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Abstract
Most past work in multiple instance learning
(MIL), which maps a group or bag of instances
to a classification label, has focused on set-
tings in which the order of instances does not
contain information. In this paper, we de-
fine MIL with absolute position information:
tasks in which instances of importance remain
in similar positions across bags. Such problems
arise, for example, in MIL with medical images
in which there exists a common global align-
ment across images (e.g., in chest x-rays the
heart is in a similar location). We also evalu-
ate the performance of existing MIL methods
on a set of new benchmark tasks and two real
data tasks with varying amounts of absolute
position information. We find that, despite be-
ing less computationally efficient than other ap-
proaches, transformer-based MIL methods are
more accurate at classifying tasks with abso-
lute position information. Thus, we investigate
the ability of positional encodings, a mecha-
nism typically only used in transformers, to im-
prove the accuracy of other MIL approaches.
Applied to the task of identifying pathologi-
cal findings in chest x-rays, when augmented
with positional encodings, standard MIL ap-
proaches perform significantly better than with-
out (AUROC of 0.799, 95% CI: [0.791, 0.806] vs.
0.782, 95% CI: [0.774, 0.789]) and on-par with
transformer-based methods (AUROC of 0.797,
95% CI: [0.790, 0.804]) while being 10 times
faster. Our results suggest that one can effi-
ciently and accurately classify MIL data with
absolute position information using standard
approaches by simply including positional en-
codings.

Data and Code Availability. This paper uses
the MNIST dataset, which is publicly available
(Deng, 2012), and the MIMIC-CXR dataset, which
is available on the PhysioNet repository (John-
son et al., 2019). Our training and evaluation
code, dependency specifications, and the list of

images we use to train and evaluate all MIL
methods on the real data tasks are available at
https://github.com/MLD3/MILwAPI.

Institutional Review Board (IRB). This work
is not regulated as human subjects research since data
are de-identified and publicly available.

1. Introduction

In standard supervised learning, one instance is
mapped to one label. In contrast, in multiple in-
stance learning (MIL), several instances grouped in
a bag are mapped to one label (Ilse et al., 2018). In
recent years, MIL approaches have been applied to
high-resolution imaging data. For example, in appli-
cations of computer vision to medical imaging tasks,
to avoid the potential information loss that comes
with downsampling images by 10 to 10,000 fold, ma-
chine learning practitioners instead divide large im-
ages into smaller patches that maintain resolution
and then perform classification on the bag of patches
(Lu et al., 2021; Wang et al., 2017). This process can
result in improved classification accuracy over down-
sampling approaches (Seibold et al., 2021).

Past work in MIL has been largely evaluated in
settings where the order of instances does not con-
tain information (Zhang et al., 2022). However, this
assumption does not always hold, especially in set-
tings where there is a natural alignment across im-
ages. Thus, in this work, we formalize MIL with ab-
solute position information. We define tasks with ab-
solute position information as those in which the po-
sition of specific patches is consistent across bags and
therefore useful for classifying those bags. The num-
ber and location of those patches can be unknown.
There are many real-world MIL tasks with absolute
position information: for example, pathological find-
ings in chest x-rays (Figure 1) and MRIs (Johns Hop-
kins Medicine) often occur in similar positions across
images.
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Figure 1: Examples of data with absolute position
information. The three chest x-rays above
from the publicly available CXR8 dataset
(Wang et al., 2017) contain evidence of
cardiomegaly, a condition that manifests
on a chest x-ray as an enlarged heart.
This evidence appears in similar positions
across all images.

Along with formalizing MIL with absolute posi-
tion information, we develop a set of benchmark
tasks with varying amounts of absolute position in-
formation. We evaluate the performance of existing
MIL methods on these tasks as well as on two real
data tasks with different amounts of absolute posi-
tion information that involve chest x-ray classification
(Johnson et al., 2019). Currently, only transformer-
based MIL approaches are designed to leverage po-
sition information (Shao et al., 2021), and thus are
more accurate than existing non-transformer-based
MIL methods on tasks with absolute position in-
formation. However, recent work has emphasized
the need for computationally efficient alternatives to
transformers (Poli et al., 2023).

Thus, we aim to improve the accuracy of non-
transformer-based MIL methods, which are more
computationally efficient than transformer-based
MIL methods, on tasks with absolute position infor-
mation. We perform an ablation study to understand
the mechanisms that allow transformers to achieve
better accuracy on tasks with absolute position infor-
mation compared to non-transformers. Based on our
findings, we develop a positional encoding wrapper
that applies to non-transformer-based MIL methods.
While positional encodings are not new (Vaswani
et al., 2017), their use with non-transformer-based
approaches has not been explored in the context of
MIL. Though simple, our wrapper is effective at im-
proving the accuracy of non-transformer-based MIL
methods on benchmark and real data tasks, on par
with that of transformers while being significantly
faster.

Our contributions are as follows.

• Problem Formalization. We formalize the
MIL problem with absolute position information.

• Benchmark Task Creation. We develop a set
of benchmark tasks with varying amounts of ab-
solute position information.

• Baseline Evaluation. We evaluate existing
MIL methods on the benchmark and real data
tasks. We find that transformers outperform
current non-transformer-based methods on tasks
with absolute position information.

• Transformer Ablation Study. We study the
mechanisms that allow transformers to learn po-
sition information and find that transformers
with the original attention mechanism can only
learn position information via positional encod-
ings, while transformers with the Nystrom-based
attention mechanism can learn position infor-
mation implicitly via their self-attention mech-
anism.

• Wrapper. We propose a wrapper that aug-
ments non-transformer-based MIL methods with
positional encodings, a mechanism typically only
used with transformers. This approach im-
proves the accuracy of non-transformer-based
MIL methods on a variety of tasks with abso-
lute position information, on par with that of
transformers while being significantly faster.

2. Background

In this section, we first define the MIL setting on
which we focus: binary weakly supervised MIL, a
popular setting explored in most past work in MIL
(Ilse et al., 2018; Campanella et al., 2019; Zhang
et al., 2022). We then describe the general structure
of the MIL methods (both transformer-based and
non-transformer-based) designed to solve this task. It
is on this general structure that our proposed wrap-
per will apply.

