
Proceedings of Machine Learning Research 248:72–87, 2024 Conference on Health, Inference, and Learning (CHIL) 2024

Integrating ChatGPT into Secure Hospital Networks: A Case
Study on Improving Radiology Report Analysis

Kyungsu Kim∗ kskim@mgh.harvard.edu

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA

Junhyun Park∗ sean05071@dgist.ac.kr

Department of Robotics and Mechatronics Engineering, DGIST, Republic of Korea

Saul Langarica slangarica@mgh.harvard.edu

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA

Adham Mahmoud Alkhadrawi adham.alkhadrawi@mgh.harvard.edu

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA

Synho Do† SDO@mgh.harvard.edu

Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA

KU-KIST Graduate School of Converging Science and Technology, Korea University, Republic of Korea

Kempner Institute, Harvard University, USA

Abstract
This study demonstrates the first in-hospital
adaptation of a cloud-based AI, similar to Chat-
GPT, into a secure model for analyzing radiol-
ogy reports, prioritizing patient data privacy.
By employing a unique sentence-level knowl-
edge distillation method through contrastive
learning, we achieve over 95% accuracy in de-
tecting anomalies. The model also accurately
flags uncertainties in its predictions, enhancing
its reliability and interpretability for physicians
with certainty indicators. Despite limitations in
data privacy during the training phase, such as
requiring de-identification or IRB permission,
our study is significant in addressing this issue
in the inference phase (once the local model is
trained), without the need for human annota-
tion throughout the entire process. These ad-
vancements represent a new direction for devel-
oping secure and efficient AI tools for healthcare
with minimal supervision, paving the way for a
promising future of in-hospital AI applications.

Data and Code Availability. Our study
employs the MIMIC-CXR radiology report dataset
(Johnson et al., 2019), accessible to the public. The
replication code is available at GitHub and Hugging-
Face.

Institutional Review Board (IRB) Our re-
search, utilizing only the publicly available MIMIC-
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CXR dataset, is exempt from Institutional Review
Board (IRB) regulation. Access to this dataset has
been approved by PhysioNet.

1. Introduction

The research explores the integration of artificial
intelligence (AI), specifically large language models
(LLMs) like ChatGPT into radiology within hospi-
tals with an emphasis on maintaining security during
implementation.

Despite the proven effectiveness of these AI tools
in processing radiological reports (Wu et al., 2024;
Mirza et al., 2024; Lee et al., 2023), their integration
into hospital environments poses challenges due to
the sensitive nature of patient data and the need for
data confidentiality (Senbekov et al., 2020). The di-
rect use of cloud-based LLMs like ChatGPT is limited
by data security concerns, especially when consid-
ering healthcare regulations such as HIPAA (Gostin
et al., 2009) and GDPR (Voigt and Von dem Bussche,
2017).

Our study addresses this by adapting these LLMs
for secure, internal use within hospital radiology de-
partments, transforming them into closed-network
systems to comply with healthcare privacy standards.
This approach aims to leverage the advanced capabil-
ities of LLMs while safeguarding patient data privacy.

This paper delves into how radiology reports can be
automatically classified as normal or abnormal using
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Table 1: Comparison of our study with related ones to develop language models applied to electronic
medical record (EMR) documents. Our is the first study aimed at reproducing the cloud model into a
non-cloud/secure model (second column).

Study

Does it demonstrate
the feasibility of

knowledge distillation
(KD) learning

from a cloud-based
model to an

on-premises model?

Does it propose
an advancement
technique for KD
and provide its

reasons of
improvement?

Model type
(Cloud or On-premises type)?

Does it address
model learning? /
If yes, what kind of
learning data the
model use among
public data (p),
private data (i),
cloud model’s

prediction result data (c)?

What is the
showcase application

of the model?

Is the public
code available?

Li et al. (2023) No No Cloud (without KD) No Summarization No
Liu et al. (2023c) No No Cloud or On-premises (without KD) No Generation No
Ma et al. (2023) No No Cloud (without KD) No Generation Yes
Liu et al. (2023a) No No On-premises (without KD) Yes (p) Generation No
Liu et al. (2023b) No No On-premises (without KD) Yes (p) Generation (Param. only)
Zhong et al. (2023) No No On-premises (without KD) Yes (i) Generation No

Van Veen et al. (2023) No No On-premises (without KD) Yes (p) Generation Yes
Mukherjee et al. (2023) No No On-premises (without KD) Yes (p) Classification No
Bressem et al. (2020) No No On-premises (without KD) Yes (i) Classification Yes
Yan et al. (2022) No No On-premises (without KD) Yes (p) Classification (Param. only)

Our study Yes
Yes

(i.e., Sentence-level KD)

On-premises
(trained with KD
from cloud model)

Yes (c)
Classification
(Abnormal
detection)

Yes

cloud-based/high-performing LLMs like ChatGPT,
with the goal of adapting these models for secure and
internal use within hospital networks. This approach
aims to enhance hospital workflows by streamlining
the analysis of radiology findings, potentially lead-
ing to more efficient and accurate medical diagnostics
and patient care management.
This investigation is important for enhancing the

practical utility of AI in radiology, ensuring both
technological advancement and adherence to the
paramount principle of patient confidentiality. Our
contribution is three-fold:

• Successfully adapted a cloud-based model like
ChatGPT into an on-site version with over 95%
accuracy for detecting anomalies in radiology re-
ports, offering a secure method for local data
processing (Table 2).

• Demonstrated that sentence-level knowledge dis-
tillation outperforms traditional document-level
methods in improving model replication by bet-
ter identifying rare abnormal findings, supported
by analytical evidence (Figure 3).

• Improved model interpretability by adding an
“uncertain” label to the usual “normal” and
“abnormal” in sentence-level knowledge distil-
lation. This allows the model to identify am-
biguous cases in radiology reports, enhancing
sentence-level accuracy and clarity (Figure 6).
The provided code visualizes sentence-based pre-
dictions, helping physicians focus on critical find-

ings during review by clearly marking uncertain
sentences.

2. Related Works

LLMs, like ChatGPT, are used in radiology research
to analyze reports and are classified as cloud-based or
non-cloud-based. Rows 1-3 of Table 1 illustrate how
cloud-based studies employ LLMs for report genera-
tion or summarization, utilizing prompt engineering
without additional model training. However, this de-
pendence on cloud storage raises concerns regarding
data security. On the other hand, as shown in col-
umn 5 of Table 1, non-cloud (i.e., on-premises) ap-
proaches, which are described in rows 4–10 of the ta-
ble, need human annotation for model training, which
means a substantial amount of work for data prepa-
ration—more particularly, p- or i -type annotation.

