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Abstract

In this work, we address the challenge of lim-
ited data availability common in healthcare
settings by using clinician (ophthalmologist)
gaze data on optical coherence tomography
(OCT) report images as they diagnose glau-
coma, a top cause of irreversible blindness
worldwide. We directly learn gaze representa-
tions with our ‘GazeFormerMD’ model to gen-
erate pseudo-labels using a novel multi-task
objective, combining triplet and cross-entropy
losses. We use these pseudo-labels for weakly
supervised contrastive learning (WSupCon)
to detect glaucoma from a partially-labeled
dataset of OCT report images. Our natural-
language-inspired region-based-encoding Gaze-
FormerMD model pseudo-labels, trained using
our multi-task objective, enable downstream
glaucoma detection accuracy via WSupCon ex-
ceeding 91% even with only 70% labeled train-
ing data. Furthermore, a model pre-trained
with GazeFormerMD-generated pseudo-labels
and used for linear evaluation on an unseen
OCT-report dataset achieved comparable per-
formance to a fully-supervised, trained-from-
scratch model while using only 25% labeled
data.

Data and Code Availability This study uti-
lizes an internal dataset of optical coherence to-
mography (OCT) reports obtained from our insti-
tution that is not yet publicly available. It also
utilizes a dataset of OCT reports obtained from
our industry partners, Topcon, that is not yet
publicly available. The corroboration study pre-
sented in Appendix D utilizes a publicly available
data of chest x-rays and corresponding gaze data
Karargyris et al. (2020) Goldberger et al. Our

code is available here: https://github.com/AI4VSLab/
Expert-Gaze-4-Supervised-Contrastive-Learning

Institutional Review Board (IRB) This study,
AAAU4079, was approved by the Columbia Uni-
versity Irving Medical Center Institutional Review
Board on 12/22/2022 and is in accordance with the
tenets set forth by the Declaration of Helsinki. In-
formed consent was obtained from all study partici-
pants.

1. Introduction

One of the biggest challenges in artificial intelligence
(AI) for healthcare lies in the acquisition of large and
accurately-labeled datasets, essential for deep learn-
ing (DL) model training.

The scarcity of such labeled data hinders the devel-
opment of generalizable models that can perform well
on unseen data Xiao et al. (2018). Additionally, dis-
parities in expert opinions, for example disagreement
even among clinicians on the definition of blindness-
causing eye diseases like glaucoma, can impede estab-
lishment of reliable ground truths for training. To ad-
dress these issues, we propose to extract information
from other data modalities and use them to create
labels to help learn better representations for down-
stream tasks on different datasets. Specifically, we
consider the use of gaze data of medical experts as
they view medical images to extract pseudo-labels
that can be used for the task of optical coherence
tomography (OCT) report classification. The use of
pseudo-labels is then aided by contrastive loss to help
learn representations. In doing so, we showcase the
robust training of DL models via self-supervision and
contrastive learning derived from clinician gaze pat-
terns.
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Self-supervised learning (SSL) aims to learn robust
representations of a data distribution and allows ef-
ficient training for downstream tasks. SSL is also
robust in situations with smaller datasets with lim-
ited labels, as it enables learning of latent features
that are common between different views of the same
image. Medical image data is rich in patterns that
may not be discernable by the human eye but that
can be elucidated by the power of SSL algorithms.

Eye tracking data offers a wealth of information
regarding the focus of attention and the expertise
level of individuals examining medical reports. Gaze
data from domain experts viewing images and videos
abounds especially in medicine. Spatial gaze infor-
mation encodes regions of importance, while tem-
poral information encodes image-region order of im-
portance for diagnostic decision-making. In contrast
to supervised algorithms which require large quan-
tities of hand-annotated or labeled data, weakly-
supervised learning relies on ‘inexact’, coarse-grained
labels (e.g., human eye-tracking) that can be more
easily collected in bulk from which the label and
ground truth can be inferred in place of costly ex-
pert labeling.

While a few methods use spatial gaze data for diag-
nostic AI models Stember et al. (2019), very few have
been proposed to capture both temporal and spatial
relationships explicitly to supervise downstream DL
tasks. Deep neural networks were utilized to trans-
fer the eye fixation coordinate system for low-cost
eye tracking but not for further processing and un-
derstanding of fixations Rakhmatulin and Duchowski
(2020). There have been only structured methodolo-
gies available for machine learning (ML) techniques
used for analysis in different types of eye-tracking
studies Kuang et al. (2023), making our DL explo-
ration pioneering. Previous eye tracking features such
as pupil size, rotating velocity, and saccades, used for
biometric AI applications, have been mostly static
and positional Lim et al. (2022). The successful in-
tegration of real-time gaze tracking in human neuro-
science domains such as psychophysics and neuromar-
keting Zdarsky et al. (2021), lays the foundation for
further eye-tracking exploration in ophthalmology.

In this study, we propose GazeFormerMD, a
region-based eye movement encoder to learn gaze
representations on medical images as pseudo-labels
for disease classification. These pseudo-labels are
then used for Weakly-Supervised Contrastive Learn-
ing (WSupCon) based on Khosla et al. (2021) to
classify OCT reports as glaucomatous or not glau-

comatous. GazeFormerMD is a transformer based
model Vaswani et al. (2023) and is trained with
a novel multi-task objective that consists of triplet
loss Schultz and Joachims (2003); Weinberger et al.
(2005) and cross entropy loss for classification. This
approach leveraging eye tracking ‘pseudo-labels’ has
the potential to enhance the performance of DL mod-
els for glaucoma diagnosis from OCT reports even
with few explicit labels. Our work offers the follow-
ing three key contributions:

• A new encoding scheme for gaze that retains spa-
tiotemporal relationships by modeling gaze data
as words.