2.1. Binary Weakly Supervised MIL

In binary MIL, one aims to predict a binary label
Y ∈ {0, 1} for a bag of instances X = {x1, . . . , xn},
where each instance xi consists of a feature vector or
matrix. A bag has the label Y = 1 if at least one
of the instances i in the bag has the instance-level
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label yi = 1. Otherwise, the bag has the label Y = 0.
Fully supervised MIL and weakly supervised MIL dif-
fer in the labeled data available at training time. At
training time, fully supervised MIL methods assume
access to both the bag label Y and instance labels yi
for all bags and instances. In contrast, weakly super-
vised MIL methods like the ones we consider in this
paper assume access only to the bag label Y at train-
ing time (Ilse et al., 2018). At inference time in both
settings, one only has access to the bag of instances
X and aims to predict bag label Y .

2.2. Components of an MIL Method

All weakly supervised MIL methods consist of two
components (Ilse et al., 2018): a feature extractor
that transforms instances xi into lower dimensional
feature vectors zi; and an aggregator that maps all
the feature vectors zi learned from instances within
a bag to a single classification probability p ∈ [0, 1].
Most MIL methods were developed to classify image
data and therefore use a convolutional neural network
as a feature extractor. The aggregator varies across
MIL methods. Non-transformer-based approaches
typically assume that instances are independently
and identically distributed and thus use permutation
invariant aggregators (Ilse et al., 2018; Lu et al., 2021;
Zhang et al., 2022; Seibold et al., 2021), whereas
transformer-based approaches incorporate position
information via transformer-based aggregators (Shao
et al., 2021; Zhao et al., 2022; Wölflein et al., 2023).

3. Related Work

3.1. Types of Position Information

Most past work in MIL has assumed that the order
of instances does not contain information. In con-
trast, most work involving transformers has assumed
that the order of inputs contains information and uses
positional encodings to learn from this type of infor-
mation. Specifically, the positional encodings in this
past work were designed to learn absolute position in-
formation (Vaswani et al., 2017) and relative position
information (Shaw et al., 2018; Shao et al., 2021). A
dataset has relative position information if the dis-
tance between elements of importance within inputs
is similar across inputs. Tasks with absolute position
information will also contain relative position infor-
mation if more than one element occurs in a similar
position across inputs. However, a task with relative
position information does not imply the presence of

absolute position information. In this paper, we focus
on MIL tasks with absolute position information.

3.2. MIL Methods and Tasks in Past Work

Most work in MIL has focused on developing meth-
ods to classify histopathology images (Ilse et al., 2018;
Lu et al., 2021; Shao et al., 2021; Zhang et al., 2022).
Early work in this area assumed that there was no
information in the order of instances in this task.
Recent work, however, hypothesized that the task
of classifying histopathology images contains abso-
lute and relative position information, and proposed
transformer-based solutions (Shao et al., 2021; Zhao
et al., 2022; Wölflein et al., 2023). However, as Zhang
et al. showed, transformers do not always outperform
standard approaches that do not leverage position in
tasks involving histopathology images (Zhang et al.,
2022). This suggests that there is not much posi-
tion information in histopathology image classifica-
tion tasks. In retrospect, this is perhaps unsurprising
since there is no guarantee of global alignment across
histopathology images (i.e. instances of importance
are not guaranteed to be in similar positions across
histopathology images (Ilse et al., 2018)).

Beyond tasks in histopathology, MIL methods have
been developed to classify multiple views of medical
image data (i.e. multiple views of a breast ultra-
sound or an echocardiogram) (van Tulder et al., 2021;
Huang et al., 2024), where each instance is a differ-
ent view of the medical image data. There is global
alignment across these views, which allows for the
consolidation of information across multiple images.
However, the order of views relative to each other is
not considered useful for classification, and thus these
tasks do not have absolute position information.

Additionally, Seibold et al. developed an MIL
method to classify chest x-rays, a task that we hy-
pothesize has absolute position information (Seibold
et al., 2021). However, the method they proposed is
invariant to the order of instances. Thus, we hypoth-
esize that it will not perform as well as transformers,
which explicitly leverage position.

3.3. Efficient Methods for Leveraging
Position

Applied to MIL tasks with absolute position informa-
tion, we hypothesize that transformer-based methods
will outperform standard approaches. One drawback
of transformers, however, is their computational inef-
ficiency due to their use of self-attention (Poli et al.,
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2023). As an alternative to transformers, one naive
solution to an MIL task with absolute position in-
formation might involve simply removing instances
irrelevant to classification based on absolute posi-
tion information (i.e., cropping large images to the
patches of importance). However, removing irrele-
vant instances assumes certainty in the absolute po-
sition information (i.e., important patches never ap-
pear in specific regions). Such certainty is unlikely
in practice. For example, the locations of objects in
chest x-rays can vary based on how the x-ray was
obtained, which introduces uncertainty in the abso-
lute position information (Figure 1). Recognizing a
need for MIL approaches that are computationally ef-
ficient and can leverage absolute position information
subject to uncertainty, we develop a simple, efficient
method that allows non-transformer-based methods
to leverage absolute position information.

4. Methods

In MIL tasks with absolute position information,
there is some information in the order of instances.
Thus, we do not use the term bag. Instead, we con-
sider each example as a list of instances. Below, we
formalize our definition of absolute position informa-
tion within an MIL dataset and present our proposed
approach for leveraging such information.

Our definition of absolute position information de-
pends on instance labels. Note that because we are
in a weakly supervised MIL setting, we may not have
access to instance labels during training and testing,
and therefore cannot always measure absolute posi-
tion information for a given dataset. Using synthetic
data in which we have ground truth instance labels,
we apply this definition, varying the amount of ab-
solute position information. We explore how clas-
sification performance varies with absolute position
information.

4.1. Formalization of Absolute Position
Information.

Consider dataset D defined as

D = {X(i), Y (i)}Ni=1,

where each X(i) is a list of instances x
(i)
j ∈ Rd′×d×d

for j = 1, . . . , n

X(i) = [x
(i)
1 , . . . , x(i)

n ]

Thus, D contains N lists and each list X(i) contains
n instances, where n is the same across lists.