In contrast to these previous studies that focus on
either cloud type or non-cloud type, our study is the
first to use both types, by incorporating knowledge
distillation (KD) (Gou et al., 2021) into LLMs for
radiology report analysis (see the second column in
Table 1 and Fig. 1). Specifically, we utilize both
types by replicating the cloud type as the non-cloud
type through KD. This approach involves training a
condensed non-cloud model (referred to as the stu-
dent) to emulate the capabilities of a more extensive
cloud model (known as the teacher), such as Chat-
GPT. Our approach stands out for utilizing automat-
ically processed data from the cloud model to train
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EMR
Normal

Abnormal

EMR
Normal

Abnormal

Server / Cloud / Open-type
LLM (Teacher Model)

Non-server / On-premise / Closed-type
LLM (Student Model)

EMR
Normal

Abnormal
Server / Cloud / Open-type

LLM

Network Training
(Knowledge Distillation)

Our Study Goal :
Reproduce the

prediction result of
teacher model

(a) Existing work (server model)

(b) Our work (To make non-server model that can reproduce performance of server model in closed model)

Pros
- State-of-the art Performance
Cons
- Data Security Issue

Pros
- Without Data Security Issue
Cons
- Performance lower than server
Our Study Goal
- Propose Methodology to         
  Reduce Performance Gap

non-server model (our target)

server model

server model

Server model :

Non-server model :

Figure 1: Our study is the first to test the feasi-
bility of distilling knowledge from cloud model like
ChatGPT into a non-cloud model for radiology re-
port analysis

the non-cloud model (i.e., as c-type data), instead of
relying on human-annotated data such as p- or i -type
annotation data stated in rows 4-10 in column 5 of
Table 1. Accordingly, our approach bypasses the re-
quirement for data labeled by humans. Furthermore,
our technique addresses the security concerns associ-
ated with evaluation data, by uploading only the lim-
ited, de-identified training data to the cloud model,
thereby excluding the remaining/unlimited evalua-
tion data that instead utilizes our trained non-cloud
model without the security concerns.

In addition, we have developed an advanced tech-
nique for KD using a sentence-level approach. This
method outperforms baseline document-level KD
methods as shown in the third column of Table 1
and Fig. 2. This new approach greatly enhances
the model’s ability to identify anomalies in docu-
ments, especially in challenging scenarios when the
document includes a lower number of abnormal sen-
tences. Furthermore, the incorporation of contrastive
learning loss into the KD process has enhanced the
model’s precision in recognizing the class with few
training instances (i.e., normal class). Therefore, our
incorporation of sentence-level KD and contrastive
learning loss results in a notable improvement in the
utilization of KD for analyzing radiological reports in
language models.

3. Method

In this section, we introduce a KD approach for
anomaly detection in radiology reports. This involves
two primary methods: the baseline document-level
KD (Sec. 3.1) and our proposed sentence-level KD
(Sec. 3.2) approaches. We also introduce the KD

...

...

...

EMR
Normal

Abnormal

EMR
Normal

Abnormal

Server / Cloud / Open-type
LLM (Teacher Model)

Non-server / On-premise / Closed-type
LLM (Student Model)

Network Training
(Knowledge Distillation)

(a) Baseline Approach (Document-based Knowledge Distillation)

non-server model (our target)

server model

EMR

EMR Non-server / On-premise / Closed-type
LLM (Student Model)

Network Training
(Knowledge Distillation)

(b) Our Approach (Sentence-based Knowledge Distillation)

non-server model (our target)

server model

...

...

Server / Cloud / Open-type
LLM (Teacher Model)

Normal
Abnormal

Normal
Abnormal

... Uncertain

Normal
Abnormal
Uncertain

Figure 2: Improving knowledge distillation perfor-
mance and interpretability, our approach incorpo-
rates sentence-level knowledge distillation and en-
hances reliability by introducing an additional label
(uncertain) for the network explicitly to indicate un-
certainty in prediction results

objective function employed for training both ap-
proaches (Sec. 3.3).

3.1. Baseline: Document-level Knowledge
Distillation

In this section, we present a method for anomaly de-
tection (AD) in radiology reports using document-
level knowledge distillation (D-KD). Document-level
input is standard approach in text document classifi-
cation (Adhikari et al., 2020; Yao et al., 2019; Ranjan
and Prasad, 2023). However, as there are no cases
in which the KD technique has been applied to pro-
cessing radiology reports, we proposed the baseline
D-KD technique as a representative and straightfor-
ward method for this purpose. Sec. 3.1.1 details the
process of extracting labels from the teacher model,
ChatGPT, to create training data. Sec. 3.1.2 details
the KD training of an on-premise LLM student model
using data from Sec. 3.1.1, showing the subsequent
testing of the model.

3.1.1. Label Extraction from Teacher
Model

The radiology report was input into the teacher
model (i.e., ChatGPT), which then determined if the
report was normal or abnormal, using n for normal
labels and a for abnormal. This process is defined by
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the function fd as follows:

fd(xi; c) =: ydi ∈ {a, n}. (1)

Here, xi represents the i-th radiology document, and
c denotes the question prompt (see the details in Ap-
pendix) used in ChatGPT to generate predictions for
anomaly detection by the binary label symbolized as
ydi . Through this process, T number of KD-training
data pairs for AD (i.e., D = (xi, y

d
i )

T
i=1) were con-

structed.

3.1.2. Training and Inference for Student
Model

• Training Phase. We updated the student
model gθ from the training data constructed in
Sec. 3.1.1 with model parameters θ to minimize
the objective below

θ∗ ← min
θ

E(i∈{1:T})

[
Lθ

(
gθ(xi), y

d
i

)]
(2)

where θ∗ is the trained parameter and Lθ is our
objective function for KD (see the details in Sec.
3.3).

• Inference Phase. Binary classification eval-
uation of radiology reports for AD was per-
formed from the student model gθ∗ on which KD-
learning was completed as follows:

pa ← gθ∗(xte){a},

pn ← 1− pa.

Here, xte denotes the radiology report used
for testing, and the student model gθ∗(xte) 7→
(gθ∗(xte){a}, gθ∗(xte){n}) =: (pa, pn) ∈ [0, 1]2

converts it into a binary probability vector
(pa, pn) within R2. This vector’s first element,
pa, reflects the model’s estimated probability of
the input document xte being abnormal.

3.2. Proposed: Sentence-level Knowledge
Distillation

In this section, we newly introduce S-KD, a sentence-
level-based KD method, more advanced than D-KD
in Sec. 3.1.