• GazeFormerMD, a transformer based encoder
that is trained with a multi-task objective
which learns useful representations, creating pos-
itive and negative pairs for contrastive learn-
ing. Its embeddings are used as pseudo-labels to
help learn image representations for downstream
tasks.

2. Related Work

2.1. Medical Expert Gaze Patterns

Expert gaze patterns have been used in different ap-
plications in machine learning and medicine. They
have been found to contain useful information, such
as underlying differences between expert vs. novice
image viewers Akerman et al. (2023). Past work
Stember et al. (2019) has also attempted to use masks
generated from eye-tracking of experts while view-
ing radiology images vs. masks hand-annotated by
experts, to compare resulting Structures of Interest
(SOIs) segmented via AI. This past work showed that
eye-tracking is not significantly different in quality to
hand annotations for segmenting SOIs. This finding
provided evidence that even coarse, inexact eye move-
ments can provide the information necessary to train
AI systems to achieve accurate DL-based segmenta-
tion. Other work Li et al. (2019) has attempted to
specifically enhance glaucoma detection from fundus
images of the retina using labeled human attention
maps and region localization as well as classification
via convolutional neural networks (CNNs).
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Figure 1: Overview of method: In (A), we take gaze data as input to pretrain GazeFormerMD using our
multi-task objective. Then in (B), all embeddings are gathered to generate pseudo-labels. These
labels are then used for WSupCon in (C). Each ei is assigned with neighbors E; I{ei} now has
neighbors IE . More details about (B) are in section 3.3.4

2.2. Self-Supervised and Contrastive
Learning

In contrast to supervised learning, self-supervised
learning (SSL) has shown its potential to serve as
an effective pre-training strategy to learn better rep-
resentations Caron et al. (2021), thus enabling more
robust performance than supervised learning alone
especially when labeled data is limited. Balestriero
and colleagues Balestriero et al. (2023) offered a de-
tailed description of state of the art methods in SSL,
including BYOL Grill et al. (2020), SimSIAM Chen
and He (2020), and VICReg Bardes et al. (2022). SSL
has also shown success in various medical applica-
tions, such as for medical image segmentation Chai-
tanya et al. (2020) and for electronic health records
Krishnan et al. (2022). SimCLR Chen et al. (2020) is
a contrastive learning method that attempts to max-
imise agreement between two views of the same im-
age through NT-Xent loss. More recently, Khosla and
colleagues Khosla et al. (2021) extended the NT-Xent
loss introduced in SimCLR by leveraging labels dur-
ing contrastive pre-training, showing labels can be

incorporated into a contrastive learning framework,
yielding supervised contrastive learning.

2.3. Weak Supervision and Gaze Data

Gaze data has been used in various tasks in machine
learning for both weak supervision as well as gaze
generation.

Gaze generation’s goal is to create realistic gaze
patterns that are similar to those of human viewers.
Models such as recurrent neural networks (RNNs)
and CNNs have been used to generate gaze patterns
Li et al. (2022); Assens et al. (2017); Xia et al. (2019);
Kümmerer et al. (2022); Yang et al. (2020), where
gaze was modeled via a reward function and repre-
sented as 3D volumetric input.

Weak supervision seeks to use weak labels to super-
vise a model instead of the actual ground truth. Saab
and colleagues Saab et al. (2021) also tried to extract
gaze features on biomedical images to aid supervising
image classification models. While this approach is
most similar to ours, it also differs greatly: our goal is
to use gaze data to aid in classification where only few
labels exist. We extract features using a DL model
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trained on gaze instead of using gaze statistics, and
we use gaze to generate weak labels to pre-train an
image classification model.

3. Methods

3.1. Approach Overview

We propose a two stage approach to use gaze to aid in
classifying glaucoma. First, we train GazeFormerMD
with processed gaze data using a multitask loss func-
tion that includes triplet and cross entropy losses.
The processed gaze data consists of a vector where
each fixation is a unique word index. Positive ex-
amples for triplet learning are gaze from the same
clinician given the same glaucoma classification rat-
ing. We then use the embeddings of GazeFormerMD
to generate weak labels by assigning closest neigh-
bors the same pseudo-labels. Second, these pseudo-
labels are used for training an image encoder through
weakly supervised contrastive learning (WSupCon).
The encoder is then frozen, and we attach a linear
layer for linear evaluation: classification of a report as
glaucomatous or healthy. Our goal is to use gaze data
to learn an informative embedding that guides con-
trastive learning with OCT reports, thereby learning
more robust representations that can improve down-
stream glaucoma classification performance. We hy-
pothesize that given the same clinician, their gaze
pattern should be more similar on OCT reports of
the same class than on OCT reports of a different
class. Figure 1 shows the overall process of our ap-
proach.