Each instance has a corresponding binary label

y
(i)
j ∈ {0, 1}. The label Y (i) of each list X(i) is the

maximum of the instance labels y
(i)
j

Y (i) = max([y
(i)
1 , . . . , y(i)n ])

Thus, similar to how other MIL work defines their
bag-level labels, Y (i) = 1 if at least one instance

y
(i)
j = 1. Otherwise, Y (i) = 0.
We define the percentage of absolute position infor-

mation in dataset D, GD, using cj ∈ Z and N+ ∈ Z,
where cj is the number of instances with label y = 1
that occur in position j in all lists in the dataset,

cj =

N∑
i=1

y
(i)
j

and N+ is the total number of instances within all
lists with the label y = 1 in the dataset

N+ =

n∑
j=1

cj

Informally, we define absolute position information
based on the expected benefit of leveraging the po-
sition of instances during classification. Consider a
dataset in which every instance with the correspond-

ing list label Y (i) = 1 has the instance label y
(i)
j = 1

for all j. This dataset has 0% absolute position in-
formation, because the position of an instance in the
lists with label Y (i) = 1 is not useful for classification.
In other words, as the number of positions where in-

stances with the label y
(i)
j = 1 could appear grows,

the less useful the positions of those instances are
for classification, and thus the less absolute position
information the corresponding dataset has. There-
fore, when comparing datasets that have the same
parameters except for the number of positions where

instances have the label y
(i)
j = 1, the dataset with

the fewest positions where instances have the label

y
(i)
j = 1 will have most absolute position informa-

tion. As a real-world example, chest x-rays where
pathological findings are localized to a small number
of positions within the heart have more absolute posi-
tion information than chest x-rays where pathological
findings could be anywhere in the chest.

Applying this intuition, absolute position informa-
tion is minimized when all instances with the label
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Figure 2: An illustrative example of toy datasets with varying percentages of absolute position informa-
tion. Dataset DA has 0% absolute position information. Dataset DB has 50% absolute po-
sition information. Dataset DC has 100% absolute position information. In these examples,
N = 3, n = 3, N+ = 3, and N+/n = 1.

y
(i)
j = 1 are equally distributed among all positions

cj =
N+

n
∀j

Absolute position information is maximized when all
instances are located in a single position j∗ ∈ {1, n}

cj∗ = N+

cj = 0 ∀j ̸= j∗

Thus, we can define absolute position information us-
ing the average absolute value of the distances of cj
from N+/n for all j, a quantity we call AD

AD =
1

n

n∑
j=1

∣∣∣∣cj − N+

n

∣∣∣∣
This is similar to the variance of cj . We use the av-
erage absolute value of the distances instead of vari-
ance in our definition of absolute position informa-
tion. Given that Dm is a dataset where all instances
with the label y

(i)
j = 1 are equally distributed among

m positions in the ordered lists in Dm, we want the
difference in absolute position information between
Dm and Dm−1 to be the same regardless of m. The
average absolute value of the distances weighs outliers
(i.e., large differences between cj and N+/n) more
similarly to small differences between cj and N+/n

than the variance of distances. We discuss this fur-
ther in Appendix Section A.

We convert AD into a percentage so that abso-
lute position information can be comparable across
datasets with different N+ and n values. To do this,
we divide AD by its maximum value max(AD), which
occurs when cj∗ = N+ for a single position j∗ ∈ [1, n]
and cj = 0 ∀ j ̸= j∗

max(AD) =
1

n

(
(n− 1)

N+

n
+

(
N+ − N+

n

))
= 2

N+

n2
(n− 1)

and absolute position information as follows.

Definition: The percentage of absolute position
information in dataset D, GD, is defined as

GD =
AD

max (AD)
=

n

2(n− 1)N+

n∑
j=1

∣∣∣∣cj − N+

n

∣∣∣∣%

An illustrative example of datasets with vary-
ing amounts of absolute position information is in
Figure 2.
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4.2. Proposed Wrapper

To enable standard approaches to leverage absolute
position information, we developed a general purpose
wrapper. This wrapper is summarized in Figure 3.
We concatenate an absolute positional encoding to
the output of the feature extractor within the MIL
method pipeline and let th aggregator learn from
both the output of the feature extractor and the po-
sitional encoding. Below, we justify the wrapper’s
use of an absolute positional encoding, concatenation,
and late fusion.

Justification for Use of Positional Encod-
ings. We use an absolute positional encoding in the
wrapper, given its ability to learn absolute position
information (Vaswani et al., 2017; Shaw et al., 2018).
Specifically, we use one of the most popular absolute
positional encodings, which encodes position via sine
and cosine functions of different frequencies (Vaswani
et al., 2017). We opted for a positional encoding over
alternatives, given the ease with which it could be
used in a wrapper. While alternatives like convolu-
tional, capsule, and recurrent networks can model po-
sition information within inputs (Islam et al., 2020),
adding these layers to permutation invariant aggrega-
tors would increase the amount of computation com-
pared to using a positional encoding.

Justification for Use of Concatenation and
Late Fusion. In our proposed wrapper, we con-
catenate the positional encodings to the output of
the feature extractor. While transformers typically
sum positional encodings with their inputs (Vaswani
et al., 2017), we chose to concatenate the positional
encodings to ensure that our models could separately
leverage the features learned from the feature extrac-
tor and the position information provided by the po-
sitional encoding. While this concatenation doubles
the computation required of the aggregator, we hy-
pothesized that this would not significantly increase
the overall classification time of any of our methods.
We concatenated positional encodings to the output
of the feature extractor instead of the input to the
feature extractor because feature extractors are often
pretrained on non-MIL data (like ImageNet) that do
not depend on lists and therefore do not have posi-
tions (Deng et al., 2010; Lu et al., 2021; Shao et al.,
2021; Zhang et al., 2022).

Figure 3: In comparison to existing non-
transformer-based MIL methods that are
permutation invariant, we concatenate a
positional encoding to the output of the
feature extractor within the MIL method
pipeline and let the aggregator learn from
the output of the feature extractor and
the positional encoding.