3.2.1. Label Extraction from Teacher
Model

Unlike the baseline method, where the entire ra-
diology report is input into the teacher model as

Table 2: Anomaly detection performance compari-
son between document-level and sentence-level KD
approaches across various backbone student models

Model Accuracy Specificity Sensitivity AUC

RadBERT-Roberta
-4m-document

85.52 0.858 0.84 0.901

RadBERT-Roberta
-4m-sentence

95.06
(+ 9.54)

0.941
(+ 0.083)

0.952
(+ 0.112)

0.977
(+ 0.076)

BioMed-Roberta
-document

86.12 0.82 0.869 0.877

BioMed-Roberta
-sentence

94.6
(+ 8.48)

0.947
(+ 0.127)

0.943
(+ 0.074)

0.979
(+ 0.102)

BlueBERT
-document

91.17 0.91 0.922 0.958

BlueBERT
-sentence

93.43
(+ 2.26)

0.933
(+ 0.023)

0.945
(+ 0.023)

0.98
(+ 0.022)

Clinical BERT
-document

90.15 0.888 0.961 0.968

Clinical BERT
-sentence

93.07
(+ 2.92)

0.922
(+ 0.034)

0.973
(+ 0.012)

0.982
(+ 0.014)

BiomedBERT
-document

92.76 0.93 0.916 0.926

BiomedBERT
-sentence

93.07
(+ 0.31)

0.926
(- 0.004)

0.961
(+ 0.045)

0.982
(+ 0.056)

BioBERT
-document

90.5 0.905 0.906 0.959

BioBERT
-sentence

92.37
(+ 1.87)

0.923
(+ 0.018)

0.929
(+ 0.023)

0.973
(+ 0.014)

p-value 0.002 0.04 0.002 0.002

Average ratio of
sent./doc. performance

1.047 1.053 1.053 1.051

shown in Eq. (1), our approach inputs individual sen-
tences sij ∈ {sij}Dj=1 from report xi into ChatGPT.
This yields ternary anomaly detection (AD) labels
{a, n, u}, explicitly incorporating an “uncertain” la-
bel u alongside the existing binary labels {a, n}:

fs(sij ; c) =: ysij ∈ {a, n, u}.

Here, xi, sij , and ysij denote the i-th radiology doc-
ument, its j-th sentence, and its model prediction
as ternary label, respectively. Accordingly, a total∑T

j=1 Dj of KD-training data pairs for AD were con-

structed, as (sij , y
s
ij)

(T,Di)
(i,j)=(1,1).

3.2.2. Training and Inference for Student
Model

• Training Phase. Our KD training follows the
same method as document-level KD training in
Eq. (2), but differs only in the input/label data
as sentence-level:

θ∗ ← min
θ

E(i∈T, j∈Di)

[
Lθ

(
gθ(sij), y

s
ij

)]
. (3)
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Table 3: Distribution comparison in medical re-
ports: Analyzing abnormal, normal, and uncertain
sentences between D-KD and S-KD on RadBERT-
Roberta

Percentage(%) GT Abnormal Normal Uncertain
Doc.

Count

Test Dataset

Abnor
44.85

± 22.1

27.17

± 20.1

27.97

± 17.3
2394

Normal
0.0

± 0.0

63.61

± 21.1

36.39

± 21.1
438

D-KD Incorrect

Abnor
29.14

± 17.4

42.17

± 21.1

28.69

± 18.0
340

Normal
0.0

± 0.0

61.86

± 26.3

38.14

± 26.3
70

S-KD Incorrect

Abnor
21.28

± 11.5

51.10

± 17.3

27.62

± 18.3
114

Normal
0.0

± 0.0

58.79

± 27.4

41.21

± 27.4
26

D-KD Incorrect

∩
S-KD Correct

Abnor
31.46

± 18.0

40.01

± 20.9

28.53

± 17.8
282

Normal
0.0

± 0.0

63.69

± 24.5

36.31

± 24.5
60

• Inference Phase. Therefore, the learned stu-
dent model gθ∗ can provide ternary classification
prediction results for individual sentences in the
test report xte, i.e., gθ∗(stej ) 7→ (pja, p

j
n, p

j
u) ∈

[0, 1]3 for j ∈ {1 : Dxte}, where (pja, p
j
n, p

j
u) =:

(gθ∗(stej ){a}, gθ∗(stej ){n}, gθ∗(stej ){u}) and Dxte is
the total number of sentences in the report xte.
Here, pja, p

j
n, and pju represent the sentence-level

(the j-th sentence’s) probability for being abnor-
mal, normal, and uncertain, respectively. Then,
the final document-level abnormality probability
pa is driven as the highest sentence-level proba-
bility (togetherwith its inverse value as normal
probability pn) as follows:

pa ← max(j∈{1:Dxte})
[
gθ∗(stej ){a}

]
, (4)

pn ← 1− pa.

This allows for an abnormal document classifica-
tion if even one sentence is deemed abnormal.

3.3. Objective Function for KD Training

Note the KD objective function Lθ used in Eqs. (2)
and (3), is defined as

Lθ(gθ(x), y) := Lcross
θ (gθ(x), y) + λ · Lcont

θ (gθ(x), y)
(5)

(a) Abnormal sentence distribution for abnormal
documents

(b) Uncertain sentence distribution for normal docu-
ments

Figure 3: Comparison of AD performance between
S-KD and D-KD: S-KD demonstrates superior detec-
tion in abnormal (or normal) documents with fewer
abnormal (or uncertain) sentences, outperforming D-
KD in identifying challenging AD cases

by adding the supervised contrastive loss Lcont

(Khosla et al., 2020) to the cross-entropy loss Lcross,
where

Lcross
θ (gθ(x), y) := −

∑
k

py[k] · log
(
gθ(x)[k]

)
,

Lcont
θ (gθ(x), y) := − logE(v∈By)

[
e(sim(z,zv)/τ)∑

k∈B

e(sim(z,zk)/τ)

]
.

Here, py is the one-hot vector representation of y,
z := zθ(x) and zv := zθ(xv) represent the latent fea-
ture vectors of gθ for the target input x and another
xv (where yv is its label), B is the batch set of train-
ing data (and By := {v ∈ B|yv = y} is its subset
whose labels are our target label y), and sim(·) is
the similarity metric. The addition of the contrastive
loss Lcont aims to minimize distances in the latent
space zθ(·) within the same class and maximize those
between different classes, thereby enhancing KD per-
formance by strengthening the balance of each class
(refer to Secs. 4.4 and 4.5).

