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Abstract

Large language models (LLMs) are capable of
many natural language tasks, yet they are far
from perfect. In health applications, ground-
ing and interpreting domain-specific and non-
linguistic data is crucial. This paper inves-
tigates the capacity of LLMs to make infer-
ences about health based on contextual infor-
mation (e.g. user demographics, health knowl-
edge) and physiological data (e.g. resting heart
rate, sleep minutes). We present a comprehen-
sive evaluation of 12 state-of-the-art LLMs with
prompting and fine-tuning techniques on four
public health datasets (PMData, LifeSnaps,
GLOBEM and AW FB). Our experiments cover
10 consumer health prediction tasks in men-
tal health, activity, metabolic, and sleep as-
sessment. Our fine-tuned model, HealthAl-
paca exhibits comparable performance to much
larger models (GPT-3.5, GPT-4 and Gemini-
Pro), achieving the best performance in 8 out
of 10 tasks. Ablation studies highlight the ef-
fectiveness of context enhancement strategies.
Notably, we observe that our context enhance-
ment can yield up to 23.8% improvement in
performance. While constructing contextually
rich prompts (combining user context, health
knowledge and temporal information) exhibits
synergistic improvement, the inclusion of health
knowledge context in prompts significantly en-
hances overall performance.

Data and Code Availability In this study, we
conduct experiments with 4 public datasets:

(1) PMData 1 (Thambawita et al. (2020)), (2) LifeS-
naps 2(Yfantidou et al. (2022)), (3) GLOBEM 3 (Xu
et al. (2022)) and (4) AW FB 4 (Fuller (2020)). Code
is available at https://github.com/mitmedialab/

Health-LLM

Institutional Review Board (IRB) This study
has no human-subject research and only uses publicly
available data.

1. Introduction

The performance of large language models (LLMs)
OpenAI (2023b); Singhal et al. (2022); Nyberg et al.
(2021) in diverse text generation and knowledge re-
trieval tasks presents wide-ranging opportunities Nori
et al. (2023); Hegselmann et al. (2023); Gandhi et al.
(2023); Wu et al. (2023d). However, in sensitive do-
mains like healthcare, their true capabilities and lim-
itations remain largely unexplored, especially when
it comes to harnessing the diverse collection of multi-
modal, time-series data generated by wearable sen-
sors. Unlike static text, this data presents unique
challenges for LLMs due to its high dimensionality,
non-linear relationships, and continuous nature, re-
quiring them to understand not only individual data
points but also their dynamic patterns over time. Al-

1. https://datasets.simula.no/pmdata/
2. https://github.com/Datalab-AUTH/LifeSnaps-EDA
3. https://the-globem.github.io/datasets/overview
4. https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/ZS2Z2J
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though specialized medical-domain LLMs have shown
promise in capturing domain knowledge He et al.
(2023); Singhal et al. (2022, 2023); Han et al. (2023);
Toma et al. (2023); Thirunavukarasu et al. (2023);
McDuff et al. (2023), their application to consumer
health tasks, which rely heavily on physiological (e.g.
heart rate) and behavioral time-series data (e.g. daily
steps), remains largely untested due to the challenges
of grounding LLMs in non-linguistic data and the lack
of standardized evaluation benchmarks.

In this paper, we propose Health-LLM, a frame-
work tailored to the healthcare domain that aims
to bridge the gap between pre-trained knowledge in
current LLMs and consumer health problems. We
conducted a comprehensive evaluation of 12 state-of-
the-art LLMs that are publicly accessible: MedAl-
paca (Han et al., 2023), PMC-Llama (Wu et al.,
2023b), Llama 2 (Hugo Touvron and Scialom, 2023),
BioMedGPT(Zhang et al., 2024), BioMistral (Labrak
et al., 2024), Asclepius (Kweon et al., 2023), Clinical-
Camel (Toma et al., 2023), Flan-T5 (Chung et al.,
2022), Palmyra-Med (Kamble and Alshikh, 2023),
GPT-3.5 (OpenAI, 2023a), GPT-4 (OpenAI, 2023b)
and Gemini-Pro (Gemini Team, 2023). We cover 10
health prediction tasks across mental health, activity
tracking, metabolism and sleep assessment. Our ex-
periments include four steps: (i) zero-shot prompting,
(ii) few-shot prompting along with chain-of-thoughts
(CoT) and self-consistency (SC) prompting, (iii) in-
structional fine-tuning and (iv) ablation studies with
context enhancement in zero-shot setting, where con-
text enhancement refers to the strategic inclusion of
additional information - 1) user profile, 2) health
knowledge, 3) temporal context, and 4) a combina-
tion of these in the prompts for LLMs to improve
their understanding in healthcare domain.

We found in (i) that zero-shot prompting shows
comparable results to task-specific baseline models.
Comparing (i) and (ii) shows that few-shot prompt-
ing with bigger LLMs, like GPT-3.5, GPT-4 and
Gemini-Pro, can effectively ground numerical time-
series data, resulting in significant improvements over
zero-shot learning and fine-tuned models in some
tasks. Through step (iii), our Alpaca-based fine-
tuned model, namely HealthAlpaca, exhibits the best
performance in 8 out of 10 tasks despite being a sub-
stantially smaller than GPT-3.5, GPT-4 and Gemini-
Pro. In (iv), our ablation study indicates that the
context enhancement strategy yields up to 23.8% per-
formance improvement, emphasizing the importance
of contextual information in the prompt for LLMs

in the healthcare domain. Finally, we present two
case studies demonstrating the step-by-step reason-
ing process of representative LLMs in health predic-
tion tasks, illustrating their ability to capture time-
series data and offer personalized recommendations.

The contribution of our paper can be summarized
as follows:

• We present Health-LLM, a framework that en-
ables LLMs to adapt to health predictions by
prompting/training via wearable sensor data.

• We combine four publicly available health
datasets, curate ten novel consumer health tasks,
and conduct evaluations with twelve state-of-
the-art LLMs.

• We show the effectiveness of context enhance-
ment strategies for Health-LLMs and release our
fine-tuned model HealthAlpaca, as the first set of
open-source LLMs targeted for consumer health
prediction tasks.

2. Related Work

2.1. Wearable Sensor Data with LLMs

Wearable sensor technology has transformed personal
health monitoring, enabling continuous tracking of
vital physiological data such as heart rate variabil-
ity and step counts Perez et al. (2019). These time-
series data can be represented in different forms, in-
cluding statistical summaries (e.g., mean, standard
deviation), Fourier transforms, and more.

The representation of data before feeding it into
the model can also vary. Data can be input as raw
time-series text, where the textual information is di-
rectly used, or as encoder embeddings obtained from
modality-specific (Belyaeva et al., 2023) and times-
tamp encoders (Zhou et al., 2022, 2021). Also, the
integration of temporal information has proven to be
effective in enhancing outcomes (Wen et al., 2023).

The synergy between wearable sensor data and ad-
vanced machine learning techniques holds promise in
predicting diverse health outcomes, such as depres-
sion scores (Mullick et al., 2022; Englhardt et al.,
2023), early detection of atrial fibrillation (Chen
et al., 2022), and monitoring stress levels (Vos et al.,
2023). Additionally, this integration facilitates per-
sonalized monitoring in areas like nutrition (Sempi-
onatto et al., 2021; Romero-Tapiador et al., 2023) and
stress management (Tazarv et al., 2021).
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### Instruction: You are an intelligent healthcare agent. 

### Question: The user is {age}-year-old {gender} with {height, weight …}.  

The recent {period} sensor readings show: <𝒎𝒐𝒅𝒂𝒍𝒊𝒕𝒚	𝒊>, <𝒎𝒐𝒅𝒂𝒍𝒊𝒕𝒚	𝒊#𝟏> … 

In this regard, what is user’s {health level} out of {range}?

### Response: {answer}

Prompt template for health prediction

Stress Readiness Fatigue

Sleep 
Quality

Sleep 
Disorder

Activity Calories

Anxiety Depression

Data Sources

Sources

Wearables Survey

Apps Institutions

Modalities

Time Series Texts

Images
Self-reported 

measures

Health-LLM

Consumer Healthcare Tasks

Healthcare

Applications

Workout Plan Depression 
Control

Sleep 
Support

Training Adaptation

Prompting

Figure 1: Health-LLM. We present a framework for evaluating LLM performance on a diverse set of health
prediction tasks, training and prompting the models with multi-modal health data.