5. Experimental Setup

In our experiments, we first evaluate multiple MIL
methods (the non-transformer-based methods ABD-
MIL (Ilse et al., 2018), CLAM-SB (Lu et al., 2021),
CLAM-MB (Lu et al., 2021), SG-MIL (Seibold et al.,
2021), and DTFD (Zhang et al., 2022); and the
transformer-based methods TransMIL (Shao et al.,
2021) and DAS-MIL (Wölflein et al., 2023)) in their
ability to classify data with varying amounts of abso-
lute position information. SG-MIL is the method de-
veloped specifically to classify chest x-rays. We then
perform an ablation study with TransMIL to exam-
ine the mechanisms it uses to leverage absolute posi-
tion information. Finally, we determine the extent to
which our positional encoding wrapper can improve
the performance of all non-transformer-based meth-
ods. The aforementioned approaches were selected
because they are among the most widely used and
most accurate MIL methods. We further describe
these methods in Appendix Section B and our train-
ing and hyperparameter tuning procedure for these
methods in Appendix Section C.
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We evaluate all approaches on a suite of benchmark
tasks in which the amount of absolute position infor-
mation varies and two real-world tasks. While the
percent of absolute position information in the real-
world task is unknown, we expect this task to contain
absolute position information due to past work that
provides evidence that the position of instances of
importance in this task are consistent across exam-
ples (Wang et al., 2017). We present details on the
synthetic and real-data tasks in the following subsec-
tions.

5.1. Benchmark Synthetic Data Task:
Classifying MNIST Lists

The goals of the experiments on the benchmark tasks
are to evaluate the performance of MIL methods
with and without the wrapper on tasks with varying
amounts of absolute position information and train-
ing data. We vary the amounts of training data to
identify the MIL methods that are most data efficient
and to change the difficulty of the tasks, to identify
how useful positional encodings are as task difficulty
increases. Thus, we developed tasks in which we can
change the amount of absolute position information
and increase the amount of training and validation
data.

We consider a variation of the MNIST Bag task
that we call the MNIST List task. The MNIST Bag
task is a task that has been used to evaluate MIL
methods in past work (Ilse et al., 2018). In the

MNIST Bag task, each instance x
(i)
j ∈ [0, 255]1×28×28

in a bag is an image sampled from the MNIST dataset

(Deng, 2012). A bag has the label y
(i)
j = 1 if at least

one instance in the bag x
(i)
j is an image of a ‘9’ and

a bag has the label y
(i)
j = 0 otherwise. The data

in the MNIST Bag task have 0% absolute position
information.

In the MNIST List task, we define the instances
and list labels in the same way as the MNIST Bag
task. Unlike in the MNIST Bag task, in the MNIST
List task, we evaluate the ability of methods to clas-
sify datasets with different amounts of absolute po-
sition information: specifically, we vary absolute po-
sition information according to 100(w/(n − 1))% for
w = 0, · · · , n− 1. Furthermore, only one instance
in each list with the label Y (i) = 1 has the label
y
(i)
j = 1 and each list is of size n = 10. We describe

the method that we use to create datasets for the
MNIST List task in Appendix Section D. Using that

method, we create 30 training sets (10 of size 100, 10
of size 1000, and 10 of size 10000), 30 validation sets
(10 of size 100, 10 of size 1000, and 10 of size 10000),
and 10 test sets (of size 250).

While we are focused on tasks with absolute posi-
tion information, we also investigate the ability of the
wrapper in the context of relative position informa-
tion. To do this, we create a dataset with weak ab-
solute position information but strong relative posi-
tion information. Specifically, we modify the dataset
for the MNIST List Task with 100 training bags and
22% absolute position information such that given a
list with an image of a ‘9’ is in position j, that list
will have an image of an ‘8’ in position j − 1.

5.2. Real-World Tasks: Classifying
Cardiomegaly and Pulmonary Edema in
Chest X-Rays

We compare the performance of MIL methods on
two real data tasks that do not have instance la-
bels, and thus have unknown amounts of absolute
position information. Based on domain knowledge,
however, we hypothesize that one task (classifying
cardiomegaly) has likely strong absolute position in-
formation, and the other task (classifying pulmonary
edema) has likely weak absolute position information.
This allows us to explore the benefit of the wrapper
in real-world settings with different amounts of abso-
lute position information. This also allows us to test
performance gains from the wrapper on lists that po-

tentially have instances labeled y
(i)
j = 1 for multiple

j. In our synthetic data setting, only one instance

per list corresponds to the label y
(i)
j = 1.

We evaluate the performance of several MIL meth-
ods in classifying cardiomegaly and pulmonary edema
in chest x-rays using the MIMIC-CXR dataset, which
is composed of 377,110 chest x-rays taken at the
Beth Israel Deaconess Medical Center (Johnson et al.,
2019). The chest x-rays range in size but are gener-
ally around size 3000 x 2000 pixels.

The term “cardiomegaly” refers to a condition in
which one has an enlarged heart (Amin and Siddiqui,
2022). The heart is in a similar position across chest
x-rays because chest x-rays are taken with patients in
similar positions, although there can be slight vari-
ation (i.e. if the patients are at slightly different
angles) (Wang et al., 2017). Thus, classifying car-
diomegaly in chest x-rays is a problem with likely
strong absolute position information.
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The term “pulmonary edema” refers to a condition
in which one has an abnormal amount of fluid in the
lungs (Malek and Soufi, 2023). Pathological findings
for pulmonary edema can occur in multiple locations
in the lungs (Malek and Soufi, 2023). Thus, classi-
fying pulmonary edema in chest x-rays is a problem
with likely weak absolute position information.

For the task of classifying cardiomegaly
and pulmonary edema in chest x-rays,

x
(i)
j ∈ [0, 255]3×512×512 is a patch sampled from

a chest x-ray and n = 24 is the number of instances
within a list . The chest x-rays are not annotated,
so unlike our synthetic datasets, we do not know

the underlying y
(i)
j for any of our patches. We only

have labels, at the chest x-ray or list level, assigned
using the CheXpert labeler, a rule-based algorithm
that extracts findings from radiology reports (Irvin
et al., 2019). For classifying cardiomegaly, a chest
x-ray is labeled Y (i) = 1 if cardiomegaly is present in
the corresponding radiology report and 0 otherwise.
For classifying pulmonary edema, a chest x-ray is
labeled Y (i) = 1 if pulmonary edema is present in
the corresponding radiology report and 0 otherwise.
We describe the preprocessing, pretraining, and data
split method that we use in Appendix Section E.

5.3. Evaluation Metrics

We evaluate the accuracy and computational effi-
ciency of the aforementioned MIL methods. For med-
ical image classification, high accuracy is necessary to
ensure that appropriate diagnoses will be made and
speed ensures that diagnoses can be given promptly.