3.2. Problem Setting and Datasets

We are given two datasets: a dataset of OCT re-
port images with their corresponding labels DOCT =
{(xi, yi)}Ni=1 and a gaze dataset of clinicians’ gaze on
OCT reports Dgaze = {(gi, ỹi, yei , ci)}Mi=1. gi, ỹi, y

e
i ,

and ci are the gaze time series data, clinician’s diag-
nosis (glaucoma or healthy), expertise of the given
clinician, and the corresponding clinician, respec-
tively. DOCT could be incomplete or very small; in
our setting, we will consider a complete but small
dataset. In total, we have 177 Topcon Maestro (Top-
con Healthcare, Tokyo, Japan) OCT reports (LabSet)
and 467 eye-tracking fixation sequences (LabGaze-
Set) from 10 glaucoma experts. Eye-tracking fixa-
tions were collected with Pupil Labs Core (200 Hz)
and Tobii Pro Fusion (250 Hz) eye-trackers while

ophthalmologists viewed OCT images. Clinician ex-
perience level varied from resident to faculty; clin-
icians were asked to rate each OCT report from 0
(healthy) to 100 (glaucoma). Each OCT report im-
age xi has gaze sequences Gi = {gi1, gi2, ...} and∑N

i=1 |Gi| = M . Each gaze gij also has embedding
eij . I{gij} (or I{eij}) is the image that was looked at
by gij . We will use gi and ei only when discussing
gaze data alone for brevity. We will also call the
learned pseudo-labels ŷ.

3.3. Gaze Representation Learning

3.3.1. Gaze-to-Word Region Encoding

We take inspiration from the recent success of BERT
Devlin et al. (2019) and Sentence-BERT (SBERT)
Reimers and Gurevych (2019) in learning represen-
tations in natural language. Particularly, SBERT
takes sequences/paragraphs of text and learns repre-
sentations that can meaningfully compare sequences
of text. Gaze data is a time-series from a participant’s
viewing of a given image. Gaze contains spatiotem-
poral information; the order of eye fixations and du-
ration of each fixation contain information about rel-
ative importance that leads to the participant’s diag-
nosis decision.

Our goal is to learn a good representation ei ∈ Rd

of these sequences so we can distinguish similarities
between different gaze sequences by modelling them
as words. In order to capture information from gaze
data for our language-inspired DL approach, for each
gaze time-series, we encode gaze in the following ways
(depicted pictorially in Figure 2, and a toy example
is given in A.1):

1. region-based: gregioni , we convert each fixation to
the letter that corresponds to the current region
in which it falls (A, B, C, D, etc.).

2. region-based count vector: we convert gregioni

into a count vector gregion cv
i , where each ele-

ment is the count of fixations in that region; total
length of this vector is equal to the total number
of regions, which is 7 (A-G).

3. region-grid: grgi , we divide each region (A-G)
into sub-regions/patches (depicted by red, green,
blue, violet, yellow, magenta, and black grids in
Figure 2). Each fixation is then quantized to an
integer (0-109) corresponding to a patch. Since
each fixation has different duration lengths, we
also bin fixations into 100ms bins such that each
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element in our fixation sequence corresponds to
the same amount of time. Fixations longer than
100ms are split into different bins and averaged.

Figure 2: OCT report is split into regions, from A to
G. Then each region is split into grids.

3.3.2. Baselines

We established baselines with gregioni , gregion cv
i , and

grgi via Principal Component Analysis (PCA), Multi-
layer Perceptron (MLP), and logistic regression (Lo-
gReg). SGT Ranjan et al. (2021) was used to convert
variable-length gaze data into a fixed-length vector,
and PCA was used to reduce SGT’s output since it
has a dimension of 9410. For supervised baselines, the
models were trained to classify experts vs. novices or
glaucoma vs. healthy. We evaluated the performance
of our baselines using model accuracy on glaucoma
or expertise classification and visualized using t-SNE
van der Maaten and Hinton (2008). PCA was used
here to reduce the dimensionality of SGT’s outputs.
Table 1 shows input data format and machine learn-
ing (ML) pipelines used as baseline models.
For multi-layer perceptron (MLP) and logistic re-

gression using gregioni or grgi , the learned representa-
tions were the activations before the final MLP layer
and the sigmoid function, respectively.

3.3.3. GazeFormerMD

Architecture We use a vanilla transformer encoder
with 4 layers and 4 heads, with max sequence length
l = 1024, hidden dimension h = 256, and dropout
rate 0.1. We first zero-pad our inputs pad(grgi ) to
length l. The output f(pad(grgi )) ∈ Rl×h of the
transformer is a collection of embeddings. However,

Baseline Method Data Used

1 SGT→PCA→MLP gregioni / grgi
2 SGT→PCA→LogReg gregioni / grgi
3 MLP gregion cv

i

4 LogReg gregion cv
i

Table 1: Different configurations (data input format
and ML pipelines) for baseline models.

since each input gaze has variable length, we need to
create a single embedding to compare them. Simi-
lar to SBERT, we experiment with the MEAN pool-
ing strategy, which takes the output embeddings and
averages them to create MEAN embedding ei af-
ter masking outputs corresponding to zero-padding.
Additionally, outputs corresponding to zero-padding,
CLS, and SOS tokens are masked before MEAN pool-
ing for training and inference.

Optimization GazeFormerMD is trained with a
multi-task (MTL) objective. The first task is con-
trastive triplet loss, and the second task is classifi-
cation for either expertise or glaucoma status. We
experiment with expertise as targets since past work
Akerman et al. (2023) has shown that gaze can be
useful for expertise classification. The combined loss
to minimize is:

LMTL = Ltriplet + LCE

(1)

Where LCE is the cross entropy (CE) loss, for pre-
dicting between expert vs. novice or between glau-
coma vs. healthy. Ground truth labels used here
are individual clinician diagnoses ỹ. Based on the
hypothesis presented in Section 3.1, for gi, its posi-
tives are the other gj that were viewed by the same
clinician given the same label. Triplet loss helps mini-
mize the distance between an anchor and its positives,
while maximizing distance to negatives.