2.2. Health LLMs

The integration of LLMs in healthcare is a rapidly
growing research field (Tu et al., 2024; Wang et al.,
2023a; Liu et al., 2023; Han et al., 2023; Tang et al.,
2023; Belyaeva et al., 2023). For instance, Sing-
hal et al. (2022) demonstrated the efficacy of LLMs
through a combination of base improvements (PaLM
2), medical domain fine-tuning, and ensemble re-
finement, outperforming benchmarks across various
datasets. Additionally, Xu et al. (2023) explored
LLM adaptation for diverse mental health tasks us-
ing online-text data, employing techniques like zero-
shot, few-shot, and fine-tuning, while our work covers
multi-modal time-series data collected from wearable
sensors.
In a recent comprehensive evaluation of GPT-4 (Nori
et al., 2023), the general-purpose model without fine-
tuning, surpassed the USMLE passing score by over
20 points, outperforming earlier models like GPT-3.5
and medically fine-tuned models. This study showed
GPT-4’s qualitative abilities in explaining medical
reasoning, personalizing explanations, and crafting
counterfactual scenarios.

3. Methods

3.1. Zero-shot Prompting

The aim of zero-shot prompting is to evaluate the ca-
pability of pre-trained knowledge in LLMs on health
prediction tasks. To this end, we first design a ba-
sic prompt setup (bs) that summarizes the wearable
sensor data into a paragraph. Then, we introduce a
comprehensive zero-shot prompting along with four
types of context enhancements introduced in Table 1
and Equation 1-2. 1) User Context (uc) provides
user-specific information such as age, gender, weight,
height, etc., which provides additional information
that affects the understanding of health knowledge.
2) Health Context (hc) provides the definition and
equation that controls certain health targets to in-
ject new health knowledge into LLMs. 3) Tempo-
ral Context (tc) is adopted to test the importance
of temporal aspects in time-series data. Instead of
using aggregated statistics, we utilize the raw time-
series sequence. Among different sets of temporal
context representations, we empirically observe that
using natural language string showed the best perfor-
mance.

524



Health-LLM: Large Language Models for Health Prediction via Wearable Sensor Data

Table 1: Different Types of Contexts in Health Prompts.

Context Prompt

Basic (bs)
The analysis of recent period: {14} days averaged sensor readings show: Steps: {812.0} steps, Burned Calories: {97.0}
calories, Resting Heart Rate: {66.54} beats/min, Sleep Minutes: {487.0} minutes, Mood: {3} out of 5. In this regard, what
is the predicted readiness score/level between 0 and 10?

User Context (uc)

Given the user’s profile as age: {23}-year-old, sex: {male} and height: {182} cm , the analysis of recent period: {14} days

averaged sensor readings show: Steps: {812.0} steps, Burned Calories: {97.0} calories, Resting Heart Rate: {66.54} beat-
s/min, Sleep Minutes: {487.0} minutes, Mood: {3} out of 5. In this regard, what is the predicted readiness score/level
between 0 and 10?

Health Context (hc)

Readiness score is an indicator of how prepared our body is for physical activity. It is decided by activity, recent sleep

and heart rate variability. The analysis of recent period: {14} days averaged sensor readings show: Steps: {812.0} steps,

Burned Calories: {97.0} calories, Resting Heart Rate: {66.54} beats/min, Sleep Minutes: {487.0} minutes, Mood: {3} out
of 5. In this regard, what is the predicted readiness score/level between 0 and 10?

Temporal Context (tc)

The analysis of recent period: {14} days sensor readings show: Steps: {”NaN, 991.0, ..., NaN”} steps, Burned Calo-

ries: {”NaN, 94.0 ..., NaN”} calories, Resting Heart Rate: {”69.32, 67.72, ..., 64.55”} beats/min, Sleep Minutes:

{”534.0, 455.0, ..., 405.0”} minutes, [Mood]: 3 out of 5. In this regard, what is the predicted readiness score/level between

0 and 10?

All (all)

Readiness score is an indicator of how prepared our body is for physical activity. It is decided by activity, recent sleep

and heart rate variability. The user is 23-year-old male with 182 cm. The analysis of recent period: {14} days sensor

readings show: Steps: {”NaN, 991.0, ..., NaN”} steps, Burned Calories: {”NaN, 94.0 ..., NaN”} calories, Resting Heart

Rate: {”69.32, 67.72, ..., 64.55”} beats/min, Sleep Minutes: {”534.0, 455.0, ..., 405.0”} minutes, [Mood]: 3 out of 5. In

this regard, what is the predicted readiness score/level between 0 and 10?

PromptZS = InstructionZS + Context + Question + Output Format (1)

Context = C∗
health + C∗

user + TE∗(TimeSeriesData) (2)

PromptFS = InstructionFS + (Context + Question, Answer)N + PromptZS (3)

3.2. Few-shot Prompting

Few-shot prompting involves using a limited selection
of demonstration examples within the prompts to fa-
cilitate in-context learning. In our case, we adopt
3-shot setting. These demonstrations are used exclu-
sively within the prompts, while the model param-
eters remain static. This approach is akin to pro-
viding the model with a handful of case studies to
help it grasp and apply healthcare domain knowledge
effectively. In addition to few-shot prompting, we
further enriched the prompting strategy by integrat-
ing Chain-of-Thoughts (CoT) (Wei et al., 2022) and
Self-Consistency (SC) (Wang et al., 2022) prompt-
ing techniques. The incorporation of CoT prompt-
ing facilitates a more cohesive and contextually nu-
anced understanding, allowing the model to connect
ideas seamlessly. Simultaneously, SC prompting con-
tributed to refining the model’s responses by promot-
ing internal coherence and logical consistency. To-
gether, these methodologies synergistically formed a
robust prompt, leveraging diverse prompting tech-
niques to optimize the LLMs health understanding
capabilities (Wang et al., 2023b). In this work,

we used N = 5 candidate reasoning paths for SC
prompting.

3.3. Instruction Tuning

Instruction tuning is a technique where all parame-
ters of a pre-trained model are further trained or fine-
tuned on a target task. This process allows the model
to adapt its pre-trained knowledge to the specificities
of the new task, optimizing its performance. In the
context of health prediction, fine-tuning allows the
model to deeply understand physiological terminolo-
gies, mechanisms, and context, thereby enhancing its
ability to generate accurate and contextually relevant
responses.

Instead of fine-tuning all parameters, methods like
LoRA (Hu et al., 2021) involves training a small pro-
portion of parameters, by injecting trainable low-rank
matrices into each layer of the pre-trained model. In
the Health-LLM context, these Parameter Efficient
Fine-tuning (PEFT) techniques enable the model to
adapt to healthcare tasks while maintaining compu-
tational efficiency.
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3.4. Temporal Encoding Methods

The methodologies for encoding time-series data into
textual formats is crucial in performing health pre-
dictions with LLMs. In the context of our consumer
health prediction task, we selected to use the Natu-
ral Language String method. This was due to its
simplicity, effectiveness, and wide acceptance in the
field, as evidenced by various prior studies (Gruver
et al., 2023; Liu et al., 2023). This method’s inher-
ent interpretability aligns seamlessly with our objec-
tive to develop models that are easily understood and
manipulated by users. Furthermore, it’s capacity to
handle missing values without imputation by adopt-
ing special symbols (e.g. NaN), making them more
resilient to data corruption, is highly advantageous
for health-related tasks where data may often be in-
complete or irregular. Lastly, our decision was fur-
ther influenced by the organization of physiological
data in our datasets by specific time windows (daily,
weekly, monthly), which are intuitively represented
through natural language. This facilitates a clearer
understanding and processing by LLMs, enhancing
our model’s capability to make nuanced predictions.

4. Experiment

4.1. Datasets and Tasks

We consider four wearable sensor datasets that con-
tained: (1) multi-modal physiological data, (2) user
self-reported measures, (3) enough distinct time win-
dows to evaluate over. Table 6 summarizes the
dataset topic, tasks, metric to evaluate, size and text
length and Table 2 presents the features used in the
prompt for each task. For the train/test split, we se-
lected 0.1 portion of the original set as the test set
and randomly sampled the data from different par-
ticipants as possible. The choice of ten tasks across
four datasets were inspired by the functions provided
by consumer health wearables (e.g. Fitbit, Apple
Watch) and the previous works of LLMs in diverse
applications (Liu et al., 2023; Wu et al., 2023c).