We evaluate all methods’ computational efficiency
using wall clock time at evaluation (which corre-
sponds to wall clock time at training). The wall clock
time reported for the methods on the real data tasks
is the wall clock time of the aggregator because the
time needed to compute the features from the feature
extractor is constant across methods.

We evaluate accuracy on the real and synthetic
data tasks differently because some of our synthetic
datasets have a small number of training and vali-
dation lists, leading to large performance differences
among mode ls. For the synthetic data tasks, for each
approach, we train 10 models on each dataset with 10
different random seeds respectively, and report the
median and IQR of the AUROCs of each of the 10
models applied to the test sets. For the real data
tasks, given the size of the training sets (N≈35,000),
we train one model per approach and report the me-

dian and the 95% confidence interval of the AUROC
of 1000 bootstrapped samples of our test set.

Whenever we compare two methods’ performances
and mention a statistically significant difference in
performance, we measure that statistical significance
via a bootstrap hypothesis test with a significance
level of 0.05 (Efron and Tibshirani, 1993).

6. Results and Discussion

Through our experiments, we probe the following
questions

• Baseline Evaluation. How do existing meth-
ods perform on tasks with absolute position in-
formation?

• Transformer Ablation Study. What mecha-
nisms do transformers use to learn absolute po-
sition information?

• Wrapper Effectiveness.

– Does a simple positional encoding wrapper-
based approach lead to improved perfor-
mance on tasks with absolute position in-
formation?

– How does wrapper-based performance com-
pare to transformer-based MIL methods?

• Wrapper Robustness. How does the perfor-
mance gain from our positional encoding wrap-
per vary with the amount of absolute position
information and the amount of training data in
the task?

• Other Types of Position Information. Does
our wrapper lead to improved performance on
tasks with only relative position information?

6.1. Baseline Evaluation.

How do existing methods perform on tasks with abso-
lute position information? On the real data task with
likely strong absolute position information (classify-
ing cardiomegaly in chest x-rays), TransMIL outper-
forms the transformer-based method DAS-MIL and
all non-transformer-based methods. However, it is
slower than these methods (Table 2, Appendix Table
4). DAS-MIL does not outperform non-transformer-
based methods (Table 2). This is because DAS-MIL
uses a relative positional encoding, not an absolute
positional encoding, and thus is not able to leverage
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the absolute position information in this task as well
as TransMIL. ABDMIL outperforms all other non-
transformer-based methods, including SG-MIL, both
in terms of AUROC (0.782, 95% CI: [0.774, 0.789]
vs. 0.755, 95% CI: [0.747, 0.764]) and speed (11.87
vs. 31.82 seconds).

On the synthetic data task, when trained on 100
lists, we find TransMIL only has a higher AUROC
than non-transformer-based methods on data with >
89% absolute position information. However, Trans-
MIL’s performance on tasks with ≤ 89% absolute po-
sition information improves as the number of training
lists increases. Thus TransMIL especially struggles to
classify tasks with small amounts of absolute position
information when given small amounts of training
data (Figure 4, Appendix Figure 5, Appendix Fig-
ure 6).

Thus, while TransMIL is slower than non-
transformers and struggles to classify lists with weak
absolute position information in limited data settings,
it can exceed the AUROC of non-transformers on
tasks with absolute position information.

6.2. Transformer Ablation Study.

What mechanisms do transformers use to learn ab-
solute position information? Given that DAS-MIL
cannot leverage absolute position information as well
as TransMIL, in this section, we examine TransMIL’s
components in their ability to learn absolute position
information. When we replace TransMIL’s attention
mechanism (the Nystrom attention approximation)
with the original attention mechanism, the resulting
transformer cannot leverage absolute position infor-
mation without positional encodings. On the real
data task with likely strong absolute position infor-
mation, the performance of that transformer with-
out positional encodings is significantly worse than
with positional encodings (Table 1). We see simi-

Table 1: 95% CI of AUROC of TransMIL-Based
Methods on the real data task with likely
strong absolute position information. The
* signifies a statistically significant differ-
ence in performance between transform-
ers with and without positional encodings
(PE) when they use the original attention
mechanism.

Attention
Type

Test AUROC
without PE

Test AUROC
with PE

Nystrom 0.800 (0.793, 0.806) 0.797 (0.790, 0.804)
Original 0.785 (0.778, 0.791)* 0.805 (0.798, 0.812)

Figure 4: Median and IQR of the AUROC of
transformer-based (DAS-MIL, TransMIL)
and non-transformer-based (ABDMIL,
ABDMIL+Wrapper) MIL methods on the
synthetic data tasks with 0% (weak) and
100% (strong) absolute position informa-
tion.

lar results on the synthetic data tasks with absolute
position information (Appendix Table 6). Thus, the
Nystrom attention approximation can leverage abso-
lute position information. This finding contradicts
past work which has assumed that transformers are
position invariant without positional encodings (Jung
et al., 2020).

6.3. Wrapper Effectiveness.

Does a simple positional encoding wrapper-based ap-
proach lead to improved performance on tasks with
absolute position information? On the synthetic data
task, when trained on 100 lists, all non-transformer-
based methods benefit from the wrapper when clas-
sifying data with ≥ 67% absolute position informa-
tion. Specifically, when classifying data with 67%
absolute position information, ABDMIL with the
wrapper performs significantly better than ABD-
MIL without the wrapper (0.955, IQR: [0.948, 0.961]
vs. 0.919, IQR: [0.902, 0.937]). This trend contin-
ues for ABDMIL and other non-transformer-based
methods on synthetic datasets with ≥ 67% abso-
lute position information (Appendix Figure 5). We
see similar results on the real data task with likely
strong absolute position information (classifying car-
diomegaly in chest x-rays), for ABDMIL and other
non-transformer-based methods, (Table 2, Appendix
Table 4).

One potential concern is that our wrapper would
significantly increase MIL methods’ classification
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Table 2: 95% CI of AUROC and speed of
transformer-based (DAS-MIL, TransMIL)
and non-transformer-based (ABDMIL,
ABDMIL+Wrapper) MIL methods on the
real data task with likely strong absolute
position information.