Our objective is to minimize the following loss with
xrg
i Schroff et al. (2015):

Ltriplet =

Ntriplets∑
i

[∥f(xa
i )− f(xp

i )∥2−

∥f(xa
i )− f(xn

i )∥2 + α]+ (2)

Where [.]+ = max(., 0) is used to ensure that
when positive is closer than negative, we don’t pe-
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nalize the model. xa
i , x

p
i and xn

i are anchor, positive
and negative examples, respectively. α is a hyper-
parameter used to avoid collapse, when f(.) learns
to map everything to 0. There are multiple ways to
select triplet pairs; we select triplets using a batch-
all strategy: all valid triplets are selected and av-
eraged with only hard and semi-hard triplets. Easy
triplets are those with loss less than 0; hence aver-
aging with them would result in a very small loss.
Hermans et al. (2017) provides a more in-depth dis-
cussion about triplet selections.
We use the Adam optimizer Kingma and Ba (2017)

with cosine decay learning rate schedule Loshchilov
and Hutter (2017) without restarts and minimum
learning rate 1e − 5. The model is trained for 200
epochs, with base learning rate of 0.0001, α in triplet
loss set to 5, and batch size of 32.

Data
Used

Expertise
Accuracy

Glaucoma
Accuracy

(1) gregioni 64% 62%
(1) grgi 75% 53%

(2) gregioni 51% 62%
(2) grgi 49% 51%

(3) gregion cv
i 63% 56%

(4) gregion cv
i 73% 61%

Table 2: Baseline results on expertise and glaucoma
classification tasks. Models achieving high-
est accuracy on each classification task are
bolded.

3.3.4. Obtaining the pseudo-labels:

As shown in Figure 1, after training GazeFormerMD,
the embeddings are gathered to create pseudo-labels.
First, the embeddings are used to compute the co-
sine similarity matrix. We assume the embeddings
with high cosine similarity came from the same class
of images and from the same clinician, since this is
the criteria for generating positive pairs in triplet
loss. Therefore, images with similar gaze embeddings
should also be similar. More formally, image xi has

gaze embeddings E = {ej}M(xi)
j=1 .1 Each ej has a

sorted list of neighbors E = [ep, eq, ...], which corre-
spond to Ii = [Iep , Ieq , ...]. However, since it is not

1. M(xi) is the number of gaze points on xi

guaranteed that all images in I are unique (same im-
age may be viewed by different clinicians), the top-k
unique images are considered neighbors. The set of
unique neighbors for each xi is Mi.

3.4. Weakly-Supervised Contrastive Learning

By adapting supervised contrastive learning (Sup-
Con), the pseudo-labels learned from gaze contrastive
learning (GazeFormerMD) are used as weak labels
in SupCon (WSupCon). After obtaining the set of
neighbors {Mi}Ni=1, we use OCT report images to
train with SupConout from Khosla et al. (2021):

LWsupcon =

−
∑
i∈I

1

|P (i)|
∑

p∈P (i)

log
exp((zi · zp)/τ)∑

a∈A(i) exp((zi · za)/τ)
(3)

Let i ∈ I = {1, .., 2N} be the index of augmented
samples, and let A(i) = I \ i be the set of indices
minus the anchor. P (i) = {p ∈ A(i) : xp ∈ Mi} is
the set of indices with the same label as the anchor
within the augmented mini-batch. τ is the temper-
ature parameter for softmax. zi = g(hi) is the pro-
jected embedding similar to SimCLR. One important
observation is that equation 3, does not enforce neigh-
bors’s neighbors to be positive pairs. For example, if
z1 is the current anchor and P (i = 1) = {z2, z3},
equation 3 does not necessarily maximize similarity
with neighbors of z2 in P (i = 2). This is due to not
having disjoint sets of pseudo-labels. Furthermore,
since number of neighbors k is a hyper-parameter,
similar embeddings might not be attracted together
in the loss function if they are not within the k closest
neighbors.

Architecture We use ResNet-50 He et al. (2015)
as our encoder f . The representation hi is the out-
put of the final average pooling layer, with dimension
2048. The projection head g is a MLP with 2 layers,
with 2048 and 1024 as the output dimensions, respec-
tively.

Optimization Adam with cosine decay learning
rate schedule without restart is also used with the
same minimum learning rate. The model is trained
for 200 epochs using equation 3, followed by training
one linear layer attached to f with its weights frozen
for 50 epochs using cross entropy. The base learning
rate is 0.001, temperature τ is set to 0.1, and batch
size is 16.
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Loss Data Used Accuracy

LCE∗ grgi 51.75% ±1.399
LCE† grgi 84.65% ±1.351
LCE† grgi ∗ 86.70 % ±1.732

Table 3: GazeFormerMD training accuracy with
Cross-Entropy Objective Only. We either
train on expertise classification (∗) using ỹ
or glaucoma classification (†).

4. Results

4.1. Gaze Representation Learning

Below we show results on LabSet and validation of
our method on a completely unseen set of 6941 glau-
coma OCT reports from Topcon Maestro (Topcon
Healthcare, Tokyo, Japan), hereafter referred to as
the Topcon dataset (see Section 4.2.2 for more de-
tails). In addition, Appendix D shows results of cor-
roborating our method on an external chest X-ray
dataset with 1038 scans.

4.1.1. Baseline

Table 2 shows results from training baseline mod-
els (using configurations shown in Table 1) on ei-
ther expertise or glaucoma classification. Five-fold
cross-validation was performed on all models to ob-
tain model performance. We used the best of these
for downstreamWSupCon training; results are shown
in Table 5.