4. Results

In this section, we present the experimental results of
our study. Specifically, we explain the superiority of
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Figure 4: Sample cases: Document-level vs Sentence-level KD - Demonstrating instances where document-
level KD fails and sentence-level KD succeeds in accurately predicting abnormal and normal medical reports

sentence-level knowledge distillation (S-KD) over the
document-level KD (D-KD) (Sec. 4.2), along with
the underlying reasons (Sec. 4.3). Additionally, we
discuss the advantages of integrating a contrastive
setup into KD training (Sec. 4.3) and the rationale
behind this enhancement (Sec. 4.5). The setup de-
tails are given in Sec. 4.1.

4.1. Setup

We employed the MIMIC-CXR dataset (Johnson
et al., 2019) for both our training and test datasets.
For the training dataset, we used all of the p10 docu-
ments. For the test dataset, we only used the initial
subset of the p11 documents. We employed GPT-3.5
to assign labels (normal n, abnormal a, and uncertain
u) to each sentence in the datasets. Documents were
labeled based on the presence of abnormal sentences;
if any abnormal sentences were detected within a doc-
ument, the document was classified as abnormal, oth-
erwise, it was labeled as normal.

Using our high-confidence label selection method
given in Appendix B, we extract documents and sen-
tences with high confidence from the target dataset;

11,158 training documents (1,698 normal and 9,860
abnormal) and 2,832 testing documents (2,394 ab-
normal and 438 normal). These documents consist
of 172,105 training sentences (51,568 normal, 64,715
abnormal, and 55,822 uncertain) and 40,779 test-
ing sentences (12,105 normal, 15,655 abnormal, and
13,019 uncertain). Baseline D-KD training uses the
document-level dataset, whereas our S-KD training
employs the associated sentence-level dataset for a
fair comparison. Other details are in Appendix A.

4.2. Performance Comparison between
Proposed and Baseline KD Approach

In this section, we present a comparative analysis of
the test performances of two knowledge distillation
(KD) methods as outlined in Sec. 3: document-level
KD (D-KD) and sentence-level KD (S-KD). These
methodologies were applied to six pre-trained medical
domain-specific BERT (Bidirectional Encoder Repre-
sentations from Transformers) backbone models as
for KD student models. The models assessed un-
der KD training are RadBERT-Roberta (Yan et al.,
2022), BioMed-Roberta (Gururangan et al., 2020),
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Table 4: Anomaly detection performance comparison
between with contrastive loss setup (λ = 1, CE +
contrastive) and baseline loss setup (λ = 0, CE only)

Model Accuracy Specificity Sensitivity AUC

RadBERT-Roberta
-4m-document
baseline loss

85.17 0.832 0.852 0.846

RadBERT-Roberta
-4m-document

contrastive loss

85.52
(+ 0.35)

0.858
(+0.026)

0.840
(-0.012)

0.901
(+0.055)

RadBERT-Roberta
-4m-sentence
baseline loss

91.53 0.910 0.936 0.962

RadBERT-Roberta
-4m-sentence

contrastive loss

95.06
(+3.53)

0.941
(+0.031)

0.952
(+0.016)

0.977
(+0.015)

BioMed-Roberta-
document

baseline loss
82.17 0.814 0.861 0.889

BioMed-Roberta-
document

contrastive loss

86.12
(+3.95)

0.869
(+0.055)

0.820
(-0.041)

0.877
(-0.012)

BioMed-Roberta-
sentence

baseline loss
94.42 0.910 0.961 0.976

BioMed-Roberta-
sentence

contrastive loss

94.60
(+0.18)

0.947
(+0.037)

0.943
(-0.018)

0.979
(+ 0.003)

p-value 0.021 0.021 0.282 0.282

BioBERT (Lee et al., 2020), ClinicalBERT (Alsentzer
et al., 2019), BiomedBERT (Gu et al., 2020), and
BlueBERT (Peng et al., 2019).

During training phase, we utilized the contrastive
loss setup with λ = 1 in Eq. (5) to specifically in-
vestigate the effect of S-KD compared to D-KD. Our
results, depicted in Table 2, reveal the statistical sig-
nificance of S-KD’s performance superiority over the
baseline D-KD across all evaluated models. This was
corroborated by the Wilcoxon rank-sum test, indi-
cating p-values less than 0.05 for various evaluation
metrics. S-KD consistently showed improved per-
formance in terms of accuracy, specificity, sensitiv-
ity, and AUC, with average enhancements of 1.047
times, 1.053 times, 1.053 times, and 1.051 times, re-
spectively. These improvements suggest that S-KD
is more effective in identifying anomalies in radiology
reports, potentially leading to a lower rate of both
false negatives (missed anomalies) and false positives
(incorrectly identified anomalies) compared to D-KD.
It is noteworthy that metrics other than AUC were
measured at the optimal threshold on the AUC curve.

Particularly noteworthy is the performance of the
recently introduced RadBERT model. In our evalu-
ations, the anomaly detection accuracy of the S-KD

(a) D-KD Latent Representation

(b) S-KD Latent Representation

Figure 5: Comparison of latent vector distribution
for each class depending on whether the contrastive
setup is used (λ = 1) or not (λ = 0)

Table 5: Comparison of error distance depending on
whether contrastive loss is used (λ = 1) or not (λ = 0)

KD Method

With vs Without Cont.

D-KD S-KD (ours)

Without

Cont.

With

Cont.

Without

Cont.

With

Cont.

Error Distance

(Int./Ext. Dist.)

Normal 1.39 0.55 0.75 0.67

Abnormal 1.30 0.70 0.66 0.63

Uncertain — — 0.68 0.75

method on RadBERT was recorded at 95.06%. This
represents a substantial reduction in error rate, ap-
proximately threefold (i.e, S-KD accuracy: 95.06%,
S-KD error rate: 4.94%, D-KD accuracy: 85.52%,
D-KD error rate: 14.48%) compared to the D-
KD method, which achieved an accuracy of 85.52%.
These results underscore the superiority and efficacy
of the S-KD technique in this context.

4.3. Analysis of Potential Cause for S-KD
Advancement

Sec. 4.2 demonstrates that sentence-level knowledge
distillation (S-KD) surpasses document-level knowl-
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edge distillation (D-KD) in performance. This sec-
tion delves into the underlying reasons for this im-
proved performance and presents the following key
findings: S-KD exhibits superior capabilities over D-
KD in two critical aspects. Firstly, S-KD more ac-
curately identifies documents as abnormal when they
contain only a low presence of abnormal sentences,
which is a more challenging scenario for anomaly de-
tection. Secondly, S-KD effectively corrects misclas-
sifications where documents are incorrectly identified
as abnormal due to a high number of uncertain sen-
tences, despite being normal as truth.