Model Test AUROC Time (s)
DAS-MIL 0.779 (0.771, 0.787) 55.39
TransMIL 0.797 (0.790, 0.804) 122.60
ABDMIL 0.782 (0.774, 0.789) 11.87
ABDMIL+Wrapper 0.799 (0.791, 0.806) 13.17

time. We find that all methods experience no change
or a marginal (10%) increase in classification time
when using the wrapper versus not (Table 2, Ap-
pendix Table 4, Appendix Table 5). Thus, the wrap-
per does not significantly increase the speed of any
method. Furthermore, in terms of computational effi-
ciency, our wrapper is on par with TransMIL’s CNN-
based positional encoding.

How does wrapper-based performance compare to
transformer-based MIL methods All non-transformers
with the wrapper except for SG-MIL achieve higher
AUROC than DAS-MIL. We see this when comparing
ABDMIL and DAS-MIL on the synthetic data task
with 100 training ordered lists and strong absolute
position information (0.980, IQR: [0.976, 0.984] vs.
0.930, IQR: [0.797, 1.063]) and the real data task with
likely strong absolute position information (Figure 4,
Table 2).

Furthermore, the AUROC of all non-transformers
with the wrapper except for SG-MIL is on par with
that of TransMIL. We see this when comparing AB-
DMIL and TransMIL on the synthetic data task with
100 training ordered lists and strong absolute posi-
tion information (0.980, IQR: [0.976, 0.984] vs. 0.957,
IQR: [0.890, 1.024]) and the real data task with likely
strong absolute position information (Figure 4, Ta-
ble 2).

SG-MIL’s performance with the wrapper is slightly
lower than that of the transformers on the real data
task with likely strong absolute position informa-
tion (0.766, 95% CI: [0.758, 0.773] vs. 0.779, 95%
CI: [0.771, 0.787] and 0.797, 95% CI: [0.790, 0.804])
(Table 2. Appendix Table 4). However, similar
to their performance without the wrapper, all non-
transformers with the wrapper, including SG-MIL,
are faster than the transformer and outperform trans-
formers on tasks with weak absolute position infor-
mation (Figure 4). Thus, on all tasks, one can use a

Table 3: 95% CI of AUROC and speed of MIL
methods on the real data task with likely
weak absolute position information.

Model Test AUROC Time (s)
DAS-MIL 0.855 (0.850, 0.860) 51.31
TransMIL 0.861 (0.856, 0.866) 96.23
ABDMIL 0.857 (0.851, 0.862) 13.85
ABDMIL+Wrapper 0.860 (0.855, 0.865) 10.27

non-transformer to perform better than or compara-
bly to transformers while being faster.

6.4. Wrapper Robustness.

How does the performance gain from our positional
encoding wrapper vary with the amount of absolute
position information and the amount of training data
in the task? While the wrapper improves perfor-
mance on tasks with absolute position information,
it does not hurt performance on tasks with 0% abso-
lute position information. On the synthetic data task
with 0% absolute position information, when trained
on 100 lists, ABDMIL performs the same with and
without the wrapper (0.904, IQR: [0.890, 0.918] vs.
0.909, IQR: [0.891, 0.927]) (Figure 4). This trend
holds for all other non-transformer-based methods
when trained on the same or more lists (Appendix
Figure 5). Similarly, on the real data task with likely
weak absolute position information (classifying pul-
monary edema in chest x-rays), ABDMIL performs
the same with and without the wrapper and this
trend holds for all other non-transformer-based meth-
ods (Table 3, Appendix Table 5). It is important to
note that on these tasks, with weak to no position
information, standard methods without the wrapper
achieve comparable performance to transformers (Ta-
ble 3).

On the synthetic data tasks, while the wrapper im-
proves performance significantly on methods trained
on 100 lists, it improves performance less on methods
trained on 1,000 lists and does not impact the per-
formance of methods trained on 10,000 lists. Thus,
the wrapper is most helpful in limited data settings
(Appendix Figure 5). As dataset size increases, task
difficulty decreases, evidenced by the performance of
all methods without positional encodings increasing.
This leaves little room for performance improvements
via positional encodings.
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6.5. Other Types of Position Information.

Does our wrapper lead to improved performance on
tasks with only relative position information? On
a synthetic data task with weak absolute position
but strong relative position, the wrapper is unable to
improve the performance of ABDMIL (0.897, IQR:
[0.883, 0.911] without the wrapper vs. 0.906, IQR:
[0.882, 0.930] with) (Appendix Table 7). This is be-
cause our wrapper does not encode relative position
information. Past work has developed relative posi-
tional encodings for transformers (Shaw et al., 2018;
Wölflein et al., 2023). We hypothesize that augment-
ing standard approaches like ABDMIL with these
encodings could improve their performance on tasks
with only relative position information.

7. Conclusion

In this work, we formalize the MIL problem with ab-
solute position information, identify mechanisms that
allow transformers to learn position information, and
based on that, propose a wrapper that augments non-
transformer-based MIL methods with positional en-
codings. Our main findings are that 1) despite being
slower and less data efficient, current transformers
outperform current non-transformers on tasks with
absolute position information; 2) these transformers
can leverage absolute position information via the
Nystrom attention approximation and positional en-
codings; and 3) a simple positional encoding wrap-
per can significantly improve the performance of non-
transformer-based methods. The last finding is per-
haps the most significant since it suggests we do not
need to rely solely on computationally and data in-
efficient transformer-based MIL approaches to solve
tasks with absolute position information. Our find-
ings held across several synthetic data tasks and two
real data tasks.

Our work is not without limitations. We do not
evaluate the effect of the wrapper on methods that
explicitly pretrain their feature extractor in a man-
ner that deviates from our pretraining strategy, like
the standard MIL approaches DSMIL and MIL-RNN;
and the transformer-based MIL approach SETMIL
(Campanella et al., 2019; Li et al., 2021; Zhao et al.,
2022). However, none of the pretraining strategies
and the aggregators of corresponding methods in past
work incorporated the position of instances. Thus, we
hypothesize that the wrapper should improve the per-
formance of the non-transformer-based MIL methods

with feature extractors pretrained in ways that differ
from our pretraining strategy. Nevertheless, we leave
the exploration of the impact of pretraining strategies
on the performance of MIL methods on tasks with
absolute position information as future work. An-
other potential future direction is to develop a wrap-
per that could improve the performance of standard
approaches on tasks with weak absolute position in-
formation but strong relative position information.