4.1.2. GazeFormerMD

To evaluate GazeFormerMD, we employed linear
evaluation. Linear evaluation was performed on the
pre-trained transformer model by freezing the weights
and attaching a linear layer for predictions. Addi-
tionally, since novice’s (resident’s) gaze data are not
as informative as that of experts (faculty) Brunyé
et al. (2019), we also trained with gaze data from
experts only. Table 3 shows the expertise and glau-
coma classification accuracy on the training set using
cross entropy loss applied to embeddings extracted
from pathway 1.1 shown in Figure 1. Ground truth
glaucoma vs. no glaucoma classification accuracy is
obtained using each clinician’s diagnoses ỹi.

Loss Data
% Linear
Eval Acc∗

% Linear
Eval Acc†

Ltriplet grgi 52.66% ±1.284 52.66% ±1.281
Ltriplet grgi ∗ NA 47.80% ±4.489
LMTL∗ grgi 51.81% ±1.373 47.59% ±5.869
LMTL† grgi 50.23% ±4.568 85.11% ±1.988
LMTL† grgi ∗ NA 88.02% ±1.615

Table 4: GazeFormerMD training accuracy with
Triplet and Multi-task Objectives. ∗ de-
notes only expert data was used or linear
evaluation on expertise was performed; † de-
notes linear evaluation on glaucoma classi-
fication was performed. For each loss type,
we trained a linear layer on top of the trans-
former, and we used either expertise or ex-
pert glaucoma diagnoses ỹ as targets.

4.1.3. Obtaining the Pseudo-Labels

After training our transformer model with contrastive
triplet and multi-task loss as shown in pathway A of
Figure 1, we obtained the accuracies shown in Table
4, which motivated our decision of which model to
use to generate pseudo-labels for WSupCon.

Table 4 shows that the best pseudo-label perfor-
mance is achieved by the model trained on multi-task
loss with glaucoma classification cross-entropy using
expert-only gaze data. Thus, pseudo-labels generated
from this model are used for WSupCon.

4.2. Weakly-Supervised Contrastive Learning

Here we present results from using pseudo-labels gen-
erated using gaze from the previous section. We vali-
dated our framework using our LabSet and using the
encoder trained with WSupCon to train a linear clas-
sifer on the Topcon dataset. We also compare our
WSupCon approach (MTL and triplet) to our base-
lines (pseudo-labels generated using baselines in Ta-
ble 2).

4.2.1. WSupCon on LabSet

Table 5 shows linear evaluation results with pseudo-
labels ŷ from baselines vs. those created via gaze con-
trastive learning (GazeFormerMD). For both base-
lines and GazeFormerMD, we use different amounts
of data out of the training set to pre-train withWSup-
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Pseudo-Label Type
% Pre-training

Data
% Linear
Eval Data

Linear
Eval Acc

Baseline 100 % 70 % 79.63 % ±16.04
Triplet 100 % 70 % 72.22 % ±16.90
MTL ♢ 100 % 70 % 91.67 % ±10.01
Baseline 75 % 30 % 72.22 % ±22.04
Triplet 75 % 30 % 76.85 % ±18.50
MTL 75 % 30 % 87.03 % ±11.56
Baseline 50 % 40 % 68.52 % ±15.30
Triplet 50 % 40 % 62.03 % ±15.29
MTL 50 % 40 % 80.56 % ±2.778

Table 5: Linear Evaluation after WSupCon pre-training on our LabSet dataset. We compare pseudo-labels
generated from baseline, triplet, and MTL losses.

Con. Then, for each model, we train the linear layer
with varying amounts of labeled data. We present re-
sults for best data fractions in Table 5 and for all data
fractions in Appendix C. All models were trained
with the same procedure described in 3.4. The overall
training procedure is shown in Figure 3.

4.2.2. WSupCon on Topcon Dataset

We use a WSupCon pre-trained model with its
weights frozen and trained a linear classifier on the
Topcon dataset. We utilized the best model with
MTL ♢ (row 3 in Table 5) and 100% data for pre-
training, which achieved 91.67% on LabSet’s test set,
for Topcon dataset validation (containing a differ-
ent data distribution than LabSet). The Topcon
dataset contains 6941 OCT reports: 5008 accept-
able (healthy) and 1933 unacceptable. Unaccept-
able includes glaucoma as well as other pathologies
or poor scans. We used 20% of the dataset for test-
ing and varied the rest of 80% for training. Table
6 shows results on the Topcon dataset. We com-
pare our WSupCon pre-trained model with a model
trained from scratch with Binary Cross Entropy loss
for 200 epochs. Both baseline and WSupCon pre-
trained models employ base learning rate of 0.001,
batch size of 48, and Adam optimizer with cosine de-
cay learning rate schedule without restart.

5. Discussion

5.1. Gaze Representation Learning

5.1.1. Baselines

Our baseline results indicate that although expertise
classification reached 75% accuracy, glaucoma classi-
fication accuracy barely exceeded chance when em-
beddings were derived from SGT, PCA, MLP, or lo-
gistic regression approaches. However, the fact that
these baselines crossed the chance threshold validates
our encoding scheme using language-inspired region-
based, region-based count vector, and region grid
methods.