To arrive at these conclusions, we analyzed the
distribution of normal, abnormal, and uncertain sen-
tences in medical reports. This comprehensive analy-
sis encompassed the document cases of the entire test
dataset, incorrect classifications by D-KD, incorrect
classifications by S-KD, and cases where D-KD failed
but S-KD succeeded, as illustrated in Fig. 3.

In the document group where D-KD incorrectly
classified cases from abnormal truth (Fig. 3(a)),
the distribution of abnormal sentences was approx-
imately 29.14%, compared to an average of 44.85%
in all abnormal truth documents. This indicates D-
KD’s struggle with sparsely abnormal sentences. In
contrast, S-KD’s incorrect cases showed a 21.28% dis-
tribution of abnormal sentences, indicating higher ac-
curacy with even fewer abnormal sentences. This sug-
gests S-KD’s enhanced capability in detecting sparser
abnormal sentences by approximately 27%. Notably,
in cases where D-KD was incorrect but S-KD was
correct, the document count was 282, signifying that
S-KD correctly addressed 82.94% of these D-KD in-
correct cases (282 out of 340).

Regarding normal truth document cases (Fig.
3(b)), documents incorrectly classified by D-KD had
a 38.14% distribution of uncertain sentences, higher
than the test dataset’s average of 36.39%. This
suggests that D-KD tends to be incorrect for doc-
uments where the number of uncertain sentences is
large. In contrast, documents incorrectly classified
by S-KD showed a 41.21% distribution of uncer-
tain sentences, effectively managing correct classifi-
cations with about 8.05% more uncertain sentences.
This emphasizes the impact of our consideration in
training for sentence-level uncertainty as an addi-
tional/explicit label in S-KD. In particular, in the
intersection of D-KD’s incorrect and S-KD’s correct
cases, the document count was 60, indicating that
S-KD correctly resolved 85.71% of these D-KD incor-
rect document cases (60 out of 70).

Fig. 4 presents examples that illustrate the two
primary reasons for the enhanced performance of S-
KD. In the first document, a relatively small pro-
portion, approximately 18.18% (i.e., 2 out of 11),
consists of abnormal sentences. Under the D-KD
approach, accurately detecting these sparse abnor-
mal sentences poses a challenge, leading to incorrect
classifications. In contrast, the S-KD approach ef-
fectively identifies these sparse abnormal sentences,
resulting in correct classification. In the second re-
port, uncertain sentences constitute 40% (i.e., 4 out
of 10) of the document. Specifically, sentences 2 and
7 contribute to the ambiguity regarding abnormal-
ity within the D-KD framework, culminating in an
erroneous classification. However, S-KD successfully
navigates this ambiguity, accurately classifying the
report even amidst a substantial presence of uncer-
tain sentences.

4.4. Ablation Study for Contrastive Loss in
KD Learning

In our study, we formulated a KD training objective
that incorporates a contrastive learning objective,
Lcont, in addition to the conventional cross-entropy
loss, Lcross, as detailed in Eq. (5). Specifically, for
our baseline model, which excludes contrastive learn-
ing, we set the parameter λ to 0. Conversely, in
our enhanced KD training scheme that includes con-
trastive learning, we assigned a value of 1 to λ in Eq.
(5).

Our ablation study, presented in Table 4, examines
the effect of adding the contrastive learning objec-
tive. This study was performed using the two highest-
performing backbone models for AD as identified in
Table 2: RadBERT-Roberta and BioMED-Roberta.
The results, as depicted in Table 4, demonstrate that
incorporating the contrastive loss setup (λ = 1) sig-
nificantly improves accuracy and specificity in AD
testing for all student models, compared to the base-
line loss setup (λ = 0) which does not include con-
trastive learning. However, the baseline loss setup ex-
hibits a higher specificity, a discrepancy we attribute
to the training data distribution. As discussed in Sec.
4.1, the training data contains a higher proportion
of abnormal sentences and documents compared to
normal instances, leading to a baseline bias towards
abnormal labels. This results in elevated sensitiv-
ity but reduced specificity. The introduction of the
contrastive loss setup helps to counteract this bias,
enhancing specificity and thereby improving overall
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accuracy relative to the baseline. Consequently, we
applied contrastive learning in all experiments except
this ablation study.

4.5. Analysis of Potential Cause for
Contrastive Setting Advancement

In the previous section, our investigation centered
on the enhanced capacity of our network to accu-
rately identify the normal class, a minor category,
through the application of contrastive learning. This
approach resulted in a significant improvement in
specificity, suggesting that contrastive learning con-
tributes to more precise clustering of feature vectors
within the same class. The current section aims to
provide both qualitative and quantitative evidence to
further substantiate the performance improvements
attributable to the use of contrastive learning.

For visual validation, we extracted latent feature
vectors from the point immediately preceding the lin-
ear layers in our trained network for each sample in
the test dataset. These vectors were then visual-
ized using t-SNE, as shown in Fig. 5. The resultant
visualization indicates a more pronounced demarca-
tion between class clusters when contrastive learning
is employed. Specifically, in the D-KD scenario, we
observed a distinct separation between the blue and
red class clusters. In the S-KD context, there was a
marked decrease in the instances of gray class samples
overlapping with the red class region. These observa-
tions underscore the efficacy of contrastive learning
in enhancing class discriminability in our network.

We defined c as the centroid for the samples of
each class. The intra distance for a sample was cal-
culated as the ℓ2 distance from its class centroid c,
while the extra distance was determined as the aver-
age distance from c to the centroids of other classes.
We then computed an error distance for each sam-
ple, defined as the ratio of intra to extra distance,
to gauge the proximity of a sample to its true class,
with lower values indicating a closer alignment. The
outcomes of these error distance calculations are in
Table 5; the application of contrastive learning sig-
nificantly reduces the mean error distance for test
samples in both normal and abnormal classes in both
D-KD and S-KD scenarios. This reduction in error
distance markedly enhances the network’s capability
to detect even minor (i.e., normal) class, thereby im-
proving the specificity and accuracy of the model’s
AD performance.

Figure 6: Sample results of our model deployed on
HuggingFace - Demonstrating practical examples us-
ing color coding for enhanced interpretability

5. Discussion

In this section, we delineate the methodologies em-
ployed for extracting high-confidence labels from
ChatGPT (Sec. 5.1), detail the process of model de-
ployment along with its potential utility (Sec. 5.2),
and discuss the limitations of our approach (Sec. 5.3).

5.1. Method to Extract High-Confidence
Label from GPT 3.5

To ascertain high-confidence labels from GPT-3.5,
our approach involves an ensemble methodology. We
execute three independent label extractions (normal,
abnormal, uncertain) for each sentence from GPT-
3.5. If these labels exhibit consistency across extrac-
tions, we accept them; otherwise, we reject them.
Comprehensive details are presented in Appendix B.