PMData Thambawita et al. (2020) A dataset
of n = 16 participants (twelve men and three women,
in the range of 25-60 years, with an average age
of 34 years) during 5 months using Fitbit Versa 2
smartwatch wristbands (Objective Biometrics and
Activity Data), Google Forms (Demographics, Food,
Drinking, and Weight) and PMSys sports logging
smartphone application (self-reported measures like

fatigue, mood, stress, etc) that combines conventional
lifelogging data with sports-activity data. Tasks as-
sociated with this dataset include:

• Stress (STRS): Estimation of an individual’s
stress level based on physiological data and self-
reported measures.

• Readiness (READ): Assessment of an individ-
ual’s preparedness for physical activity/exercise.

• Fatigue (FATG): Monitoring of signs of tiredness
or exhaustion.

• Sleep Quality (SQ): Assessment of factors in-
cluding total sleep time, efficiency, frequency and
duration of awakenings during the night.

LifeSnaps Yfantidou et al. (2022) A compre-
hensive, multi-modal dataset collected over a period
more than 4 months by n = 71 participants (42 male
and 29 female, half under 30 and half over 30). The
annotations were collected from Fitbit Sense (Auto-
matically Synced Data; sleep, heart rate, stress, etc)
watch, SEMA3 Data (Ecological Momentary Assess-
ments; context and mood, step goal, etc) and from
the validated surveys (Self Reported Data; demo-
graphics, health, etc). Tasks associated with this
dataset include:

• Stress Resilience (SR): Assessment of an indi-
vidual’s ability to recover from or adapt positively
to stressors.

• Sleep Disorder (SD): Identification of potential
sleep disorders like insomnia or sleep apnea through
analysis of recorded data.

GLOBEM Xu et al. (2022) A multi-year pas-
sive sensing datasets over 705 user-years and n = 497
participants’ (58.9% of females, 24.2% of immigrants,
38.2% of first-generations, and 9.1% of disability, and
53.9% of Asian and 31.9% of White) data collected
from mobile (AWARE framework), wearable sensors
(Fitbit Flex2 and Inspire 2) and survey data (Ecolog-
ical Momentary Assessment). Tasks associated with
this dataset include:

• Depression (DEP): Use of machine learning al-
gorithms that analyze patterns in user behavior
and language use for depression detection.

• Anxiety (ANX): Identification of anxiety often
relies on behavioral markers such as irregular sleep
patterns or heightened physiological responses like
increased heart rate.
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Table 2: Consumer Health Tasks. We define thirteen tasks from six datasets and classify them into four
topics. * in the prompt indicates the optional contexts for the ablation.

Topic Dataset Task Metric Prompt Target

MHealth

PMData Stress Prediction MAE ↓

{Target} refers to [Health Knowledge]*. Given the [User
Info]*, and [Period] sequence of Steps: [Steps], Calories Burn:
[Calories], Resting Heart Rate: [RHR], Sleep Duration: [Sleep-
Minutes], Mood: [Mood]. What will my stress level be?

[Stress]

LifeSnaps Stress Resilence Prediction MAE ↓

[Target] refers to [Health Knowledge]*. Given the [User Info]*
and following [Period] sequence of data, predict the Stress
Resilience Index. Stress Score: [StressScore], Positive Af-
fect Score: [PosAffectScore], Negative Affect Score: [NegAf-
fectScore], Lightly Active Minutes: [Duration], Moderately
Active Minutes: [Duration], Very Active Minutes: [Duration],
Sleep Efficiency: [SleepEfficiency], Sleep Deep Ratio: [Sleep-
DeepRatio], Sleep Light Ratio: [SleepLightRatio], Sleep REM
Ratio: [SleepREMRatio].

[Stress Resilience]

GLOBEM Estimate of PHQ4 Score
MAE ↓
MAE ↓

[Target] refers to [Health Knowledge]*. Steps during last [Pe-
riod] sequence of maximum, minimum, average, median, stan-
dard deviation daily step count were [ListOfSteps] respec-
tively. Sleep during last [Period] sequence of sleep efficiency,
duration the user stayed in bed after waking up, duration the
user spent to fall asleep, duration the user stayed awake but
still in bed, duration the user spent to fall asleep are [ListOf-
Durations] in average. In this regard, what would be [Tar-
get]?”

[PHQ]

Activity

PMData
Readiness Prediction
Fatigue Prediction

MAE ↓
Accuracy ↑

[Target] refers to [Health Knowledge]*. Steps: [Steps], Burned
Calorories: [Calories], Resting Heart Rate: [RHR], SleepMin-
utes: [Duration], Mood: [Mood]. What will my readiness level
be?

[Readiness]
[Fatigue]

AW FB Activity Recognition Accuracy ↑

[Target] refers to [Health Knowledge]*. Predict the activity
type among [ListOfActivities] given the following information
[User Info]*, Steps: [Steps], Burned Calorories: [Calories],
Heart Rate: [HR].”

[Activity]

Metabolic AW FB Calorie Burn Estimate MAE ↓ [Target] refers to [Health Knowledge]*. Predict the burned
calories given the following information. [User Info]*, Steps:
[Steps], Heart Rate: [HR].

[Calories]

Sleep

PMData Sleep Quality Prediction MAE ↓

[Target] refers to [Health Knowledge]*. Steps: [Steps], Burned
Calorories: [Calories], Resting Heart Rate: [RHR], SleepMin-
utes: [Duration], Mood: [Mood]. What will my sleep quality
level be?

[SQ]

LifeSnaps Sleep Disorder PredictionAccuracy ↑

[Target] refers to [Health Knowledge]*. Given the following
data, predict whether there exists sleep disorder (1) or not
(0). Sleep Duration: [Duration], Minutes Awake: [Duration],
Sleep Efficiency: [Efficiency], Sleep Deep Ratio: [SleepDeep-
Ratio], Sleep Wake Ratio: [SleepWakeRatio], Sleep Light Ra-
tio: [SleepLightRatio], Sleep REM Ratio: [SleepREMRatio],
RMSSD: [RMSSD], SPO2: [SPO2], Full Sleep Breathing Rate:
[BreathingRate], BPM: [BPM], Resting Hour: [Duration].

[Sleep Disorder]

AW FB Fuller (2020) A dataset examining the
accuracy of consumer wearable devices (GENEActiv,
Apple Watch Series 2 and Fitbit Charge HR2) col-
lected from n = 49 participants (26 females and 23
males) over 104 hours of activity logs in a lab based
protocol. Tasks associated with this dataset include:

• Calorie Burn (CAL): Estimation of the amount
of energy expended by an individual during physi-
cal activities.

• Activity (ACT): Identification of the types of
physical activities based on sensor data.

4.2. Models

We experimented with multiple LLMs with different
sizes, pre-training targets, and availability.

• MedAlpaca (7B, 13B) Han et al. (2023): An
advanced LLM, fine-tuned specifically for medical

question-answering. Built upon the foundations of
Alpaca, it utilizes a diverse array of medical texts.

• PMC-Llama (13B) Wu et al. (2023a): A special-
ized open-source LLM, incorporating knowledge
from 4.8M biomedical papers and 30K medical
textbooks.

• Asclepius (7B) Kweon et al. (2023): A publicly
shareable clinical LLM developed to circumvent
privacy regulations by training on synthetic clin-
ical notes extracted from biomedical literature.

• ClinicalCamel (70B) Toma et al. (2023): An
open LLM, fine-tuned on the LLaMA-2 70B ar-
chitecture using QLoRA.

• Flan-T5 (3B) Chung et al. (2022): An instruction
fine-tuned version of T5 or Text-to-Text Transfer
Transformer Language Model.
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Table 3: Performance Evaluation of LLMs on Health Prediction Tasks. STRS: Stress, READ:
Readiness, FATG: Fatigue, SQ: Sleep Quality, SR: Stress Resilience, SD: Sleep Disorder, ANX: Anxiety,
DEP: Depression, ACT: Activity, CAL: Calories. “-” denotes the failure cases due to token size limit
or unreasonable responses. “N/A” denotes the case where the prediction is not reported or cannot be
conducted. For each column (task), the best result is bolded, and the second best is underlined. CoT
denotes the chain-of-thoughts and SC denotes the self-consistency prompting. For each task, arrows in the
parenthesis indicate the desired direction of improvement. ↑ indicates higher values are better for accuracy,
while ↓ indicates lower values are better for mean absolute error.