5.1.2. GazeFormerMD

Gaze contrastive learning was effective in achieving
the best results compared to baselines and when only
trained with cross entropy loss. The multi-task na-
ture of our objective further encouraged the model to
bring gaze embeddings closer together. Although the
multi-task objective with glaucoma classification and
expert data only (row 5, Table 4) outperformed that
trained with a cross-entropy objective alone and only
expert data (row 3, Table 3), the performance gap
was not significant (88.02% vs. 86.70%). This may
be due to the triplet loss being noisy, since triplets are
selected at each training step from the current mini-
batch. The triplet selection strategy could also affect
performance as the batch-hard strategy was found to
work the best. Since past work has shown that gaze
data can be used to classify expertise with accuracy
beyond 90% Akerman et al. (2023), this suggests our
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Figure 3: WSupCon and transfer learning training pipeline. 1) WSupCon training: OCT reports whose
clinician gaze data are neighbors; these are an example of a positive pair. After WSupCon training,
encoder f∗ is frozen to train a linear classifier for healthy vs glaucoma. This same encoder is then
used for training the Topcon dataset in 2).

% Linear
Eval Data

Linear
Eval Acc

Sensitivity Specificity

ResNet50-LCE 100 % 78.92% ±5.165 78.88% ±8.436 79.02% ±4.165
ResNet50-LCE 50 % 81.00% ±2.580 85.72% ±4.325 68.52% ±4.571
ResNet50-WSupCon 100 % 81.41 % ±1.220 86.66 % ±1.732 67.51 % ±1.783
ResNet50-WSupCon 50 % 79.97 % ±0.636 85.71 % ±1.359 65.61 % ±1.378
ResNet50-WSupCon 25 % 81.31 % ±0.957 86.69 % ±1.647 67.01 % ±2.209

Table 6: Validation results on Topcon dataset. This dataset has a different data distribution than that of
our LabSet. We compared Topcon WSupCon results to a model trained-from-scratch with Cross-
Entropy loss and only supervised labels (ResNet50-LCE).

current training method may be improved by learning
more generative patterns in gaze data. We could ex-
tend our approach by training GazeFormerMD with
additional tasks, such as masked language modeling
and next-word prediction, effectively learning a gen-
erative model for gaze data. Our results also suggest
the potential for improvement by combining gaze and
image data into one model to better capture the cor-
relation between image location and gaze while main-
taining temporal information.

5.1.3. Obtaining the Pseudo-Labels

We generated pseudo-labels from gaze contrastive
learning and multi-task loss (including triplet loss
combined with glaucoma cross-entropy loss) and ap-
plied those for WSupCon from OCT report images.
These pseudo-labels achieved up to 88.02% linear

glaucoma classification accuracy on training data.
Further experiments could use k-means clustering or
other techniques to assign labels.

5.2. Weakly-Supervised Contrastive Learning

5.2.1. WSupCon on LabSet

WSupCon with GazeFormerMD-generated pseudo-
labels outperformed baselines for each variation of the
model shown in Table 5 (when 50%, 75%, or 100%
of the training dataset was used for WSupCon pre-
training and 30%, 40%, or 70% labeled data was used
for linear evaluation). In addition, multi-task objec-
tives (row 5, Table 4) performed better than triplet
objectives (row 2, Table 4) alone across varying frac-
tions of pre-training (50%, 75%, 100%), with multi-
task accuracy exceeding 91% at 100% WSupCon pre-
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training and 70% labeled data during linear evalua-
tion. There were occasional drops in testing accuracy
(as shown in Appendix C), which could be partially
explained by the fact that we used five distinct seeds
to evaluate model performance and present average
results. Since our LabSet is relatively small, each of
these seeds could have resulted in a different data dis-
tribution, leading to a large variance in performance.
We also include t-SNE plots of both gaze embeddings
and image embeddings (in Appendix F) to visualize
our LabSet data distribution.

The inclusion of triplet loss contributes to the
model’s ability to construct robust positive and neg-
ative relations between gaze patterns, generating a
well-defined clustering between similar embeddings
and thus more accurate pseudo-labels. Simultane-
ously, the integration of cross-entropy loss serves a
crucial role in guiding the model to distinguish be-
tween glaucomatous and healthy OCT data. We con-
ducted Mann-Whitney U tests of the average WSup-
Con accuracy results between a model using only
triplet loss and and a model using our combined
multi-task loss. We observed a significant improve-
ment in glaucoma detection accuracy for the model
trained with multi-task loss compared to the model
trained with triplet loss only with a p-value of 0.00018
at 75% WSupCon pre-training. Therefore, by com-
bining these loss functions, GazeFormerMD achieves
a holistic learning strategy, exhibiting enhanced per-
formance through use of contrastive similarity and
classification objectives.

5.2.2. WSupCon on Topcon Dataset

There are two findings from training the Topcon
dataset on our WSupCon pre-trained model. First,
our model is able to achieve test accuracy that is com-
parable to a model trained from scratch with fully-
labeled data, which takes considerably more resources
to train. This implies that pre-training with gaze in-
formation (from our LabSet alone) helped our model
to generalize to unseen data. Second, we tried to vary
the amount of data used to train the linear classifier.
With only 25% of the data, we were able to achieve
comparable results to 100% of the data. This could
be due to the pre-trained encoder providing useful
representations, reducing the complexity of the clas-
sification task.