Overall, this work formalizes the MIL problem with
absolute position information and demonstrates the
utility of a simple positional encoding wrapper in MIL
classification on tasks with absolute position informa-
tion. Our results contribute to the growing body of
work that finds that attention may not be all you need
(Poli et al., 2023), and non-transformer-based meth-
ods can achieve comparable performance with greater
computational efficiency than transformers on tasks
that traditionally use transformers.
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Appendix A. Comparing Variance and
Average Absolute
Distance

Consider two datasets, Dm and Dm−1, each with N
ordered lists of size n. In Dm−1, all instances with

the label y
(i)
j = 1 are equally distributed among m−1

positions in the N ordered lists. In Dm, all instances

with the label y
(i)
j = 1 are equally distributed among

m positions in the N ordered list.
The difference in the variance of cj in Dm−1 and

Dm (VDm−1
− VDm

) depends on m

VDm−1 − VDm =
N+2

n(m− 1)m

The difference in the average absolute value of the dis-
tances of cj from N+/n in Dm−1 and Dm (ADm−1 −
ADm

) is independent of m.

ADm−1 −ADm =
2N+

n2

We define the difference in absolute position infor-
mation between 2 datasets with the same N and n
independently of m (the number of positions the in-

stances with the label y
(i)
j span). Thus we use AD

in our definition of absolute position information in-
stead of VD.

Appendix B. Defining MIL Methods

In our paper, we evaluate the ability of the follow-
ing methods with and without positional encodings
to solve tasks with absolute position information.
These approaches were selected because they are ei-
ther among the most widely used MIL methods or
they evaluated their MIL methods on similar tasks
to the tasks in this paper.

• Attention based deep MIL (ABDMIL) (Ilse
et al., 2018): Unlike early MIL methods that
used the maximum and mean operators to aggre-
gate the features from each instance, ABDMIL
proposed a more complex permutation invariant
aggregator: a trainable weighted average where
the weights are computed with a 2-layer neural
network.

• Multiple Instance Learning with Self-Guided
Loss (SG-MIL) (Seibold et al., 2021): SG-MIL
aggregates features from each instance using the

softmax average pooling operator, and iterates
on this representation using a standard cross-
entropy loss function as well as a loss function
that assigns pseudo-labels to instances.

• Single-attention-branch CLAM (CLAM-SB) and
multi-attention-branch CLAM (CLAM-MB) (Lu
et al., 2021) build upon ABDMIL by supervising
it via an additional task that assigned pseudo
labels to instances.

• Double tier feature distillation (DTFD) (Zhang
et al., 2022) builds upon ABDMIL by breaking
up large bags into smaller pseudo-bags to better
learn from bags with a small number of informa-
tive instances.

• TransMIL (Shao et al., 2021): TransMIL uses
the Nystrom attention approximation of the at-
tention mechanism in the aggregation step in-
stead of the computationally inefficient original
attention mechanism and contains a specialized
positional encoding that can learn absolute po-
sition information.

• Distance-aware self-attention (DAS-MIL)
(Wölflein et al., 2023) models the relative
spatial information among inputs in the self-
attention mechanism of a transformer instead of
using a positional encoding.

Appendix C. Hyperparameters and
Training

The feature extractor used for all models trained on
synthetic data has a similar architecture to the fea-
ture extractor used in (Ilse et al., 2018). It has 2 con-
volutional layers followed by three linear layers. Both
convolutional layers have a kernel size of 5. The first
convolutional layer has 40 output channels. The sec-
ond convolutional layer has 100 output channels. The
linear layers all have 500 output features. The feature
extractor used by all models trained on the real data
uses a Densenet-121 architecture with a learning rate
of 1e − 5 and a weight decay of 1e − 6 (Irvin et al.,
2019).

The final hyperparameters and the hyperparame-
ters searched over for all MIL methods on all datasets
available on Github. The hyperparameters not spec-
ified on Github are the hyperparameters reported in
the papers corresponding to CLAM-SB, CLAM-MB,
and TransMIL (Lu et al., 2021; Shao et al., 2021).
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Figure 5: All subplots show how the median and
IQR of a measure of performance of vari-
ous non-transformer-based MIL methods
(on the y-axis) varies with % absolute
position information in each test set (on
the x-axis). The measure of performance
is AUROC of each original method for
subfigures a-c, AUROC of each method
augmented with the wrapper for subfig-
ures d-f, and the change in AUROC of
each method augmented with compared
to the method without the wrapper for
subfigures g-i.

We implement and train our models using Pytorch
version 1.13.1, CUDA version 11.6, Ubuntu 20.04.5, 8
NVIDIA RTX A6000 GPUs, an Adam optimizer (Ba

Figure 6: All subplots show how the median and
IQR of the AUROC of transformer-based
MIL methods (on the y-axis) varies with
% absolute position information in each
test set (on the x-axis)

and Kingma, 2015), and a batch size of 1 as is typical
for multiple instance learning. We train for at least
10 iterations, and then until validation performance
does not improve for 5 iterations, selecting the model
for which validation performance was best. We train
for a maximum of 500 epochs.

Appendix D. MNIST Ordered List
Task Data Creation

To create datasets for the MNIST Ordered List task,
we first create datasets with ordered lists with 100%
absolute position information. Half of the ordered
lists in these datasets have the label Y (i) = 1 and the
other half of ordered lists have the label Y (i) = 0.
Each ordered list with the label Y (i) = 0 contains n
images randomly sampled from the set of images in
the MNIST dataset that do not contain a ‘9’. Each
ordered list with the label Y (i) = 1 is created such
that the first n − 1 images are randomly sampled
from the set of images in the MNIST dataset that
do not contain a ‘9’, and the n−th image is randomly
sampled from the set of images in the MNIST dataset
that do contain a ‘9’. Then, to create a dataset with
a variable amount of absolute position information,
we shuffle the positions of instances in each ordered
list in the dataset D = {X(i), Y (i)}Ni=1 with 100%
absolute position information such that the dataset’s
percentage of absolute position information becomes
100(w/(n− 1))% for w = [0, . . . , n− 2]

Algorithm 1: Shuffling Instance Positions

for i ∈ [1, . . . , N ] do
Z = X(i)

v = RandomInt(0, n− w − 1)
for j ∈ [1, . . . , n] do

if j > v then

zj = x
(i)
j−v

end
else

zj = x
(i)
n−(v−j)

end

end

X(i) = Z;
end
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Table 4: 95% CI of AUROC and Classification
Time of MIL methods with and without
the wrapper on the real data task with
likely strong absolute position information
(classifying cardiomegaly in chest x-rays),
(classifying Cardiomegaly in chest x-rays).