Dataset PMData LifeSnaps GLOBEM AW FB

Model
STRS
(↓)

READ
(↓)

FATG
(↑)

SQ
(↓)

SR
(↓)

SD
(↑)

ANX
(↓)

DEP
(↓)

ACT
(↑)

CAL
(↓)

Z
e
r
o
-s

h
o
t

MedAlpaca 0.76 ± 0.1 2.18 ± 0.1 46.8 ± 11 0.68 ± 0.0 1.17 ± 0.1 40.3 ± 1.6 1.23 ± 0.3 0.89 ± 0.1 21.7 ± 4.4 35.0 ± 6.0
PMC-Llama 1.33 ± 0.0 4.83 ± 1.2 0.00 ± 0.0 2.25 ± 0.0 1.21 ± 0.8 41.7 ± 8.3 2.33 ± 0.5 2.23 ± 0.3 - 43.4 ± 1.2
Asclepius 0.43 ± 0.0 1.44 ± 0.3 27.3 ± 10 0.45 ± 0.1 - - 0.82 ± 0.2 1.10 ± 0.0 - 28.9 ± 11
ClinicalCamel 0.40 ± 0.1 2.11 ± 0.1 58.1 ± 3.2 0.37 ± 0.1 1.35 ± 0.1 88.3 ± 1.6 0.97 ± 0.0 0.79 ± 0.1 16.3 ± 1.2 43.4 ± 5.3
Flan-T5 0.36 ± 0.0 2.48 ± 0.2 56.5 ± 1.6 0.56 ± 0.1 2.20 ± 0.3 57.1 ± 3.5 2.84 ± 0.0 2.89 ± 0.0 23.4 ± 0.0 66.0 ± 0.4
Palmyra-Med 0.83 ± 0.1 2.11 ± 0.1 43.5 ± 15 0.44 ± 0.0 1.03 ± 0.0 3.13 ± 0.0 2.07 ± 0.1 1.99 ± 0.2 29.7 ± 1.1 75.3 ± 5.5
Llama 2 0.57 ± 0.2 2.86 ± 0.4 41.2 ± 13 0.89 ± 0.3 - - 1.19 ± 0.1 1.23 ± 0.3 - -
BioMedGPT 0.37 ± 0.0 2.49 ± 0.2 61.2 ± 3.3 0.41 ± 0.1 0.77 ± 0.2 - 0.95 ± 0.2 0.85 ± 0.1 12.2 ± 3.1 -
BioMistral 0.55 ± 0.1 2.12 ± 0.2 56.6 ± 3.1 0.45 ± 0.0 1.59 ± 0.5 90.0 ± 0.0 0.90 ± 0.1 - 18.4 ± 1.1 41.0 ± 4.3
GPT-3.5 - 2.38 ± 0.1 70.8 ± 4.2 0.87 ± 0.0 1.21 ± 0.3 19.0 ± 10 - - 13.8 ± 6.2 36.4 ± 0.0
GPT-4 - 2.22 ± 0.1 72.2 ± 2.0 0.73 ± 0.1 1.23 ± 0.1 - - - 22.6 ± 2.6 75.2 ± 8.2
Gemini-Pro 0.79 ± 0.0 1.69 ± 0.1 34.0 ± 9.8 0.78 ± 0.1 2.67 ± 1.1 84.6 ± 3.1 1.03 ± 0.1 0.95 ± 0.1 17.7 ± 0.0 31.4 ± 1.9

F
e
w
-s

h
o
t

MedAlpaca 0.78 ± 0.1 1.94 ± 0.2 36.2 ± 12 0.69 ± 0.1 0.94 ± 0.2 49.6 ± 11 0.97 ± 0.2 0.56 ± 0.1 19.3 ± 8.1 36.7 ± 5.6
+ CoT 0.83 ± 0.1 2.61 ± 0.0 9.68 ± 0.0 0.58 ± 0.0 1.13 ± 0.3 33.3 ± 13 1.67 ± 0.5 1.26 ± 0.3 18.1 ± 0.6 36.1 ± 0.5
+ CoT-SC 0.50 ± 0.2 2.08 ± 0.1 22.6 ± 6.5 0.51 ± 0.0 0.99 ± 0.2 46.7 ± 2.7 1.32 ± 0.1 0.58 ± 0.1 19.2 ± 0.3 35.3 ± 0.0
GPT-3.5 0.94 ± 0.1 1.62 ± 0.1 73.9 ± 16 0.79 ± 0.1 0.80 ± 0.0 58.5 ± 4.4 1.98 ± 0.1 0.68 ± 0.2 26.3 ± 11 26.6 ± 5.5
+ CoT 0.70 ± 0.1 1.76 ± 0.2 77.0 ± 4.7 0.73 ± 0.2 0.69 ± 0.1 51.7 ± 1.7 1.08 ± 0.1 0.59 ± 0.1 23.9 ± 0.5 38.9 ± 0.8
+ CoT-SC 0.57 ± 0.1 1.46 ± 0.3 43.3 ± 12 0.49 ± 0.0 - 83.0 ± 8.0 0.85 ± 0.3 0.56 ± 0.1 29.8 ± 3.5 37.7 ± 0.1
GPT-4 0.76 ± 0.1 1.64 ± 0.3 61.3 ± 4.8 0.60 ± 0.1 0.45 ± 0.0 73.4 ± 2.3 1.11 ± 0.3 0.60 ± 0.1 15.4 ± 2.3 24.0 ± 1.4
+ CoT 0.52 ± 0.1 1.84 ± 0.2 73.9 ± 6.7 0.64 ± 0.0 0.41 ± 0.2 71.8 ± 19 0.90 ± 0.1 0.67 ± 0.1 21.9 ± 5.0 33.0 ± 2.7
+ CoT-SC 0.33 ± 0.1 0.86 ± 0.4 46.0 ± 4.0 0.48 ± 0.0 0.36 ± 0.1 80.5 ± 3.3 0.56 ± 0.0 0.41 ± 0.0 22.5 ± 1.3 31.1 ± 0.5
Gemini-Pro 1.10 ± 0.0 2.20 ± 0.2 24.8 ± 6.5 0.80 ± 0.1 1.18 ± 0.1 71.8 ± 3.6 1.30 ± 0.1 1.05 ± 0.1 15.0 ± 3.3 37.2 ± 2.2
+ CoT 1.02 ± 0.1 2.24 ± 0.1 23.9 ± 3.8 0.83 ± 0.1 1.34 ± 0.2 71.8 ± 10 0.95 ± 0.1 0.86 ± 0.1 14.4 ± 2.5 38.8 ± 5.8

F
in

e
-t

u
n
e

+ CoT-SC 1.07 ± 0.0 2.13 ± 0.1 28.8 ± 6.5 0.78 ± 0.1 1.23 ± 0.1 75.6 ± 1.8 1.12 ± 0.1 0.90 ± 0.0 19.6 ± 0.0 36.3 ± 9.6

HealthAlpaca-lora-7b 0.53 ± 0.0 1.40 ± 0.1 50.0 ± 13 0.58 ± 0.1 0.62 ± 0.1 61.7 ± 4.7 0.62 ± 0.0 0.51 ± 0.1 27.4 ± 5.0 43.6 ± 0.1
HealthAlpaca-7b 0.31 ± 0.2 1.32 ± 0.2 70.7 ± 2.9 0.35 ± 0.1 0.62 ± 0.1 72.1 ± 8.9 0.46 ± 0.1 0.49 ± 0.2 41.7 ± 11 31.5 ± 6.4
HealthAlpaca-lora-13b 0.34 ± 0.0 1.56 ± 0.0 54.8 ± 9.7 0.39 ± 0.1 0.70 ± 0.0 92.0 ± 4.0 1.04 ± 0.1 0.67 ± 0.1 29.0 ± 0.0 39.6 ± 1.4
HealthAlpaca-13b 0.21 ± 0.0 1.08 ± 0.2 61.2 ± 3.4 0.14 ± 0.0 0.32 ± 0.1 93.9 ± 3.1 0.95 ± 0.2 0.24 ± 0.0 51.0 ± 3.5 28.5 ± 5.6