6. Conclusions and Future Directions

Our work showcases that medical expert gaze data
(specifically eye movements of ophthalmologists as
they view optical coherence tomography reports for
glaucoma detection) has the potential to enhance dis-
ease detection accuracy especially in settings when
access to labeled data is lacking. Pseudo-labels gen-
erated purely from region-based encodings of gaze
data on OCT reports enabled downstream glau-
coma classification with suboptimal accuracy; how-
ever, pseudo-labels derived from supervised gaze
contrastive learning (GazeFormerMD) using cross-
entropy, triplet, and multi-task loss achieved up to
88.02% training accuracy. WSupCon using these
pseudo-labels was effective at achieving accuracy be-
yond 91% with only 70% labeled data and 100%
pseudo-label pre-training. The process of gener-
ating pseudo-labels introduces noise when learning
with WSupCon; thus, our relatively high pseudo-
label accuracy using gaze data (88.02%) did not
always transfer to downstream glaucoma classifica-
tion model performance using OCT image data.
Nonetheless, when a model pre-trained on our LabSet
with GazeFormerMD-generated pseudo-labels was
used for linear evaluation on an unseen OCT re-
port dataset, it achieved comparable performance to
a fully-supervised, trained-from-scratch model while
using only 25% of the labeled data. Our method
showcases the power of gaze as a form of contrastive
pre-training for potential development of foundation
models for medical applications.

Future work will explore other ways to preserve
performance from gaze to the images being ob-
served. Future directions also include integrating
other modalities of data to provide complementary
information for better model comprehension of glau-
coma patterns, such as the subject’s corresponding
visual field images alongisde OCT reports Tian et al.
(2023), or clinicians’ textual comments on each OCT
report observation Radford et al. (2021). Another
potential direction is employing alternate embedding
approaches by quantizing eye tracking into features
based on characteristics beyond region alone or pre-
training on large datasets of eye tracking data (even
those of non-experts) prior to fine tuning on clinician
data. Lastly, leveraging text responses of clinicians in
addition to their eye movements would enable the use
of large language model inspired methods to predict
the next fixation in a sequence, much like predicting
the next word in a sentence.
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Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi
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Appendix A. Processing Gaze Data Details

A.1. Preserving Spatial-temporal Relationships

Figure 4: Data Preprocessing. a) shows an image being split into 6× 6 grids, and locations of the fixations
are shown in b) with their corresponding color. b) shows the recorded fixation data and duration
of each fixation. c) shows fixations after processing by assigning a word index and repeating to
denote duration.

Figure 4 shows the overall process of preprocessing data. Each row in c) denotes fixation for a chosen
duration, 100ms in our case. If there are fixations lasting 150ms followed by another 150ms fixation, we
linearly interpolate the fixation. The wordidx denotes which cell the fixation falls in (as shown in a), with
upper left corner as 0. Since each unique wordidx always corresponds to the same location, and all the
reports shown in Fig. 2 have the same scan of different patients at the same location, location information
is preserved. By maintaining the order and the duration (by repeating the same wordidx to indicate longer
duration), temporal information is preserved.

Appendix B. Additional Details on Strategies to Prevent Overfitting

Data Augmentation used for our model differs from the ones used in Chen et al. (2020) Khosla et al. (2021).
The following is our data augmentation process. It is important to note that color distortion was removed
since it interferes with colors used to show intensity in OCT reports. A pseudo code for our augmentation
is below using PyTorch.

transforms = transforms.Compose([

transforms.RandomResizedCrop(

size=(512, 512), scale=(0.4, 1.0), antialias=True),

transforms.RandomHorizontalFlip(p=0.5),

RandomCutOut(size=(512, 512), min_cutout=0.1, max_cutout=0.7),

transforms.RandomRotation(degrees=(0, 360)),

])
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Appendix C. Additional Experimental Results on LabSet

Figure 5 shows glaucoma detection accuracy via WSupCon with varying % pre-training data and varying %
linear evaluation data using pseudo-labels generated from baseline models and GazeFormerMD.

Figure 5: Glaucoma detection accuracy via WSupCon with varying % pre-training data and varying % linear
evaluation data using pseudo-labels generated from baseline models and GazeFormerMD (triplet
model, row 2 in Table 4 and multi-task model, row 5 in Table 4).

Appendix D. Additional Experimental Results Showcasing Generalization of
our Method on Different Gaze and Image Data

D.1. Eye Gaze Data for Chest X-ray Dataset

The “Eye Gaze Data for Chest X-ray Dataset (EGD-CXR)” is a public dataset containing radiologist gaze
information on the chest X-ray dataset, MIMIC-CXR Karargyris et al. (2020) Johnson et al. (2019). It
contains X-ray scans from 1083 patients that are either diagnosed as normal, with congestive heart failure
(CHF), or with Pneumonia. To remain consistent with our dataset, we perform binary classification between
healthy and unhealthy (normal vs. CHF or Pneumonia). We applied our GazeFormerMD + WSupCon
pipeline to this dataset to show that our method can generalize across other eye tracking and imaging
datasets.

Since EDG-CXR contains gaze data only from one radiologist, images belonging to the same class serve
as positives for triplet loss. The same training method described in the main paper is used here. Unlike our
glaucoma dataset (Fig. 2) in which there are 6 sub-images per OCT report, this dataset contains just one
scan per image. Therefore, grg splits the scan into grids and applies the same method as described in the
main paper.

Table 7 shows the model accuracy of our GazeFormerMD at classifying healthy vs not-healthy chest X-
rays. Triplet loss yields the highest accuracy with linear evaluation while multi-task loss yields the highest
kNN accuracy. Table 8 shows our model’s performance using pseudo-labels as well as other methods.

