cleary et al. 2022 0 to +7 days after symptom onset -21 to -7 days prior to symptom onset

Hassantabar et al.
2020

Not longitudinal Not longitudinal

Hirten et al. 2021 N/A N/A

Lonini et al. 2021 Not longitudinal Not longitudinal

Miller et al. 2020 Days -2 days prior to symptom onset to
+3

-30 to -14 days prior to symptom onset

Mishra et al. 2020 -14 to +7 days relative to symptom on-
set

N/A

Natarajan et al.
2020

+1 to +7 days after symptom onset 21 to 8 days prior to symptom on set

Nestor et al. 2021 Symptom start to symptom end All other

Quer et al. 2022 -21 to -7 relative to symptom onset 0 to +7 relative to symptom onset

Shapiro et al. 2021 Not ML Not ML

Smarr et al. 2020 Not ML Not ML

Alavi et al. 2022 21 days before the symptom onset for
symptomatic cases or diagnosis date for
asymptomatic cases or -28

21 days before a negative test result,
the entire time frame for untested par-
ticipants, or days before the detection
window for positive participants

Mayer et al. 2022 7 to 14 days around COVID symptom
onset

35 to 8 days before COVID symptom
onset

Conroy et al. 2022 -14 to -1 days prior to a positive COVID
test

-14 to -1 days prior to a negative
COVID test

Risch et al. 2022 -2 days prior to symptom onset -20 to -3 days prior to symptom onset

Merrill et al. 2023 -1 days prior to symptom onset Not explicitly stated

Quer et al. 2021 +1 to +7 after symptom onset -21 to -7 days prior to symptom onset

Dunn et al. 2022 -5 to -1 days prior to symptom onset -60 to -22 days prior to symptom onset
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Table 9: Here, we examine which models were used by nineteen studies. Acute illness monitoring feasibility
studies employ a wide variety of models and architectures, however, a plurality chose to use a
variation of gradient boosting tree-based classifier.

Study Model used in study

Bogu and Snyder 2021 LSTM-based autoencoder

Cleary et al. 2022 Not ML

Hassantabar et al. 2020 Deep neural network

Hirten et al. 2021 Not ML

Lonini et al. 2021 Logistic regression

Miller et al. 2020 Gradient boosted classifier

Mishra et al. 2020 Finite state model, Isolation Forest

Natarajan et al. 2020 Neural network

Nestor et al. 2021 XGBoost and Gated recurrent units

Quer et al. 2022 Logistic regression

Shapiro et al. 2021 Not ML

Smarr et al. 2020 Not ML

Alavi et al. 2022 Finite state model, Isolation Forest

Mayer et al. 2022 Linear SVM

Conroy et al. 2022 Gradient boosting ensemble learning method

Risch et al. 2022 LSTM

Merrill et al. 2023 XGBoost, CNN, Transformers, ResNet

Quer et al. 2021 Multivariate logistic regression

Dunn et al. 2022 Logistic regression, K-nearest neighbor, support vector machine,
random forest, and extreme gradient boosting
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Appendix L. Hyperparameter tuning and model configuration

In order to determine the optimal window offset and window length, we treat each as hyperparameters
to be tuned and thus performed a grid search over window offset and window length. We used a logistic
regression (LR) model trained on a pooled sample of a random, equal number of participants from each
dataset and found the average AUROC across each task (prediction of testing positive for a respiratory
virus, flu symptoms, and fever symptoms). Other hyperparameters were left at default Sklearn settings. LR
models used resting heart rate and time spent asleep from the night before the ground truth day as features.
We found that the best performance occurred when z-scoring by a ten-day window with a twelve-day window
offset, where the offset is the number of days the baseline period is away from the normalized day.

We used Sklearn’s (v1.2.0) Histogram-Based Gradient Boosting Classification Tree
(sklearn.ensemble.HistGradientBoostingClassifier) as our primary model. We pooled a sample of ex-
amples together across each dataset and task and performed a hyperparameter search over a range of
hyperparameters and found that models performed and generalized well with early stopping disabled, a
learning rate of 0.1, l2 regularization at 0.2, and the rest of the hyperparameters left at default. For
model comparisons, we chose to use the three days leading up to a ground truth day as it balanced model
overfitting against having fewer examples to train and test with.

Figure 7: Schematic of the optimized baseline z-score strategy showing an example of how wearable data
from the night before the ground truth day is normalized. For detection, data from the night after
the ground truth day is z-score normalized by a window that is also shifted forward by one night
so that its window is still lagged by twelve days.