B
a
s
e
li
n
e

Majority N/A N/A 20.0 N/A N/A 50.0 N/A N/A 14.3 N/A
MLP 1.56 ± 0.3 3.70 ± 0.2 27.1 ± 11 1.61 ± 0.3 1.20 ± 0.1 23.1 ± 5.7 1.39 ± 0.7 1.45 ± 0.5 13.2 ± 5.6 44.3 ± 0.7
SVM 0.45 ± 0.0 1.45 ± 0.0 58.8 ± 0.0 0.49 ± 0.0 0.53 ± 0.0 10.1 ± 0.0 0.63 ± 0.0 0.73 ± 0.0 17.6 ± 0.0 33.7 ± 0.0
RandomForest 0.57 ± 0.0 1.58 ± 0.0 61.8 ± 2.4 0.52 ± 0.0 0.41 ± 0.0 9.00 ± 0.6 1.31 ± 0.1 0.82 ± 0.0 32.3 ± 1.4 25.4 ± 0.5
BERT 0.65 ± 0.2 2.91 ± 0.3 51.7 ± 14 0.70 ± 0.2 0.62 ± 0.0 53.8 ± 0.0 0.67 ± 0.0 0.67 ± 0.0 19.0 ± 3.5 41.1 ± 0.1
BioMed-RoBERTa 0.39 ± 0.0 1.31 ± 0.0 46.9 ± 0.0 0.47 ± 0.0 2.01 ± 0.0 - 2.93 ± 0.0 3.21 ± 0.0 - 44.7 ± 0.0

• Palmyra-Med (20B) Kamble and Alshikh (2023):
An LLM fine-tuned on a custom medical dataset,
demonstrating superior performance on medical
knowledge datasets like PubMedQA and MedQA.

• BioMedGPT (7B) Zhang et al. (2024): An
open multi-modal generative pre-trained trans-
former (GPT) for biomedicine, which closes the
gap between natural language modality and diverse
biomedical data modalities via large generative lan-
guage models.

• BioMistral (7B) Labrak et al. (2024): A Mistral-
based further pre-trained open source model
(BioMistral 7B DARE) suited for the medical do-
mains.

• Llama 2 (7B) Hugo Touvron and Scialom (2023):
Meta AI’s open LLM, which possess features of in-
cluding a longer context length, improved training

on a larger dataset, and fine-tuning via RLHF for
greater performance.

• GPT-3.5 (175B) OpenAI (2023a): A variant of
GPT-3.5 (gpt-3.5- turbo-instruct) from Ope-
nAI, specifically fine-tuned to provide direct an-
swers or complete text rather than simulating con-
versations.

• GPT-4 OpenAI (2023b): A state-of-the-art au-
toregressive language model from OpenAI (gpt-4)
exhibiting remarkable capabilities in various NLP
tasks including translation, question answering,
and text generation without task-specific fine-
tuning.

• Gemini-Pro Gemini Team (2023): Google Deep-
Mind’s versatile model optimized for diverse tasks
across text, code, images, and audio. It offers a bal-
ance between capability and efficiency, suitable for
both high-performance applications and on-device
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Table 4: Balanced Cross-Dataset Performance Summary of MedAlpaca-7b Finetuning on Single
Dataset. Numbers indicate the results of the model finetuned and tested on the same dataset. The bottom
four rows are related Alpaca versions for reference. Green/Red color marks the ones with better/worse
cross-dataset performance compared to the zero-shot version MedAlpaca. Box indicate the results of the
case where the model fine-tuned and tested on the same dataset. For each task, arrow in the parenthesis
indicate the desired direction of improvement. ↑ indicates higher values are better for accuracy, while ↓
indicates lower values are better for mean absolute error.

Test Dataset PMData LifeSnaps GLOBEM AW FB

Finetune Dataset
STRS
(↓)

READ
(↓)

FATG
(↑)

SQ
(↓)

SR
(↓)

SD
(↑)

ANX
(↓)

DEP
(↓)

ACT
(↑)

CAL
(↓)

PMData 0.38 0.94 71.4 0.90 2.02 72.1 2.01 1.76 -
LifeSnaps 0.71 3.26 - - 0.45 80.0 0.86 0.62 25.0 34.8
GLOBEM 0.72 4.62 23.8 1.25 0.72 81.2 0.81 0.29 - 33.9
AW FB 0.40 1.94 - 1.37 0.94 93.3 1.91 1.57 43.5 33.2

Reference

MedAlpaca ZS 0.76 2.18 46.8 0.68 1.17 40.3 1.23 0.89 21.7 35.0
MedAlpaca FS∗ 0.50 1.94 36.2 0.51 0.94 49.6 0.97 0.56 19.3 35.3
MedAlpaca T 0.53 1.38 58.1 0.50 0.68 73.3 0.98 0.81 16.1 6.52
HealthAlpaca 0.31 1.32 70.7 0.35 0.62 72.1 0.46 0.49 41.7 31.5

ZS: Zero Shot Prompting
FS∗: Best Performance among Few Shot Prompting

T: Task-specific Fine-tuning

tasks, making advanced AI accessible to developers
and enterprises alike.

• Baseline: We also compare LLMs against a set of
baseline techniques, including simple majority class
(classification only), traditional ML models (MLP,
SVM, RandomForest), and traditional pre-trained
language models (BERT, BioMed-RoBERTa, and
PALMp-tuned). Note that these baseline models are
all task-specific and thus need to be trained on data
from target tasks.

5. Results and Discussion

Table 3 (w/ MAE and Accuracy metric) and Table 7
(w/ MAPE and F1-score metric) in Appendix shows
the performance of twelve off-the-shelf LLMs prompt-
ed/trained with a set of prompting/fine-tuning tech-
niques and six task-specific baseline models across ten
health prediction tasks and four health datasets.

5.1. Zero-shot and Few-shot Performance

In the zero-shot setting, there was no clear su-
periority among the models and surprisingly, rel-
atively smaller models (number of parameters less
than 100B) showed better performance (GPT series
models and Gemini-Pro took proportion of only 20%

among best and second best performers) than GPT
series models and Gemini-Pro. This may suggest
that the effectiveness of a model in the health do-
main is not solely dependent on its size but could also
be significantly influenced by its pre-training knowl-
edge in a zero-shot setting. Asclepius for example,
was pre-trained on 158k high-quality synthetic clin-
ical dataset, performed on par with GPT-3.5-turbo
showing task-specific knowledge can potentially out-
weigh the benefits of sheer model size Kweon et al.
(2023).
In the few-shot setting however, GPT-3.5 and GPT-4
showed improvement with few-shot prompting along
with CoT and SC in most of the tasks, while
such improvement is not significantly observed with
smaller models. Specifically, CoT-SC greatly en-
hanced model’s performance by showing the best per-
formance with CoT-SC in 9 out of 10 tasks indicating
the benefit of structured prompting in understand-
ing and predicting behavior. This finding is aligned
with prior findings from other non-health tasks in Tay
et al. (2022); Suzgun et al. (2022). This indicates
that large LLMs have a stronger capability of quickly
learning from examples for health tasks.
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5.2. Finetuning Performance

Across all categories, our fully fine-tuned model,
HealthAlpaca, shows the best performance in 8 out
of 10 consumer health tasks (Table 7). HealthAl-
paca achieves comparable or better performance
than GPT-series models and Gemini-Pro which
has a two-magnitude larger number of parame-
ters. HealthAlpaca-lora, a model fine-tuned with a
parameter-efficient finetuning technique LoRA, also
shows a performance boost over the larger models in
almost all tasks. These results suggest that LLMs
can be effectively tuned for tasks with multi-modal
time-series wearable data.
Also, as predicted, HealthAlpaca-13b showed better
performance than HealthAlpaca-7b and parameter-
efficiently fine-tuned models in most of the tasks as
it involved more number of parameters and updates
in those larger number of parameters.

5.3. Generalization of Fine-tuned Models
across Datasets

To assess the generalization capabilities of our fine-
tuned models, we conducted dataset-specific fine-
tuning. We then compared model performance with
reference results from task-specific and multi-dataset
fine-tuned models. The results presented in Table 4
indicate that not surprisingly, MedAlpaca, when fine-
tuned on the same dataset with the target task mostly
shows the best performance compared to when fine-
tuned on other datasets. We also observed that
while dataset-specific fine-tuning often failed to pre-
dict tasks from other datasets, the multi-dataset fine-
tuned HealthAlpaca, exhibited reasonable generaliza-
tion performance across tasks.