Appendix E. Augmenting Supervised Learning with Self-Supervision and
Expert Gaze Data

This section describes a sub-study in which we performed self-supervised pre-training via SimCLR followed
by supervised fine-tuning with gaze-overlaid OCT reports. We observed significant improvement in accuracy
when we utilized a self-supervised pre-training strategy to detect glaucoma from OCT reports superimposed
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Loss Data
% Pre-training

Data
% Linear
Eval Data

Linear
Eval Acc

kNN MCC

LCE grgi 100% 100% 80.80% 80.49% 0.5534
Ltriplet grgi 100% 100% 81.57% 80.34% 0.5711
LMTL grgi 100% 100% 81.26% 82.03% 0.6002
LCE grgi 50% 50% 82.03% 81.87% 0.5840
Ltriplet grgi 50% 50% 80.95% 80.03% 0.5446
LMTL grgi 50% 50% 82.33% 81.41% 0.5801

Table 7: Gaze: Test accuracy with cross entropy, triplet and multi-task losses, respectively, at classifying
healthy vs not-healthy chest X-rays using gaze data. The images are split into (28x28) grids for
gaze processing. LMTL achieves highest linear evaluation accuracy.

Loss
% Pre-training

Data
% Linear
Eval Data

Linear
Eval Data Acc

LCE 100% 100% 75.57%
LSimCLR 100% 100% 77.08%
LSupCon 100% 100% 74.65%
LWSupCon (ours) 100% 100% 71.43%
LCE 50% 50% 68.66%
LSimCLR 50% 50% 65.90%
LSupCon 50% 50% 70.05%
LWSupCon (ours) 50% 50% 67.28%

Table 8: Image: Downstream image classification accuracy with cross-entropy, SimCLR, SupCon, and our
method, respectively, at classifying healthy vs not-healthy chest X-rays. Our methods maintain
high test accuracy even with 50% labeled data. The pseudo-labels are trained with 50% labeled
data and the multi-task loss shown in Table 7.
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with fixation heatmaps vs. clean OCT reports (without overlaid gaze data) followed by supervised fine-tuning
with partially-labeled data.

By leveraging Self-Supervised Learning (SSL) as a pre-training method, our model can learn intricate
patterns from the data, capitalizing on various learned (pre-text) tasks, such as predicting relationships
within medical reports or reconstructing masked portions. Integrating ophthalmologist gaze data enhances
this process, enabling the model to understand spatial cues from clinicians’ gaze patterns. Subsequently,
fine-tuning the pre-trained model with Supervised Learning (SL) on the available labeled data further refines
its features for the specific clinical task.

This approach offers several advantages. First, the model is equipped with an understanding of the intrinsic
data structure through SSL. Second, the inclusion of gaze data provides a nuanced perspective, enhancing
the model’s temporal and spatial comprehension. Third, the model’s ability to generalize is significantly
improved, due to the combined power of SSL, SL, and expert gaze insights.

In our study, we delved into the intricate relationship between unlabeled data and model performance
when pre-training with SSL. We randomly sampled 25%, 50%, 75%, and 100% of our training data to
treat as unlabeled data in our pre-training task. Then, we systematically sampled the dataset into different
proportions of labeled data, ranging from 10% to 90% for our SL fine-tuning task. We used a ResNet-50
backbone and SimCLR loss for SSL pre-training (200 epochs), followed by SL fine-tuning (50 epochs) with
cross-entropy loss for obtaining final glaucoma vs. healthy classification.

We augmented our models in two ways: one set was trained exclusively on clean OCT reports, while the
other incorporated gaze fixation data (fixation information was overlaid on the image via PyGaze heatmaps
Dalmaijer (2021)). This innovative augmentation strategy aimed to provide the models with an additional
layer of information, particularly in situations where complete labeled data was lacking.

To ensure the reliability of our results, we implemented a robust testing procedure. The entire dataset
was randomly reordered three times, and each experiment for each unlabeled data percentage was run three
times and then tested. By averaging the outcomes, we accounted for any potential variability in the data
and training process, ensuring the integrity of our findings.

E.1. Results: Augmenting Supervised Learning with Self-Supervision and Expert Gaze Data

To understand the statistical significance of these improvements, especially in comparison to baseline models
or other methods, we carefully selected statistical tests based on the unique characteristics of our data.
Kolmogorov-Smirnov tests were chosen for assessing normality, considering the non-normally distributed
nature of the accuracy data. Mann-Whitney U tests were employed for comparing accuracy between different
conditions due to their suitability for non-parametric analysis.

In our analysis, Kolmogorov-Smirnov tests confirmed non-normality in all models’ accuracy distributions
(p=0), emphasizing the unique nature of the data. Subsequent Mann-Whitney U tests of the average accuracy
results between with and without gaze fixations yielded p-values of 0.0003873, 0.0003792, and 0.01706 for
25%, 50%, and 100% SSL pre-training, respectively (75% is excluded since its p-value was insignificant). This
indicates a significant difference in accuracy between models with and without gaze fixation data. These
results emphasize the impact of integrating gaze fixation data on glaucoma classification accuracy from OCT
reports, highlighting its potential to enhance model performance compared to a model trained solely on clean
OCT reports.
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Figure 6: Comparison of average glaucoma detection accuracy of models trained using varying amounts of
OCT report data for SSL pre-training, followed by supervised fine-tuning with 10% to 90% labeled
data, with gaze data superimposed (left) or without gaze data superimposed (right).

Appendix F. Ophthalmologist Gaze Dataset Summary

(a) (b)

Figure 7: Histogram of fixation counts on OCT reports for all clinicians (left) and for experts only (right).
Expert gaze data have fewer outliers with a high number of fixations.
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Figure 8: t-SNE plot of Gaze embeddings. Note that the small clusters are successfully grouped by glaucoma
vs healthy and which clinician the gaze data came from, which was the criteria for positive pairs
in GazeFormerMD’s triplet loss.

Figure 9: t-SNE plot of ResNet’s activations after training with WSupCon on the test dataset. Glaucoma
vs. healthy activations are relatively well-separated.
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