5.2. Model Deployment and Implication

Our RadBERT-Roberta model, which was trained us-
ing sentence-level knowledge distillation (S-KD) with
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a contrastive setup, has been deployed and is acces-
sible via HuggingFace.

Fig. 6 illustrates the model’s functionality. When a
clinician uploads a radiology report, the model high-
lights sentences indicative of normal and abnormal
findings in green and purple, respectively, while sen-
tences deemed uncertain are marked in gray. This
feature enables radiologists or doctors to review re-
ports more efficiently by focusing primarily on the
text highlighted in green and purple, thereby poten-
tially omitting the gray-marked uncertain content.

5.3. Limitation

First, our methodology was validated using the
MIMIC-CXR dataset, a renowned public source, with
distinct data separation for training. However, it
lacks supplementary verification with varied public
datasets. Future endeavors will expand this valida-
tion to encompass a broad spectrum of radiology re-
ports.

Second, our study aims to address how to repli-
cate the cloud-based model (i.e., ChatGPT-3.5) pre-
dictions in the non-cloud-based (i.e., secure) model.
Therefore, GPT-3.5 was utilized for labeling radiol-
ogist reports without any human annotation load.
However, our approach reveals a ground truth lim-
itation: the absence of radiologist-confirmed ground
truth in our process. Future work may focus on inte-
grating radiologist-verified ground truth to enhance
the accuracy of GPT-3.5’s predictions. Neverthe-
less, our research demonstrates, for the first time,
the potential of replicating ChatGPT within a se-
cure model for radiologist report analysis (without
any human manual annotation) and introduces ad-
vanced KD strategies tailored for this aim.

Lastly, our approach assumes the use of non-
sensitive data (i.e., data without security issues) for
training, as the training data still requires upload-
ing to GPT-3.5. In practical applications, especially
in hospital settings, this necessitates de-identification
protocols to ensure data privacy. Despite this limita-
tion, our method removes the need for human man-
ual annotation (e.g., an indication of abnormal status
per sentence), suggesting a promising direction for ef-
ficiently replicating cloud-based models like GPT-3.5
under in-hospital and secure environments. We also
expect that the costs and efforts associated with de-
identification are generally less than those required
for manual annotation processes, thereby support-
ing the usefulness of our approach. Furthermore,

our study is significant in that it utilizes only a lim-
ited portion of data as training material. This im-
plies that all other unrestricted datasets can be used
as evaluation data without security concerns, as test
data do not need to be uploaded to GPT-3.5 but can
be processed by our secure model. This capability
presents a vital step forward in the practical applica-
tion of AI in medical settings, offering a state-of-the-
art (i.e., reproducing modern performance of cloud
models like ChatGPT), efficient (i.e., without hu-
man annotation labor), and secure (i.e., implemented
by non-cloud model) method for enhancing medical
record processing.

6. Conclusion

This paper presents a novel approach to replicating
cloud model like ChatGPT as non-cloud one for se-
cure usage in radiology report processing at hospi-
tals, eliminating the need for human annotation. Our
method involves a unique knowledge distillation pro-
cess from ChatGPT, ensuring data remains on-site
while maintaining comparable performance. The ef-
fectiveness of this approach is demonstrated through
anomaly detection in radiology reports, highlight-
ing our model’s ability in sentence-level knowledge
distillation and explicit management of uncertainty
(e.g., 95.06% accuracy achieved on the RadBERT
using S-KD with contrastive setup). We also ex-
pect our approach’s principle could extend to other
report processing tasks such as question-answering
tasks (e.g., for detection of individual disease), where
our model’s variant could adeptly identify and filter
out low-confidence sentences in relation to the ques-
tion. We expect that our research sets a precedent
for developing secure and in-hospital LLM AI sys-
tems with minimal human supervision. By focusing
on developing robust de-identification techniques uti-
lized in the training procedure, we can further en-
hance the privacy aspects of our method. Ultimately,
our study potentially heralds a new era in healthcare
technology applications.
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Appendix A. Data Setup Details

In our study using the MIMIC-CXR dataset (Johnson
et al., 2019), we initially utilized a training set of 22,195
p10 documents and a test set of 5,217 p11 documents.
Post our high-confidence label filtering (Sec. B), the
training set, originally with 188,827 sentences, was re-
duced to 172,105, and the test set from 44,516 to 40,779
sentences. Only documents with all sentences classified as
high-confidence were retained, resulting in 11,158 train-
ing (from 22,195) and 2,832 test (from 5,217) documents
as the final dataset in our study.

The training set comprised 1,698 normal and 9,460 ab-
normal documents (i.e., total 11,158 documents), with
51,568 normal, 64,715 abnormal, and 55,822 uncertain
sentence (i.e., total 172,105 sentence). The test set in-
cluded 2,394 abnormal and 438 normal documents (i.e.,
total 2,832 documents), with 12,105 normal, 15,655 ab-
normal, and 13,019 uncertain sentences (i.e., total 40,779
sentence). This dataset enabled a robust comparison of
our S-KD approach against the baseline D-KD.

Appendix B. High-Confidence Label
Extraction from
GPT-3.5

Our research introduces a method for extracting high-
confidence labels from GPT-3.5, as outlined in Fig. 7. We
obtain independent sentence labels from GPT-3.5 three
times to ensure label consistency. Labels are considered
high-confidence when all three extractions match. Dis-
crepancies lead to label dismissal unless a majority (two
out of three) consistency is observed. In such cases, we
calculate the cosine similarity between the input text and
the GPT explanation for each label, followed by averaging
the confidence scores of the consistent labels. A label is
accepted if its average confidence score is higher than the
score of the minority label. This method, crucial for ex-
tracting reliable labels from ChatGPT, serves as training
data for knowledge distillation (KD), ensuring both label
consistency and confidence based on GPT explanations.

Appendix C. Discussion

C.1. Validation of Consistency between GPT
Results and Ground Truth Labels

The primary objective of this research is to investigate
whether local models can successfully reproduce the re-
sults of the GPT model. Given the extensive validation of
GPT models’ high performance in numerous publications,
experimental results demonstrating the validity of GPT
model outputs as ground truth were not initially included
in the main paper. However, to provide further justifica-
tion for employing GPT for labeling purposes, an addi-
tional experiment was conducted to validate the consis-

Table 6: Accuracy comparison of labeling methods be-

tween GPT solo and GPT ensemble (our labeling method)

using subset ground truth

Accuracy (%) abnormal normal uncertain

GPT solo
-trial 1

72.5%
(226/312)

66.5%
(214/322)

71.3%
(261/366)

GPT solo
-trial 2

72.5%
(226/312)

67.3%
(217/322)

71.9%
(263/366)

GPT solo
-trial 3

67.3%
(210/312)

67.7%
(218/322)

70.2%
(257/366)

GPT ensemble
(our method)

100%
(204/204*)

100%
(202/202*)

99.2%
(253/255*)

number of sentences
(Total 1000)

312 322 366

* The numbers 204, 202, and 253 refer to the subsets extracted by our
GPT ensemble from each group of 312, 322, and 366 sentences per class,
respectively. The extracted sentences are considered as truth, while the
unextracted sentences are discarded.

tency between the GPT ensemble labeling approach and
ground truth labels.