Moreover, we made an intriguing observation
regarding the synergistic effect between certain
datasets. In a few cases, such as AW FB → STRS,
and LifeSnaps → ANX, the performance of the fine-
tuned models surpassed that of the zero-shot and
dataset-specific fine-tuning approaches. These find-
ings suggest that fine-tuning on a single dataset can
provide health knowledge to a certain extent and
thereby improve overall generalization results. How-
ever, such improvement is not consistently observed
across all tasks, and it depends on the overlapping
content across datasets.

5.4. Importance of different contexts in
Prompt Designing for Healthcare LLMs

In Figure 2, we present the summarized effect of
context enhancement strategies in zero-shot setting
across LLMs and datasets. Overall, adding con-
texts can significantly improve the model perfor-
mance. Among four types of context information,
adding health context shows the biggest performance
boost in average. More interestingly, our results show
varied effectiveness on different LLMs and datasets.
From an LLM perspective (shown in Figure 2b),
Palmyra-Med benefited the most from the enhance-
ment, where it shows up to 44.58% improvement
when adding temporal context (tc). Palmyra-Med’s
significant improvement can be attributed to its fine-
tuning with two medical datasets: PubMedQA, a re-
source focused on question-answering in the medical
domain, and MedQA, which provides a broad range of
medical questions and answers. By integrating tem-
poral context, Palmyra-Med leverages its enhanced
medical literature comprehension and temporal pat-
tern recognition, leading to substantial improvements
in predictive accuracy by effectively interpreting med-
ical conditions’ progression and patterns over time.
However, tc does not help improve the performance
for large-size LLMs like GPT-3.5 or GPT-4. This is
probably because they already possess the capability
to understand the statistical traits in the time-series
data as shown in the case study in Figure 3 (e.g. av-
erage, max, variation). From the dataset perspective,
our enhancement strategies boost performance in all
datasets, and LifeSnaps shows the best improvement
up to 34.46%. GLOBEM and AW FB showed signifi-
cant performance improvement when applying tc and
all context enhancements. This might be because
of temporal aspects in the dataset. For instance,
GLOBEM provides 7- and 14-days statistics for each
feature, which highlights the temporal dimension.

5.5. Importance of Training Size in
Fine-tuning Performance

To understand the required amount of data for ef-
fective fine-tuning, we conduct experiments on fine-
tuning Alpaca with varying down-sampled training
sizes: 5%, 15%, 25%, 50%, and 100% of the original
dataset, and evaluate health prediction performances
with three seeds. Figure 4 in Appendix shows the
overall results. With 15% of the original dataset, the
fine-tuned model already outperforms the zero-shot
performance on all 13 tasks. This number provides
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(a) (b) (c)

Average Improvement (%) Best Improvement (%)

Figure 2: (a): Average Performance Improvement over basic (bs) across contexts. (b): Best Performance
Improvement across LLMs. (c): Best Performance Improvement across Datasets. Note that few models
(Llama 2, Gemini-Pro, BioMedGPT and BioMistral) were excluded in this experiment due to the prioriti-
zation of models based on integration timelines.

guidance for fine-tuning when computing resources
are limited. As expected, we observe an increasing
trend in performance with more training data.

5.6. Case Study of LLM’s Capability on
Health Reasoning

In addition to health predictions, it is critical to see
whether the health reasoning are also valid especially
in healthcare domain. Here, we show two representa-
tive cases; 1) READ: Readiness Score Prediction and
2) SD: Sleep Disorder Prediction across four LLMs
including our fine-tuned model HealthAlpaca.

5.6.1. LLM’s capability to understand the
time-series data

In analyzing time-series data, LLMs show distinct ap-
proaches. HealthAlpaca for example, shows a con-
servative interpretation of data like steps and mood
scores to suggest moderate readiness levels (see Fig-
ure 3). It emphasizes stability, suggesting suitability
for moderate activities. GPT-4 on the other hand,
identifies days with high activity to suggest greater
readiness, highlighting its focus on peak performance.

5.6.2. False and Hallucinated Reasoning
from LLMs

False reasoning in LLMs occurs when data is mis-
interpreted or generic standards are misapplied. In
readiness evaluations (Figure 3), such reasoning can
lead to overestimation or underestimation of physical
readiness. For instance, HealthAlpaca might not fully

value high-activity days, while GPT-4 could under-
estimate the need for consistent activity. In case of
GPT-3.5, there was a misinterpretation of the ques-
tion, particularly around the provided resting heart
rate information. Gemini-Pro, on the other hand,
makes reasonable predictions but misinterprets that
the average calorie burns are in the range of recom-
mended daily caloric burn.

6. Conclusion

In this paper, we present the first comprehensive
evaluation of twelve off-the-shelf LLMs across ten
consumer health prediction tasks (binary, multi-class
classification, and regression) spanning four public
health datasets. Our experiments encompass a va-
riety of prompting and fine-tuning techniques. The
results reveal several interesting findings. First,
our context enhancement strategy boosts the per-
formance across all datasets and LLMs, particularly
emphasizing the importance of incorporating health
knowledge context in prompts. More importantly,
our fine-tuned model, HealthAlpaca, demonstrates
the best performance in 8 out of 10 tasks, outperform-
ing much larger models such as GPT-4 and Gemini-
Pro, even when these are equipped with few-shot
prompting. Additionally, we conducted a case study
on selected examples to highlight the LLMs’ reason-
ing capabilities and limitations regarding false and
hallucinated reasoning in health predictions. Ethi-
cal concerns regarding privacy and bias still remains,
necessitating further investigation before real-world
deployment.
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Limitation and Future Work This study’s re-
liance on self-reported health data limits its clinical
applicability Zack et al. (2023) and raises ethical con-
siderations, particularly regarding data validity and
user communication. Additionally, the “black-box”
nature of LLMs complicates the assessment of their
clinical validity. To address these issues, future work
will focus on: 1) conducting evaluations with clini-
cally diagnosed datasets in collaboration with health-
care professionals to enhance clinical relevance; 2)
ensuring ethical and regulatory compliance, particu-
larly in how health-related predictions are communi-
cated to users; 3) improving LLMs’ explainability to
facilitate understanding of their decision-making pro-
cesses, thereby aiding in the accurate interpretation
of health predictions; and 4) incorporating privacy-
preserving technologies like federated learning Raeini
(2023) to protect sensitive health information.
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Appendix A. Implementation Details

We fine-tune our Health-LLMs on 4 NVIDIA A100
80GB GPUs with a batch size of 128 with differ-
ent number of epochs for the purpose of fine-tuning.
We based on MedAlpaca-7b and -13b models and
conducted instruction fine-tuning with cross entropy
as the loss function, we backpropagate and update
model parameters in 3 and 5 epochs (7b and 13b re-
spectively), with Adam optimizer and a learning rate
as 2e−5 (consine learning rate scheduler and warmup
steps of 100). It took about 3.4 hours for 5 epochs of
training with the default training setting. For more
training details, we follow the default parameters in
the original code repository of MedAlpaca5. We set
default decoding method as sampling and also use
other decoding methods such as controlling the tem-
perature in sampling to generate different reasoning
paths. The codes and fine-tuned models will be made
publicly available upon the release of the camera-
ready version of this paper.
For the zero-shot and few-shot prompting, we uti-
lized open-source models from huggingface with four
Nvidia A6000 GPUs and used OpenAI and GenAI
APIs for the closed-source models. We conducted
oversampling for each dataset to resolve class imbal-
ance issue and merged the train sets together. For the
task-specific and multi-dataset used for fine-tuning,
we will upload the codes to generate these datasets
in the code repository by camera-ready version.

Appendix B. Temporal Encoding
Methods

B.0.1. Natural Language String

Following the approach presented in Gruver et al.
(2023), we also transform raw time-series data into
a language string. This method, known for its sim-
plicity and effectiveness, converts sequential data into
an understandable format for both humans and AI
models. For instance, a 14-day sensor reading for a
consumer health prediction task can be transformed
into daily readings of steps, and resting heart rate
({Nan, 991.0, ..., Nan}).

B.0.2. Modality-specific Encoding

In line with the methodology proposed in Belyaeva
et al. (2023), this method utilizes pre-trained en-
coders for each modality to embed non-text data

5. https://github.com/kbressem/medAlpaca

modalities including time-series data into the same
latent space as the language tokens. Though this
method may provide nuanced data representations,
it introduces complexity and computational overhead
that may not always yield performance gains.

B.0.3. Statistical Summary

Similar to the methods used in Jin et al. (2023), this
method encapsulates time-series data into statistical
summaries such as mean, std, median, etc. While
this approach reduces the volume of data to be
processed, it may risk overlooking critical temporal
patterns inherent in the raw data.