Base
Model

Use
Wrap-
per?

Test AUROC Time
(s)

CLAM-SB No 0.781 (0.774, 0.788) 13.58
Yes 0.799 (0.792, 0.806) 15.41

CLAM-
MB

No 0.778 (0.771, 0.786) 12.49

Yes 0.798 (0.790, 0.805) 14.32
DTFD No 0.777 (0.769, 0.785) 48.3

Yes 0.792 (0.785, 0.799) 46.3
SG-MIL No 0.755 (0.747, 0.764) 31.8

Yes 0.766 (0.758, 0.773) 32.2

Appendix E. Preprocessing and Data
Split for Real Data Task

Preprocesssing and Pretraining. To create or-
dered lists, we resize each chest x-ray to be of size
3000 x 2000 (the average size of most chest x-rays)
and then extract 24 non-overlapping patches from
the chest x-ray to serve as instances in the ordered
list. We exclude chest x-rays labeled uncertain by
the CheXpert labeler because past work did not find
a statistically significant advantage to including them
(Irvin et al., 2019).

To give the best chance to MIL methods, we pre-
train the feature extractor (described in Appendix
Section C) of all MIL methods for 3 epochs on data
from the CheXpert dataset, a related dataset of
224,316 chest x-rays taken at the Stanford Hospital
(Verma and Tapaswi, 2022; Irvin et al., 2019). We
pretrain the feature extractor in a supervised manner
on patches extracted from the chest x-rays. We as-
signed all the patches the image label and trained on
the patches given this label. For the task of classify-
ing cardiomegaly, our pretraining set contains 10,249
images (7,617 with cardiomegaly and 2,632 without).
For the task of classifying pulmonary edema, our pre-
training set contains 21,747 images (16,403 with pul-
monary edema and 5,344 without).

Training, Validation, and Test Sets. After
pretraining, we fix the feature extractor of all meth-
ods and apply each MIL method to data from the
MIMIC-CXR Database (Johnson et al., 2019). We
assigned each patient in the MIMIC-CXR database
to belong to either the training, validation, or test

Table 5: 95% CI of AUROC and Classification
Time of MIL methods with and without
the wrapper on the real data task with
likely weak absolute position information
(classifying Pulmonary Edema in chest x-
rays).

Base
Model

Use
Wrap-
per?

Test AUROC Time
(s)

CLAM-SB No 0.859 (0.853, 0.864) 10.11
Yes 0.860 (0.856, 0.866) 10.93

CLAM-
MB

No 0.859 (0.854, 0.864) 10.33

Yes 0.859 (0.854, 0.865) 10.87
DTFD No 0.856 (0.852, 0.862) 38.63

Yes 0.857 (0.852, 0.862) 33.96
SG-MIL No 0.840 (0.835, 0.846) 28.05

Yes 0.836 (0.830, 0.841) 29.17

split. Specifically, for the task of classifying car-
diomegaly, our training set contains 35,117 images
(26,955 with cardiomegaly and 8,162 without), our
validation set contains 14,106 images (10,923 with
cardiomegaly and 3,183 without), and our test set
contains 21,239 images (16,212 with cardiomegaly
and 5,027 without). Specifically, for the task of clas-
sifying pulmonary edema, our training set contains
34,436 images (21,484 with pulmonary edema and
12,952 without), our validation set contains 14,272
images (9,039 with pulmonary edema and 5,233 with-
out), and our test set contains 14,195 images (13,050
with pulmonary edema and 7,809 without).

Table 6: Median and IQR of AUROC of
Transformer-Based methods on the syn-
thetic data task. This task contains 1,000
training ordered lists with 100% abso-
lute position information. The * identifies
whether there is no overlap in IQRs of the
performance of methods with and without
positional encodings (PE).

Attention
Type

Test AUROC
without PE

Test AUROC
with PE

Nystrom 0.995 (0.993, 0.997) 0.997 (0.995, 0.999)
Original 0.992 (0.989, 0.994) 0.999 (0.995, 1.00)*
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Table 7: IQR of AUROC of ABDMIL on the syn-
thetic data task with only relative posi-
tion information. This task contains 100
training ordered lists with 22% absolute
position information but strong relative
position information.

Method Test AUROC
ABDMIL 0.897 (0.883, 0.911)
ABDMIL+Wrapper 0.906 (0.882, 0.930)

Appendix F. Run Time and
Performance for All
Methods

The classification times of all methods on the syn-
thetic data task are available on Github. Appendix
Figure 5 shows the AUROC of all non-transformer-
based methods not in the main text on the synthetic
data. Appendix Figure 6 shows the AUROC of the
transformer-based methods not in the main text on
the synthetic data. Appendix Table 4 lists the clas-
sification time and performance of all methods not
in the main text on the real data tasks with absolute
position information. Appendix Table 5 lists the clas-
sification time and performance of all methods not in
the main text on the real data tasks without abso-
lute position information. Appendix Table 6 lists the
performance of TransMIL with and without its posi-
tional encodings on synthetic data tasks.

104

https://github.com/MLD3/MILwAPI/

	Introduction
	Background
	Binary Weakly Supervised MIL
	Components of an MIL Method

	Related Work
	Types of Position Information
	MIL Methods and Tasks in Past Work
	Efficient Methods for Leveraging Position

	Methods
	Formalization of Absolute Position Information.
	Proposed Wrapper

	Experimental Setup
	Benchmark Synthetic Data Task: Classifying MNIST Lists
	Real-World Tasks: Classifying Cardiomegaly and Pulmonary Edema in Chest X-Rays
	Evaluation Metrics

	Results and Discussion
	Baseline Evaluation.
	Transformer Ablation Study.
	Wrapper Effectiveness.
	Wrapper Robustness.
	Other Types of Position Information.

	Conclusion
	Acknowledgements
	Comparing Variance and Average Absolute Distance
	Defining MIL Methods
	Hyperparameters and Training
	MNIST Ordered List Task Data Creation
	Preprocessing and Data Split for Real Data Task
	Run Time and Performance for All Methods