Instead of relying solely on raw GPT model results, an
ensemble technique was employed that considered GPT
model outputs only when the results from three different
GPT models were in agreement (refer to Appendix B).
In this additional experiment, ground truth labels for the
first 1000 sentences of the test data were collected through
human annotation. Using these ground truth labels as
a reference, the experiment aimed to verify whether the
GPT model results obtained using the ensemble technique
(Appendix B) exhibit higher consistency with the ground
truth compared to the case where the ensemble technique
is not employed. Furthermore, the absolute agreement
between the ensemble-based GPT model results and the
ground truth was determined, allowing for an assessment
of the reliability of GPT model outputs as truth labels.

The results of this additional experiment are presented
in Table 6. This result in this table validate the consis-
tency between the GPT ensemble labeling approach and
ground truth labels.

1) Dataset: We corrected truth labels for the first 1000
labeled data sentences from our test dataset, annotated
by radiologists as abnormal (312), normal (322), and un-
certain (366).

2) Methods: Using the truth labels as reference, we com-
pare the accuracy of our GPT ensemble result (detailed
in Appendix B) and GPT individual result. GPT solo
presents the direct label predictions from GPT-3.5. GPT
ensemble (our method) is leveraging GPT-3.5 to generate
independent labels for each sentence three times. Labels
are only accepted if: (1) All three predictions are identi-
cal. (2) In the absence of perfect agreement, a majority
(2 out of 3) have higher cosine similarity score between
the text embedding vectors of GPT explanation and the
input text compared to minority (1 out of 3) similarity
score.
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Figure 7: Our approach employs two key techniques to derive high-confidence sentence labels from GPT-3.5: (1)

the prompt engineering that obliges the network to elucidate the rationale behind its outputs, and (2) the prediction

ensemble methodology to extract the result ensuring all models concur in providing identical reasoning.

3) Findings: Our GPT ensemble labeling method
achieved higher than 99% accuracy on the ground truth
by eliminating sentences with low confidence scores (fur-
ther details in the attached table). In contrast, GPT solo
exhibited lower accuracy: approximately 70.8%, 67.2%,
and 71.1% for abnormal, normal, and uncertain labels,
respectively.

4) Implication: This experiment demonstrates that our
GPT ensemble approach significantly improves accuracy
compared to using a single GPT prediction, allowing us
to obtain truth labels for each sentence with higher than
99% accuracy. Although the ground-truth subset may
not completely generalize to the entire dataset due to the
limited labeled sample size (e.g., 1000 sentences), this ex-

periment validates the consistency between our ensemble-
based GPT-3.5 labeling and ground truth labels.

C.2. Details for Data Privacy Limitations

To provide a detailed explanation of the data privacy as-
pects mentioned in the Limitations section, we have in-
cluded Table 7 in this section, which outlines the advan-
tages and limitations of our research from a data privacy
perspective. The table is accompanied by a comprehen-
sive description of these points.

1) Advantages on training phase

1. Eliminate the need for costly human (doctor) annota-
tions: Our method eliminates the requirement for expen-
sive doctor annotations.
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Table 7: Advantages and limitations of our study for

knowledge distillation of cloud AI model (e.g., GPT) into

local AI model in hospital settings

Training Inference

Advantages

• No human
annotation cost

• Leverage knowledge
from high-performance
cloud models

• Preserve data privacy
• Achieve comparable

classification performance
to the cloud model

• No preprocessing or
authorization required
for inference

• No pay-per-use charges
for utilizing the cloud
model

Limitations

• Potential data
privacy concerns

• Require additional
data preprocessing
required
(e.g., de-identification)

• Authorization needed
for data upload

N/A

2. Leverage knowledge from high-performance cloud
models: The training process can leverage any high-
performance cloud model, such as OpenAI GPT-4 or
Google DeepMind Gemini-1.5.

2) Limitations on training phase

1. Raise potential data privacy concerns: Uploading med-
ical data to cloud models raises potential data privacy
concerns.

2. Necessitate additional data preprocessing: Additional
data preprocessing steps, such as removing direct identi-
fiers (patient names, ID numbers), are required before up-
loading data due to health care regulations (e.g., HIPPA)
and data privacy regulation (e.g., GDPR).

3. Require authorization for data upload: Authorization
from a qualified expert is recommended to assess the risk
of re-identification when uploading de-identified medical
report data to cloud models.

3) Advantages on inference phase

1. Ensure data privacy: Inferences performed by the
trained on-premise student model eliminate the need for
further data upload to cloud models, thereby safeguard-
ing patient data privacy.

2. Achieve performance comparable to the cloud
model: The proposed sentence-level knowledge distil-
lation method with cross-entropy and supervised con-
trastive loss achieves an accuracy of 95% using the
radBERT-Roberta-4m student model, demonstrating
performance comparable to the cloud model.

3. Require no preprocessing or authorization for model
inference: Inference with the on-premise model avoids
the need for additional data preprocessing steps like de-
identification mandated by healthcare regulations and
eliminates the requirement for expert authorization be-
fore upload to a cloud model.

Table 8: Pretraining Information for Student Models

Student Model Initial Weight Pre-trained Data

RadBERT
-Roberta-4m

BioMed-RoBERTa 4.43M radiology reports

BioMED-Roberta
RoBERTa

-base
2.68M Semantic Schocal

scientific papers

BlueBERT BERT-base PubMed texts (4B words)

Clinical BERT BioBERT All notes from MIMIC-III

BiomedBERT BERT-large 14M PubMed abstracts

BioBERT BERT-base
4.5B PubMed abstracts
13.5B Words of PubMed
Central full-text articles

• MIMIC-III is a wide health-related dataset containing information on over 40,000

patients admitted to critical care units at Beth Israel Deaconess Medical Center

between 2001 and 2012 (Johnson et al., 2016).

• MIMIC-CXR is a radiology electronic health record dataset collected in the

emergency department of BethIsrael Deaconess Medical Center between 2011 and 2016

4. Incur no pay-per-use charges for utilizing the cloud
model: Unlike cloud models with pay-per-use charges
based on token utilization (e.g., OpenAI GPT API), the
on-premise model incurs no additional costs.