Appendix C. Additional Experiments

Fine-tuned
Dataset

Tested on LifeSnaps

STRS CAL
(MAE ± SD) (MAE ± SD)

PMData 0.44 ± 0.1 -
AW FB - 44.2 ± 7.2

Table 5: Summary of additional experiments show-
ing the performance of HealthAlpaca-7b on the LifeS-
naps dataset for stress level (STRS) and calorie burn
(CAL) prediction.

Additional experiments were conducted to address
concerns regarding potential dataset overlap between
fine-tuning and evaluation datasets, potentially favor-
ing HealthAlpaca unfairly. Specifically, we focused
on 1) stress level (STRS) prediction and 2) calorie
burn (CAL) prediction using LifeSnaps dataset la-
bels, which were fine-tuned on PMData and AW FB
datasets. These experiments were designed to show-
case HealthAlpaca’s generalizability and robustness
by entirely separating the training and evaluation
datasets. Results demonstrated promising perfor-
mance with a mean absolute error (MAE) of 0.44
± 0.1 for stress level prediction and MAE of 44.2
± 7.2 for calorie burn prediction. Furthermore,
we plan to extend these findings by incorporating
additional experimental results with HealthAlpaca-
7b-lora, HealthAlpaca-13b-lora, and HealthAlpaca-
13b models. Additionally, future work will include
more cross-dataset experiments using the GLOBEM
dataset to further evaluate HealthAlpaca’s perfor-
mance across diverse datasets.
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Table 6: Consumer Health Tasks. We curate ten tasks with four datasets, across four domains. For the
Dataset Size, we indicate the number of QA samples and the label distribution in the parentheses.

Domain Dataset Task Metric Dataset Size
Text Length
(Token)

MHealth

PMData Stress Prediction MAE ↓ 1784 (0: 1, 1: 21, 2: 315, 3: 833, 4: 240, 5: 8) 202 ± 42

LifeSnaps Stress Resilence Prediction MAE ↓ 150 (0-1: 30, 1-2: 67, 2-3: 35, 3-4: 13, 4-5: 5) 202 ± 42

GLOBEM
Estimate of PHQ4 Depression
Estimate of PHQ4 Anxiety

MAE
↓ 1735 (0: 748, 1: 555, 2: 296, 3: 108, 4: 28)

1735 (0: 1093, 1: 372, 2: 194, 3: 63, 4: 13)
216 ± 0

Activity
PMData

Readiness Prediction
Fatigue Prediction

MAE ↓
Accuracy ↑

1420 (0-1: 32, 2-3: 217, 4-5:628, 6-7: 423, 8-10: 120)
1418 (1: 53, 2: 410, 3: 845, 4: 101, 5: 9)

202 ± 42

AW FB Activity Recognition Accuracy ↑ 652 (0: 151, 1: 93, 2: 87, 3: 93, 4: 100, 5: 128) 119 ± 0

Metabolic AW FB Calorie Burn Estimate MAE ↓ 652 (0-50: 387, 51-100: 265) 87 ± 1

Sleep
PMData Sleep Quality Prediction MAE ↓ 1418 (1: 12, 2: 295, 3: 743, 4: 351, 5: 17) 202 ± 42

LifeSnaps Sleep Disorder Prediction Accuracy ↑ 148 (0: 40, 1: 108) 303 ± 0

Table 7: Performance Evaluation of LLMs on Health Prediction Tasks. STRS: Stress, READ:
Readiness, FATG: Fatigue, SQ: Sleep Quality, SR: Stress Resilience, SD: Sleep Disorder, ANX: Anxiety,
DEP: Depression, ACT: Activity, CAL: Calories. “-” denotes the failure cases due to token size limit
or unreasonable responses. “N/A” denotes the case where the prediction is not reported or cannot be
conducted. For each column (task), the best result is bolded, and the second best is underlined. CoT
denotes the chain-of-thoughts and SC denotes the self-consistency prompting. For each task, arrows in the
parenthesis indicate the desired direction of improvement. ↑ indicates higher values are better for macro
F1-score, while ↓ indicates lower values are better for mean absolute percentage error (MAPE).

Dataset PMData LifeSnaps GLOBEM AW FB

Model
STRS
(↓)

READ
(↓)

FATG
(↑)

SQ
(↓)

SR
(↓)

SD
(↑)

ANX
(↓)

DEP
(↓)

ACT
(↑)

CAL
(↓)

Z
e
r
o
-s

h
o
t

MedAlpaca 54.0 ± 0.0 49.2 ± 0.0 0.26 ± 0.0 38.3 ± 0.0 87.1 ± 0.0 0.22 ± 0.0 66.7 ± 0.0 72.2 ± 0.0 0.13 ± 0.0 77.1 ± 0.0
PMC-Llama 57.6 ± 1.8 81.6 ± 14 0.00 ± 0.0 37.7 ± 8.8 55.5 ± 10 0.25 ± 0.1 75.8 ± 7.8 79.3 ± 6.5 - 62.2 ± 11
Asclepius 31.3 ± 0.0 51.9 ± 0.0 0.07 ± 0.0 13.2 ± 0.0 - - 47.6 ± 0.0 25.3 ± 0.0 - 72.5 ± 0.0
ClinicalCamel 12.8 ± 0.0 25.5 ± 0.0 0.16 ± 0.0 13.3 ± 0.0 77.4 ± 0.0 0.48 ± 0.0 33.0 ± 0.0 25.7 ± 1.3 0.10 ± 0.0 120 ± 21
Flan-T5 16.1 ± 0.0 37.9 ± 0.0 0.24 ± 0.0 11.6 ± 0.0 41.0 ± 0.0 0.38 ± 0.1 83.5 ± 0.0 93.6 ± 7.4 0.13 ± 0.0 94.1 ± 6.9
Palmyra-Med 56.0 ± 0.0 20.6 ± 0.4 0.25 ± 0.2 13.1 ± 2.1 23.4 ± 3.7 0.47 ± 0.0 85.1 ± 17 89.8 ± 3.9 0.17 ± 0.1 131 ± 14
Llama 2 18.0 ± 0.0 80.4 ± 0.0 0.18 ± 0.0 34.7 ± 0.0 - - 74.3 ± 0.0 74.5 ± 0.0 - -
BioMedGPT 72.9 ± 0.0 56.3 ± 3.4 0.07 ± 0.0 97.9 ± 0.0 28.2 ± 0.0 - 33.5 ± 0.0 - 0.16 ± 0.1 -
BioMistral 19.6 ± 0.0 23.8 ± 0.0 0.27 ± 0.0 12.4 ± 0.0 73.7 ± 0.0 0.67 ± 0.2 33.3 ± 0.0 - 0.12 ± 0.0 92.1 ± 11
GPT-3.5 - 38.4 ± 10 0.12 ± 0.0 24.6 ± 3.7 96.6 ± 0.0 0.23 ± 0.1 - - 0.13 ± 0.1 93.3 ± 12
GPT-4 - 41.2 ± 4.0 0.26 ± 0.1 23.5 ± 1.4 55.0 ± 14 - - - 0.18 ± 0.0 107 ± 23
Gemini-Pro 24.5 ± 5.6 25.0 ± 3.5 0.19 ± 0.0 24.9 ± 3.5 57.1 ± 8.0 0.63 ± 0.0 47.2 ± 9.8 43.1 ± 8.8 0.11 ± 0.0 116 ± 18