Appendix M. Prediction vs detection

On average, models performed better on the detection version of each task (a model operating on data from
nights before and after a ground truth day) as compared with the prediction version of each task (a model
operating on data from the nights strictly before a ground truth day) on the same dataset. We tested this
by training models on the same ground truth labels using the normalization strategy described in Figure 7
(ten-day window length with a twelve-day window offset). The prediction model included z-score normalized
data from Nights -3, -2, and -1 relative to the ground truth day. The detection model included z-score
normalized data from Nights -2, -1, and 0 (0 being the first night after a ground truth day). Thus, the total
number of features was held constant within datasets (one value for each feature for each night), however, the
timing of those features was changed. Models for testing prediction and detection are based on all available
nightly features, features used for these models are described in the dataset descriptions in Appendices B,
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C and D. Training and testing follow a stratified five-fold user split cross-validation schema as described in
4.3.6.

Table 10: Performance on prediction tasks across datasets.

Task
Metric

Dataset
Homekit2020 TemPredict COVID-RED

Viral
AUROC 0.858 0.592 0.628

AP 0.0020 0.0017 0.0014

Flu
AUROC 0.637 0.713 0.657

AP 0.0159 0.0287 0.0306

Fever
AUROC 0.766 0.742 0.686

AP 0.0363 0.0857 0.0955

Table 11: Performance on detection tasks across datasets.

Task
Metric

Dataset
Homekit2020 TemPredict COVID-RED

Viral
AUROC 0.931 0.592 0.638

AP 0.0112 0.0017 0.0041

Flu
AUROC 0.638 0.713 0.700

AP 0.0160 0.0287 0.0479

Fever
AUROC 0.770 0.734 0.709

AP 0.0159 0.0845 0.0998

Table 12: Performance of the shared-features model on detection tasks across datasets as measured by av-
erage precision (AP).

Task
Train

Test
Homekit2020 TemPredict COVID-RED

Viral
Homekit2020 0.0007 0.002 0.0007
TemPredict 0.00018 0.0013 0.00057
COVID-RED 0.0001 0.002 0.0011

Flu
Homekit2020 0.0118 0.0029 0.0173
TemPredict 0.010 0.0064 0.019
COVID-RED 0.007 0.0024 0.033

Fever
Homekit2020 0.0066 0.0093 0.058
TemPredict 0.0039 0.019 0.049
COVID-RED 0.006 0.0086 0.068
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Appendix N. WhyShift implementation

Liu et al. (2023) implemented a method for estimating the proportion of performance change that can be
attributed to concept shift Y |X and covariate shift X (note, we follow their notation here). Their results rely
on the DISDE method, originally outlined in Cai et al. (2023). If data (X,Y ) from a training distribution
P are used to train a classifier f and f is to be used on some target distribution Q, then P and Q have
some shared support S, which they estimate using an auxiliary domain classifier π̂ trained to differentiate
between examples in P and examples in Q. The DISDE method then estimates the performance of f trained
on P on examples in S and Q. It uses the performance of f on P , S, and Q to estimate performance
changes due to Y |X shifts and X shifts. In this case, X shifts take the form of P → S shifts and S → Q
shifts. We use WhyShift’s implementation of the DISDE framework as it handles training the domain
classifier and decomposes the performance changes due to distribution shifts. For implementation, we used
the same stratified, user-split cross-validation for training models. We passed the model (f) trained on the
training split in each cross-validation as the input model to WhyShift, the test split from cross-validation for
examples from P , and all examples from each other dataset for examples from Q. We report the average
performance change due to concept shift across cross-validation splits. We also added the same histogram
gradient-boosting classifier for the domain classifier π̂ as it was not originally implemented in WhyShift.
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Figure 8: Datasets (distributions) P and Q might both exhibit concept shift and covariate shift. Concept
shift can only be estimated in the subsections of feature space which have shared support (e.g., have
overlap in their distributions) shown here in purple and labeled as S. The existence of subsections
of Datasets P (orange) and Q (blue) not in S might indicate covariate shift. Concept shift on the
other hand can be estimated for both Datasets P and Q for regions in S (labelled SP and SQ

respectively). Note that there is the same prevalence of both positive (stars) and negative (circles)
examples in both SP and SQ, however, their relative location has shifted for each dataset, which
might indicate concept shift. WhyShift determines S using a domain classifier and estimates the
performance of an input classifier on examples in both P and Q and compares this to the classifier’s
performance on examples in SP and SQ. It then used these empirical estimates of performance to
estimate the proportion of performance change due to concept shift.
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Appendix O. Normalization aligns dataset means

Figure 9: Average daily resting HR taken as the mean across all participants with available z-score normal-
ized data (see Appendix 7) on the same relative date (i.e. 2nd Tuesday of each year) and the mean
across repeated relative dates for datasets spanning multiple years (All of Us and CDS).
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