C.3. Pretraining information for Student
Models

Table 8 explicitly presents the initial parameters and the
pretraining data used for each student model in this study.
All models do not utilize MIMIC-CXR for their initial
parameters, we believe that the evaluation performance of
our study for these models is free from related bias issues.
RadBERT (i.e., RadBERT-Roberta-4m) was selected as
the representative model for this study due to its recent
introduction, the fact that it does not utilize MIMIC-
CXR for obtaining its initial parameters, and its ability
to leverage a wide range of internal radiology report data.

C.4. Performance Comparison Between
Conventional Annealing-Based Soft KD
Training and Our KD Training Method

This section compares our proposed KD training method
with a conventional approach that utilizes annealing-
based relaxation of cross-entropy for KD (Hinton et al.,
2015). The loss term introduced in the conventional ap-
proach (Hinton et al., 2015) considers the uncertainty of
the probability values of the teacher and student mod-
els during KD training using a temperature value based
on an annealing technique. This loss term, defined as the
Soft-KD loss (Lsoft), is a soft relaxation version of the ex-
isting cross-entropy loss term for KD, taking into account
the temperature value.

To investigate the effectiveness of incorporating Lsoft

into our proposed KD training loss, we define a new loss
term as follows:

Lnew
θ (gθ(x), y) := (1− α) · Lcross

θ (gθ(x), y)+ (6)

α · Lsoft
θ (gθ(x), y) + λ · Lcont

θ (gθ(x), y)
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Table 9: Anomaly detection performance compari-

son between different KD training methods (RadBERT-

Roberta-4m model commonly used)

KD Training Method
(Document level-KD)

Accuracy Specificity Sensitivity

CE only
(i.e., (α, T, λ) = (1, 0, 0))

85.17 0.832 0.852

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 1, 0))

82.13
(-3.04)

0.817 0.854

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 10, 0))

80.33
(-4.84)

0.787 0.913

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 100, 0))

79.94
(-5.23)

0.785 0.900

Ours: CE + Contrastive
(i.e., (α, T, λ) = (1, 0, 1))

85.52
(+0.35)

0.858 0.840

KD Training Method
(Sentence level-KD)

Accuracy Specificity Sensitivity

CE only
(i.e., (α, T, λ) = (1, 0, 0))

91.53 0.910 0.936

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 1, 0))

93.75
(+2.22)

0.952 0.890

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 10, 0))

91.70
(+0.17)

0.906 0.973

CE + Soft-KD
(i.e., (α, T, λ) = (0.5, 100, 0))

92.09
(+0.56)

0.917 0.947

Ours: CE + Contrastive
(i.e., (α, T, λ) = (1, 0, 1))

95.06
(+3.53)

0.941 0.952

where Lsoft
θ (gθ(x), y) := T 2 · KL

(
smlog

(
gθ(x)

T

)
, py

)
,

smlog(·) is the log softmax function, and KL(·) is the Kull-
back Leibler (KL)-divergence measurement. Compared to
the loss function (Equation (5)) proposed in this study, a
second term (Lsoft) has been added.

To evaluate the performance impact of the second
term, we conducted additional experiments using the
RadBERT-Roberta-4m student model for both sentence-
level and document-level KD tasks. The results are pre-
sented in Table 9, and the performance was evaluated
using the same test dataset utilized in this study.

For the sentence-level KD task, the setup consider-
ing Lsoft in addition to our originally proposed setup
(cross-entropy and contrastive learning) exhibited lower
anomaly detection accuracy on the evaluation data.
Specifically, in document-level KD, exploiting the con-
trastive setting (ours) achieved 85.52% accuracy, while
the best-performing accuracy using Soft-KD loss with
different temperature values was 82.13%. Similarly, in
sentence-level KD, using the contrastive setting achieved
95.06% accuracy compared to 93.75% for the best-
performing accuracy using Soft-KD loss. Although us-
ing Lsoft in addition to cross-entropy alone yielded bet-
ter performance than using cross-entropy alone, its im-
pact was less significant compared to the addition of con-
trastive learning.

These experimental results further demonstrate that
the combination of the sentence-level KD task and con-
trastive learning proposed in this study achieves the high-

Table 10: Anomaly detection performance comparison

results for training and test datasets

Model Accuracy Specificity Sensitivity AUC

Document-level KD:
Baseline loss (CE only)

Train Dataset
97.3 0.974 0.978 0.995

Document-level KD:
Baseline loss (CE only)

Test Dataset

85.17
(-12.13)

0.832 0.852 0.846

Document-level KD:
Our loss (CE + Contrastive)

Train Dataset
97.5 0.977 0.981 0.997

Document-level KD:
Our loss (CE+Contrastive)

Test Dataset

85.5
(-12.0)

0.858 0.840 0.901

Sentence-level KD (ours):
Baseline loss (CE only)

Train Dataset
98.0 0.979 0.989 0.998

Sentence-level KD (ours):
Baseline loss (CE only)

Test Dataset

91.53
(-6.47)

0.910 0.936 0.962

Sentence-level KD (ours):
Our loss (CE+Contrastive)

Train Dataset
98.3 0.991 0.984 0.997

Sentence-level KD (ours):
Our loss (CE+Contrastive)

Test Dataset

95.1
(-3.2)

0.941 0.952 0.977

est performance improvement compared to related (soft)
KD studies.

C.5. Performance Result on Training Dataset
and Its Implication

In this section, we conducted additional measuring
anomaly detection performance on our training dataset
to analyze the training-test performance gap in our KD
methods. The detailed results are presented in Table 10.
1) Experimental setting: We evaluated the training
performance for each document-level and sentence-level
KD training setup, using the same RadBERT-Roberta-
4m student model.
2) Findings: Our analysis revealed a consistent pattern
of a significant gap between training and test accuracy
for document-level KD (e.g., without contrastive: 12.13%
and with contrastive: 12.00%). Sentence-level KD exhib-
ited a smaller gap (e.g., without contrastive: 6.47% and
with contrastive: 3.2%).

These results suggest that document-level KD might

struggle with generalization. Conversely, sentence-level

KD demonstrates superior performance in generalizabil-

ity (i.e., the minimum training-test performance gap of

3.2% is observed in the sentence-level KD setup with ad-

ditional contrastive learning), potentially capturing more

transferable knowledge from the teacher model. These

findings further highlight the advantages of our research’s

key technical contribution: the combination of sentence-

level KD and contrastive learning, which achieves the low-

est training-test performance gap.
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