F
e
w
-s

h
o
t

MedAlpaca 38.5 ± 4.1 46.5 ± 7.6 0.25 ± 0.1 19.2 ± 2.3 77.9 ± 8.5 0.39 ± 0.1 52.3 ± 5.4 72.4 ± 5.6 0.19 ± 0.0 91.1 ± 4.5
+ CoT 26.0 ± 5.4 43.2 ± 6.4 0.18 ± 0.1 18.1 ± 3.8 66.1 ± 5.9 0.31 ± 0.1 38.7 ± 2.3 56.7 ± 3.5 0.18 ± 0.0 88.8 ± 10
+ CoT-SC 23.8 ± 2.8 41.1 ± 5.5 0.19 ± 0.0 18.0 ± 0.9 41.9 ± 5.6 0.47 ± 0.2 40.1 ± 3.4 66.4 ± 5.4 0.15 ± 0.0 82.3 ± 6.7
GPT-3.5 54.1 ± 4.2 36.0 ± 1.5 0.25 ± 0.0 30.2 ± 1.6 79.1 ± 19 0.43 ± 0.1 64.1 ± 3.6 51.1 ± 11 0.10 ± 0.0 84.3 ± 31
+ CoT 47.3 ± 3.6 41.0 ± 2.4 0.20 ± 0.1 32.5 ± 2.2 65.3 ± 4.2 0.34 ± 0.0 46.4 ± 4.3 39.2 ± 6.9 0.11 ± 0.0 71.1 ± 33
+ CoT-SC 50.3 ± 3.9 51.9 ± 2.5 0.22 ± 0.0 34.1 ± 2.8 65.4 ± 2.2 0.37 ± 0.1 47.4 ± 3.3 34.4 ± 5.8 0.12 ± 0.0 65.2 ± 24
GPT-4 20.0 ± 2.6 24.0 ± 4.8 0.27 ± 0.0 14.8 ± 0.8 57.3 ± 1.8 0.54 ± 0.0 51.3 ± 16 59.2 ± 7.3 0.14 ± 0.0 85.7 ± 19
+ CoT 16.8 ± 3.9 35.7 ± 1.7 0.23 ± 0.1 19.9 ± 1.5 51.2 ± 2.8 0.61 ± 0.0 37.0 ± 1.1 53.2 ± 8.6 0.16 ± 0.0 72.4 ± 16
+ CoT-SC 16.4 ± 5.8 36.7 ± 1.8 0.23 ± 0.1 20.7 ± 1.5 49.5 ± 3.8 0.61 ± 0.0 46.1 ± 5.9 48.5 ± 6.9 0.17 ± 0.0 64.8 ± 17
Gemini-Pro 35.4 ± 4.7 41.9 ± 2.8 0.17 ± 0.1 26.2 ± 4.7 54.1 ± 3.2 0.46 ± 0.0 58.9 ± 4.9 55.4 ± 2.7 0.12 ± 0.0 163 ± 23
+ CoT 30.3 ± 2.9 50.4 ± 5.1 0.17 ± 0.0 33.7 ± 2.2 54.0 ± 6.8 0.44 ± 0.0 54.9 ± 1.3 49.1 ± 8.1 0.10 ± 0.0 181 ± 19

F
in

e
-t

u
n
e

+ CoT-SC 27.1 ± 3.0 47.2 ± 1.6 0.20 ± 0.0 29.1 ± 3.3 55.7 ± 3.0 0.43 ± 0.1 50.6 ± 7.2 50.3 ± 6.0 0.11 ± 0.1 128 ± 16

HealthAlpaca-lora-7b 13.9 ± 1.4 37.3 ± 1.4 0.19 ± 0.0 17.2 ± 1.4 38.4 ± 3.8 0.47 ± 0.1 35.9 ± 0.0 34.4 ± 1.0 0.17 ± 0.1 96.9 ± 3.9
HealthAlpaca-7b 13.1 ± 0.0 33.3 ± 4.7 0.27 ± 0.1 16.7 ± 1.6 36.1 ± 8.8 0.37 ± 0.0 33.2 ± 0.0 26.5 ± 2.2 0.29 ± 0.0 73.5 ± 18
HealthAlpaca-lora-13b 12.8 ± 0.0 55.9 ± 16 0.45 ± 0.0 6.53 ± 1.7 21.4 ± 2.2 0.78 ± 0.1 29.9 ± 2.4 29.2 ± 2.0 0.21 ± 0.1 75.6 ± 9.4
HealthAlpaca-13b 11.5 ± 0.0 26.4 ± 0.0 0.58 ± 0.0 2.86 ± 0.0 14.0 ± 0.0 0.91 ± 0.1 21.1 ± 0.0 12.1 ± 1.2 0.31 ± 0.1 73.0 ± 3.2

B
a
s
e
li
n
e

Majority N/A N/A 0.20 N/A N/A 0.50 N/A N/A 0.14 N/A
MLP 39.4 ± 3.4 47.5 ± 1.4 0.16 ± 0.0 39.8 ± 2.5 43.8 ± 9.2 0.79 ± 0.1 - - 0.23 ± 0.0 180 ± 1.3
SVM 16.3 ± 0.0 42.4 ± 0.0 0.25 ± 0.0 14.5 ± 0.0 22.7 ± 0.0 0.49 ± 0.0 51.7 ± 0.0 56.6 ± 0.0 0.11 ± 0.0 212 ± 11
RandomForest 15.5 ± 0.7 50.0 ± 0.7 0.34 ± 0.0 15.3 ± 0.8 24.3 ± 0.4 0.48 ± 0.0 102 ± 5.0 69.3 ± 3.1 0.23 ± 0.0 184 ± 16
BioMed-RoBERTa 46.4 ± 11 59.3 ± 5.6 0.24 ± 0.0 43.9 ± 8.8 23.9 ± 0.9 0.36 ± 0.0 39.4 ± 1.3 37.4 ± 2.6 0.15 ± 0.0 80.3 ± 2.4
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The user is 38-year-old female with 179 cm. The analysis of recent 2-weeks sensor readings show: 

[Steps]: [2184.0, 2091.0, ..., 15754.0] steps 
[Burned Calories]: [153.0, 138.0, ..., 1005.0] calories 
[Resting Heart Rate]: [67.7, 68.7, ..., 64.1] beats/min 
[Mood]: 3 out of 5 

Please return the readiness score between 1 and 10 and step-by-step reasoning.

Prompt:

Answer: The user's readiness score is 5. 

This indicates an average level of readiness, suggesting that the 
user may be able to handle a moderate level of physical activity 
but not intense exercise. 

The user's average steps per week over the past two weeks is 
around 4000, which is lower than the recommended daily count of 
10,000. The user's resting heart rate seems to be stable and 
within a normal range, which is good. 

The user's mood is rated as 3 out of 5, indicating an average 
mood state but this marks room for improvement. 

Since we don't have the actual resting heart 
rate values, we can't calculate the exact 
readiness score. 

However, based on the available information, we 

can conclude that the readiness score will be 
5.

Input Prompt | Ground Truth (Readiness Score): 5  

HealthAlpaca | Answer: 5

GPT-3.5 | Answer: 5

GPT-4 | Answer: 7

Gemini-Pro | Answer: 7

1. Steps: The user had a wide range of daily steps from a 
minimum of around 1,323 to a maximum of 15,754 during the last 
2 weeks. This indicates inconsistency in her physical 
activities. However, some days show a high amount of steps 
which is a good sign.

2. Burned Calories: Similarly to steps, the user also has a 
varied amount of burned calories from 97 to 1,005 kcal. Higher 
amounts of burned calories indicate a higher level of physical 
activity.

3. Resting Heart Rate (RHR): The provided RHR values are within 
the normal range (60-100 bpm for adults). A lower RHR generally 
indicates a more efficient heart function and better 
cardiovascular fitness.

4. Mood: The given mood score is average, suggesting moderate 
levels of stress or emotional well-being.

Considering the above points, the readiness score could be 
around 7 out of 10. 

1. Steps: Average steps per day: 4546 steps. 
This is within the recommended range of 7000-
10000 steps per day for adults.

2. Burned Calories: Average calories burned per 
day: 317 kcal. This is within the recommended 
range of 1800-2400 kcal per day for women.

3. Resting Heart Rate: Average resting heart 
rate: 67 bpm. This is within the normal range of 
60-100 bpm for adults.

4. Mood: The user's mood is 3 out of 5, which is 
neutral.

Overall, the user's health metrics are within 
normal ranges, and her mood is neutral. 
Therefore, her readiness score is 7 out of 10.

Figure 3: A Case Study on Readiness Score Prediction (READ) from PMData dataset. Here, we display the
responses from 1) our fine-tuned model, HealthAlpaca, 2) GPT-3.5, 3) GPT-4 and 4) Gemini-Pro. Green
Bolded texts highlights the valid reasoning and Red Bolded texts highlights the false or irrelevant
reasoning to the input.
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MAE Accuracy

Figure 4: Health Prediction Performance of Fully fine-tuned MedAlpaca with Different Train-
ing Sizes. The instruction fine-tuning is conducted across ten tasks across four datasets. The solid lines
represents the fully fine-tuned model’s performance whereas the dashed lines represents the zero-shot per-
formance of MedAlpaca which serves as baselines. Note that the color indicates the metrics used to evaluate
the tasks.
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